
Plasma and Fusion Research: Regular Articles Volume 8, 2401149 (2013)

Development of Parallelized AMR-PIC Plasma Simulation Code
with Dynamic Domain Decomposition∗)

Hideyuki USUI1,3), Yohei YAGI1,3), Masaharu MATSUMOTO1,3) and Masanori NUNAMI2,3)

1)Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan
2)National Institute for Fusion Science, Toki 509-5292 Japan

3)Japan Science and Technology Agency (JST) / CREST, Tokyo 102-0076, Japan

(Received 7 December 2012 / Accepted 22 August 2013)

To maintain load balance among processes in parallel calculation, we introduced a dynamic load balancing
technique called Dynamic Domain Decomposition (DDD) into our newly developed multi-scale Particle-In-Cell
(PIC) simulation code in which Adaptive Mesh Refinement (AMR) is incorporated. To evaluate the effectiveness
of DDD, we performed test simulations with a model in which four particle clusters are non-uniformly distributed
with different velocities. We confirmed that load imbalance among processes caused by non-uniform plasma
distribution was successfully resolved by DDD and the computational time becomes almost half of that for
simulation of the same model without using DDD.

c© 2013 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: Particle-In-Cell, parallel computing, dynamic load balance, plasma simulation

DOI: 10.1585/pfr.8.2401149

1. Introduction
Full Particle-In-Cell (PIC) simulation [1] is a very

powerful numerical method which enables us to exam-
ine various plasma phenomena in association with wave-
particle interactions occurring in space because it can treat
electron as well as ion kinetics with no fluid approxima-
tion. Conventional PIC simulation codes adopt uniform
grids of which size is basically determined by the De-
bye length to avoid the numerical instability. When non-
uniform plasma is treated, the grid size should be small
enough in comparison with the smallest Debye length cor-
responding to the maximum density. The smallest grid size
which is used in the high density region has to be assigned
to the other regions of relatively low density. This treat-
ment is not efficient at all in terms of the usage of limited
computer resources such as the amount of memory and cal-
culation time.

To achieve an efficient simulation with reasonable cost
of computer resources, spatial and temporal resolutions
can be adjusted locally and dynamically depending on the
local scales of phenomena. To realize this efficiency in
PIC simulations, we developed a new electromagnetic PIC
code called PARMER (Full PARticle simulation code with
adaptive MEsh Refinement) [2] by incorporating the Adap-
tive Mesh Refinement (AMR) technique. AMR has been
used in the field of computational fluid dynamics as a use-
ful method to investigate multi-scale phenomena. In the
AMR simulations, grids with different spacing are dynam-
ically created in hierarchical layers according to the local

author’s e-mail: h-usui@port.kobe-u.ac.jp
∗) This article is based on the presentation at the 22nd International Toki
Conference (ITC22).

Fig. 1 Hierarchical layers with different grid size in AMR.

conditions of phenomena. Fine grids are applied only re-
gions where high resolution is needed. Figure 1 shows an
example of hierarchical layers with different grid size used
in the AMR system. The grid size in the Level-1 layer is
half of that of the base level called Level-0. In PARMER,
time step interval also becomes half of that in the lower
level.

To realize high performance computation in PIC sim-
ulation by using a supercomputer, we usually parallelize
codes by adopting the domain decomposition method. In
the domain decomposition parallelization, we divide the
whole simulation system into sub-domains and each sub-
domain is assigned to each process. In PIC simulations,
particles located in each sub-domain move across the do-

c© 2013 The Japan Society of Plasma
Science and Nuclear Fusion Research

2401149-1



Plasma and Fusion Research: Regular Articles Volume 8, 2401149 (2013)

main boundaries and eventually the number of particles
in each sub-domain changes. In addition, in the AMR
scheme, hierarchical grid layers are dynamically created
or deleted in each sub-domain. Then the amount of cal-
culation load assigned to each process becomes different
and the load balancing between processes cannot be guar-
anteed through the simulation run. Such a load imbalance
causes low efficiency of parallel calculation.

2. Dynamic Domain Decomposition
for AMR-PIC
To resolve load imbalance in parallelized PARMER

simulation, we developed the Dynamic Domain Decom-
position (DDD) method with which we dynamically re-
decompose the whole simulation space into new sub-
domains so that each process is assigned with equal load.
In PIC codes, computational task is mostly devoted to par-
ticle calculation because the number of particles is gener-
ally several ten or hundred times larger than that of spatial
grids. Therefore, in DDD, we consider load balance among
processes in terms of cost of particle calculation.

Figure 2 schematically shows the calculation cost of
particles in a hierarchical system. In PARMER, calcula-
tion cost of particles in the child level increases twice of
the parent level because the time step interval Δt becomes
half of that of the parent level, Δt → Δt/2, in accordance
with the change of the grid spacing from Δx to Δx/2 in the
child level. To synchronize to the parent level, calculation
loops for particles located in the child level has to be dou-
bled. For example, when 100 particles are located in the
Level-1, they are considered to have 200 particle loops to
synchronize in time with the Level-0. 100 particles located
in the Level-2 have 400 particle loops from a viewpoint
of the Level-0 because there are two layers difference be-
tween levels.

In consideration of the difference of the load for the
particle calculation between hierarchical levels, the num-

Fig. 2 Relation between the number of particle and that of par-
ticle loop in PARMER.

ber of particle loops distributed to each process should be
∑

cell 2LNparticle

Nprocess
, (1)

where Nparticle is the number of particles located in a grid
belonging to the Level L domain, and Nprocess is the num-
ber of processes used in the parallel simulation. The base
level corresponds to L = 0 and L increases in the higher
hierarchical level with fine grids. Note that Δt at L = 0 is
divided by 2L on the level L. Then the numerator of the
value (1) implies the total loop number of particle calcula-
tion in the whole simulation system required for updating
Δt. To realize load-balanced parallel calculation, we need
to somehow decompose the whole domain in such a man-
ner that the value given by (1) becomes the same in each
sub-domain.

To determine the manner of decomposing the domain
into sub-domains so that load balance is achieved between
processes, we first number all grid points in the simu-
lation domain in such a manner that neighboring grids
are closely ordered in a series with a space-filling curve.
To realize this type of numbering the grids, we hire the
Morton ordered curve [3]. Firstly a three dimensional
grid (i, j, k) can be expressed in bit representation as a
binary number (i3i2i1i0, j3 j2 j1 j0, k3k2k1k0). The corre-
sponding Morton number is then obtained by interleav-
ing these bits into one binary number in such a manner
as (k3 j3i3k2 j2i2k1 j1i1k0 j0i0). The obtained binary number
is converted into a decimal number. All the grid points are
newly numbered in the above-stated manner and we ob-
tain one-dimensional sequential ordering of spatially close
grids in memory. We decompose the grids by dividing the
Morton order into the number of processes so that the av-
erage load given by (1) is equally assigned to each process.

Figure 3 shows an example of domain decomposition
using DDD. Panel (a) shows a snapshot of plasma den-
sity profile obtained in a two dimensional simulation of
plasma clusters. With conventional domain decomposi-
tion with fixed sub-domains, as shown in Panel (b), load
balance among processes is not achieved because each
plasma cluster moves in various directions and the num-
ber of particles is not constant in each sub-domain. Mean-
while, Panel (c) shows sub-domain assignment by DDD.
Although the shape of each sub-domain seems irregular,
each sub-domain consists of neighboring grids.

3. Evaluation of DDD
To evaluate DDD, we performed a test simulation us-

ing PARMER with the following model. Figure 4 shows
the test simulation model. We initially have four particle
clusters in a three-dimensional space in addition to uni-
form background plasma. Each particle cluster has con-
stant velocity to the center of simulation space. When con-
ventional domain decomposition with fixed sub-domains
is used, load assigned to each process is not balanced and
it changes in time because particle clusters move across

2401149-2



Plasma and Fusion Research: Regular Articles Volume 8, 2401149 (2013)

Fig. 3 A demonstration of domain decomposition. In panel (a), many plasma clouds are randomly distributed. In panel (b), fine grids
are adaptively created at each cloud. A case of conventional decomposition with uniform and fixed sub-domains is shown. Each
sub-domain is shown in different color. To achieve the load balance we determine the sub-domains by using the Morton ordering
so that the particle loads becomes uniform between processes as shown in panel (c).

Fig. 4 Schematic image of test simulation.

Fig. 5 Variation of elapsed time at each time step.

boundaries of sub-domains. We compare total calculation
time between cases with and without DDD. The test sim-
ulations were performed with the K computer using 512
processes. In the present test simulation, two hierarchical
grid layers are used. When four clusters merge in the cen-
ter of the simulation space, the particle density increases
fourfold. Then the spatial grids at the high density region

Fig. 6 Contour maps of particle density at the first step and 250
time steps.

are refined by the AMR method because the local Debye
length becomes half of that of original one cluster.

Figure 5 indicates variation of elapsed calculation
time at each step. Blue and red lines in the figure show
cases with and without DDD. The elapsed time shown in
the vertical axis implies the calculation time of the slow-
est process among those participated in parallel simulation.
As shown in red, the elapse time for non-DDD case gradu-
ally increases and reaches the maximum value around 220
time steps. Figure 6 shows density contours of particle
clusters at the initial stage and around 220 time steps when
they merge in the center of the simulation space, respec-

2401149-3



Plasma and Fusion Research: Regular Articles Volume 8, 2401149 (2013)

Fig. 7 Total elapsed time of PARMER with/without DDD.

tively. In non-DDD case in which fixed sub-domains are
used, as clusters approach to each other to the center, the
load of the process handling the center region increases in
time. When the four clusters overlap in the center around
220 time steps, the elapse time becomes the maximum as
shown in Fig. 5. Meanwhile, the elapsed time for the case
with DDD seems almost constant, some spikes are regu-
larly found though. The spikes are due to overhead of
DDD which is mainly caused by arrangement of decom-
position and data transfer between processes. For the mo-
ment, the overhead costs 1.5 times the calculation cost of
one time step. Although the overhead needs to be reduced,
it is negligible because we do not need to operate DDD
at every time step. The overhead reduction is left as our
future work.

Figure 7 shows the total elapsed time of two simula-
tions. Blue and red colored bars correspond to cases with
and without DDD, respectively. We found that the total

elapsed time for the DDD case is almost half of that for
non-DDD case even though some overheads exist in the
DDD treatment. From the results shown in Figure 5 and 7
we can conclude that DDD works fine to resolve load im-
balance problem and can decrease calculation time in this
model.

4. Conclusion
We introduced dynamic load balancing technique

called DDD into our AMR-PIC code called PARMER to
resolve load imbalance problem. In DDD, grids points are
numbered with the Morton ordering so that neighboring
grids are aligned. Average particle load is obtained in con-
sideration of sum of particle loops in hierarchical grid lay-
ers. Load balance is realized in a manner that average parti-
cle load is assigned to each process by dividing the Morton
ordering into the number of process. To evaluate DDD, we
performed PARMER simulations with non-uniform parti-
cle distribution model. We confirmed that load imbalance
among processes was successfully resolved by DDD and
the computational time becomes almost half of that for
simulation of the same model without using DDD.

[1] C.K. Birdsall and A.B. Langdon, Plasma Physics via Com-
puter Simulation reprinted (Taylor & Francis, New York,
2005).

[2] H. Usui et al., Procedia Computer Science 4, 2337 (2011).
[3] G.M. Morton, A computer Oriented Geodetic Data Base;

and a New Technique in File Sequencing (IBM, Ottawa,
1966).

2401149-4


