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A statistical approach is proposed to predict thermal diffusivity profiles as a transport “model” in fusion
plasmas. It can provide regression expressions for the ion and electron heat diffusivities (χi and χe), separately,
to construct their radial profiles. An approach that this letter is proposing outstrips the conventional scaling laws
for the global confinement time (τE) since it also deals with profiles (temperature, density, heating depositions
etc.). This approach has become possible with the analysis database accumulated by the extensive application of
the integrated transport analysis suite to experiment data. In this letter, TASK3D-a [M. Yokoyama et al., Plasma
Fusion Res. 9, 3402017 (2014)] analysis database for high-ion-temperature (high-Ti) plasmas [H. Takahashi et
al., Nucl. Fusion 53, 073034 (2013)] in the LHD (Large Helical Device) [O. Kaneko et al., Nucl. Fusion 53,
104015 (2013)] is used as an example to describe an approach.
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Conventionally, scaling laws for the global energy
confinement time (τE) have been one of the approaches
to systematically grasp the energy confinement of fusion
plasmas [1,2], and are also considered as one of the guide-
lines to design/predict future devices, such as ITER [3].

On the other hand, physics-based transport models
have been employed to predict the plasma performance,
such as expected temperature profiles for certain plasma
operation scenarios. In such predictions, it has been al-
ways problematic whether employed transport model(s)
are actually responsible for governing energy confinement
in plasmas to be forecasted. In other words, how do we
validate the employed transport models?

In this letter, a statistical approach is proposed to over-
come such a problem. The goal of this approach is to pre-
dict thermal diffusivity profiles (in other words, transport
“modelling”) based on the analysis database, without as-
suming any physics-based transport models. The accumu-
lating and increasing analysis database should elucidate,
by itself, the systematic dependence on plasma parameters.
In some sense, the analysis database created by experimen-
tal power balance analysis can be considered to be the most
“validated” transport model, since data are obtained from
actual experimental data. This is the background of this
letter.

It should be mentioned that a similar approach based
on neural network has also been reported based on exten-
sive case-analyses in DIII-D very recently [4].

Recent development of the integrated transport anal-
ysis suite, TASK3D-a (analysis version for LHD exper-
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iments), and its extensive application to a wide-ranging
LHD plasmas have created the analysis database which in-
cludes profile information such as ion and electron tem-
peratures (Ti and Te), electron density (ne), NBI heating
deposition, and ion and electron thermal diffusivities (χi

and χe), and others.
TASK3D-a, in brief, consists of modules for tem-

perature/density profile fittings, VMEC [5] equilibrium
specification, NBI deposition calculations [6] and steady-
state/dynamic energy transport calculations, so that they
are sequentially executed in an automated manner [7].
Analyses for multiple-timings in multiple discharges form
the analysis database. The employed data in this letter have
been carefully checked in terms of completeness and mea-
surement accuracy of kinetic profiles, reasonable profile
fitting, and NBI injection without breakdown, and other
criteria. The entire TASK3D-a database also includes data
obtained by discharge scenario other than high-Ti dis-
charges. However, high-Ti plasmas can provide wide range
of Ti in a single shot, and this fact is essential to assure the
statistical confidence. Thus, in this letter, selected small
part of the analysis database (high-Ti plasmas) is utilized
to describe an approach which this letter seeks to propose.

Figure 1 shows radial profiles of fitted values of (a)
Ti (measured by charge exchange spectroscopy [8]), (b) Te

(Thomson scattering system [9]), and (c) the electron den-
sity, ne (Thomson scattering system data calibrated with
far-infrared laser interferometry [10]) of analysed cases.
The number of discharges considered in this letter is 31.
Multiple timings are analyzed in each discharge (corre-
sponding to the timing of Ti-profile measurement, leading
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Fig. 1 Radial profiles (fitted) of (a) Ti, (b) Te, and (c) ne in anal-
ysis database.

Fig. 2 Radial profiles of (a) χi and (b) χe in analysis database.
The total number of data points of χi and χe is around
3,000, respectively.

to a total of about 200 timings), so that the evolution of
Ti at the core region from low-Ti to high-Ti phase can be
tracked, not only at the timing with the highest values of Ti.
The Te profile is rather stiff compared to that of Ti in this
database. The ne profiles are flat to hollow. Figure 2 shows
(a) χi and (b) χe, obtained from the dynamic transport anal-
ysis [11] which takes into account the NBI slowing down
and the temporal change of plasma parameters. The to-
tal number of data points (either ion or electron) shown in
Fig. 2 is around 3,000.

The accumulation of TASK3D-a analyses results has
led to the attempt at regression analysis for χi and χe

with certain parameters as regression parameters. On per-
forming regression analysis for the TASK3D-a analysis
database, χi and χe are dimensionally normalized by Bohm
diffusion coefficients, Ti,e/(eB). Candidate predictor vari-
ables are also made into dimensionless variables, such as,
for ions, the collision frequency normalized by that of
the plateau_Pfirsch-Schlüter boundary (ν∗i ), the normalized

Fig. 3 (a) The comparison of χi/[Ti/(eB)] values between
TASK3D-a analysis database and the regression results.
(b) Biplot for predictor variables employed in Eq. (1).

Larmor radius (ρ∗i ), and the temperature ratio (Te/Ti).
There are wide freedoms for the selection of the pre-

dictor variables including combinations of variables. In
addition to the above mentioned three variables (ν∗i , ρ∗i ,
Te/Ti), physically important variables such as Er (radial
electric field) shearing rate, and others do exist. How-
ever, the complete implementation of such variables into
the analysis database has not yet been done. Thus, let me
limit in this letter to proposing an approach that employs
the available variables. Thus the results below are not nec-
essarily the final and decisive conclusions.

Here, as a standard exercise in scaling studies, the as-
sumed simple power-law scaling model has been trans-
formed to the log-linear form. Multiple ordinary least
squares (OLS) regression analysis has resulted in the re-
gression expression for χi/[Ti/(eB)], by employing data
shown in Fig. 2.

χi,fit/(Ti/eB)=6.08×10−9ν∗−0.139
i ρ∗−2.29

i (Te/Ti)
0.77.

(1)

Figure 3 (a) shows comparison of χi/[Ti/(eB)] values
between TASK3D-a analysis database and the values pre-
dicted by Eq. (1). Around 3,000 data points, correspond-
ing to a wide range of Ti and radial positions, are reason-
ably aligned on the diagonal line in Fig. 3 (a). The multi-
collinearities between predictor variables (dependencies in
the multi-dimensional space) may have a destructive im-
pact on the OLS regression analysis. However, it usually
does not affect predictions provided the multi-collinearity
remains similar. Nevertheless, an exact check for the
multi-collinearity must be done before using the model.
The best way to assess the multi-collinearity is apply-
ing principal component analysis (PCA) [12]. Figure 3 (b)
shows a biplot [13,14] (data (black dots), and eigenvectors
(red arrows) of predictor variables) in the plane defined by
the first two largest principal components (cf., Appendix).
The angles less than 90 degrees between eigenvectors,
which are seen in Fig. 3 (b), indicate there are dependen-
cies between them, but still within acceptable range. An
important statistical measure of the quality of the model is
the ratio R2 of the variation explained by the model to the
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Fig. 4 The probability of the relative error, (χi_eq.(1)-
χi_TASK3D-a)/χi_TASK3D-a, for the regression analy-
sis on χi.

total variation. The obtained value is R2 = 0.83, which is
a relatively high value, indicating that Eq. (1) reasonably
reproduces the response variable, that is, χi/[Ti/(eB)]. The
value of the root-mean-square-error (RMSE) is 0.28.

Figure 4 shows the probability distribution as a
function of the relative error evaluated by [(χi_eq.(1)-
χi_TASK3D-a)/χi_TASK3D-a]. Its mean value is about
3.7% with the standard deviation of about 28%. The rel-
ative error must be further reduced, of course. However,
the conventional approach assuming physics-based mod-
els may not reach such a status for around 3,000 χi data.
Furthermore, Eq. (1) covers the evolution of plasma pa-
rameters (from low-Ti to high-Ti as seen in Fig. 1 (a)) in
high-Ti plasmas in the LHD. Thus, such a regression ex-
pression can be directly implemented into the predictive
simulation instead of physics-based transport models. It
should be noted here that the direct profile extrapolation
approach proposed in Ref. [15] can also be the plausible
method to predict profile evolution.

As for electrons, χe/[Te/(eB)], the same set of pre-
dictor variables as ions, (ν∗e, ρ∗e, Te/Ti), gives a regres-
sion expression with only R2 = 0.21. This poor confi-
dence level of statistics may be attributed to the small range
of Te (cf., Fig. 1 (b)) in the database causing a smaller
range of predictor variables compared to that of ions. In-
creasing the number of predictor variables, from three to
nine (addition of available variables such as the normal-
ized temperature and density scale lengths, R/LTe, R/Lne,
the rotational transform, the effective helicity [16], the
dominant helicity and the toroidicity), can increase R2 to
0.54. However, this value of R2 is still rather small, and,
moreover, configuration-related variables have high multi-
collinearity with each other as expected. Recently, trials
have been conducted in the LHD experiment for increas-
ing Te in high-Ti plasmas (from Ti > Te towards Ti∼Te) by
means of the increased available ECH power [17]. A cor-
responding increase of TASK3D-a analysis database (in-
clusion of higher Te cases in high-Ti plasmas) is foreseen,
when it is anticipated to increase the confidence level of
statistics for electrons, as well.

Examples for comparisons of χi profiles between
those deduced from Eq. (1) and from analysis database

Fig. 5 Comparisons of χi profiles at two time slices, (a) 4.84 s
and (5) 5.04 s of LHD shot number 119981. Cir-
cles (squares) symbols are TASK3D-a (obtained from
Eq. (1)), respectively.

(TASK3D-a results) are shown in Fig. 5 at two time slices
of LHD shot number 119981. It is found that in these
two cases, χi data of analysis database (circle symbols) are
reasonably well reproduced by deduced from Eq. (1). Of
course, based on the existence of the relative error shown
in Fig. 4, there are other cases without such a reasonable
reproduction. Improving the statistical confidence such as
with adding physically-important variables into regression
analysis will be pursued.

In this letter, a statistical approach is proposed to pre-
dict thermal diffusivity profiles in fusion plasmas. The ex-
tensive application of the integrated transport analysis suite
TASK3D-a to the LHD experiment has made this approach
possible. A statistically-confident regression expression
for the ion thermal diffusivity (covering wide range of Ti,
also from core to edge) for LHD high-Ti plasmas has been
provided, which can be directly implemented into the pre-
dictive simulation as a transport “model”.

It may be ultimately anticipated to elucidate the re-
gression expression which is appropriate for ion and elec-
tron thermal diffusivities, separately, regardless of the con-
finement mode. Further application of TASK3D-a in a
wider range of LHD plasmas and the resulting increase of
analysis database will be performed in this direction.

Lastly, it should be emphasized that this approach is
comprehensive for any other combinations of integrated
transport analysis suites and fusion experiments.
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Appendix. Supplementary Descrip-
tion for a Biplot (Fig. 3 (b)) [14]

The biplot is a graphical tool, based on the eigen-
analysis, to investigate the structure of analyzed data. It is
constructed as the projection of the dispersion onto a plane
defined by the two selected principal components (PCs).
The plot consists of both data points (shown as black dots)
and eigenvectors (shown as red arrows) of predictor vari-
ables.

For collinearity checks, the eigen-analysis and PC
analysis are usually made on the correlation matrix. In
such a biplot, the cosine of the angle between arrows
equals the correlation between the variables (angles close
to 90 or 270 degrees indicate small correlation, angles of 0
or 180 degrees mean correlation of 1 or −1, respectively).
This information is most important for collinearity check.

For scaled and centered data, one can directly com-
pare the lengths of arrows to see which variable are well
represented in the selected plane (longer arrow means the
variable lies near the plane). When necessary (the rep-
resentation of a variable in the plane is not satisfactory),
further biplots using other PC pairs should be created and

analysed. The distance between two points in the biplot
corresponds the Euclidean distance between two observa-
tions in the multivariate space (dots far away from each
other correspond to distant observations, and vice versa).

The Fig. 3 (b) shows a biplot in the plane PC1-PC2,
accounting (81.6 + 16.8 =) 98.4% of the total variation
(more than 80% of it belongs to the PC1). The angles be-
tween arrows are not too small, which indicates that de-
pendencies between predictor variables are acceptable.
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