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In the previous 3D Cauchy-condition surface (CCS) method analysis to reconstruct the magnetic field profile
in the Large Helical Device (LHD), one assumed an impractically large number of magnetic sensors, i.e., 440 field
sensors and 126 flux loops. In the singular value decomposition (SVD) process employed in the CCS method,
a gap is found in the magnitude of the singular values. The most accurate field results can be obtained if all the
singular values smaller than the gap threshold are eliminated, independent of the number of boundary elements
on the CCS and the number of sensors as well. With the reduction in the number of boundary elements, the
required numbers of field sensors and flux loops are significantly reduced to 110 and 25, respectively, without
losing the solution accuracy. They can be further reduced to 58 and 13 respectively if considering the symmetry
of the field profile in the LHD. This result suggests the possibility of actual application to the LHD.
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1. Introduction
In a nuclear fusion device, the plasma boundary shape

is one of the important parameters to identify the MHD
equilibrium configuration. There have been several ap-
proaches to identifying the boundary shape independently
of the pressure and the current profile, deduced from sig-
nals of magnetic sensors located outside the plasma. One
such method [1, 2] uses a small number of current ‘fila-
ments’ assumed at fixed positions within the plasma. The
currents in these filaments are then computed in such a way
that one obtains the best fit to the measured magnetic fluxes
and fields. In contrast, J. Svensson and A. Werner [3] as-
sumed a large number of filaments (beams) and inferred
the distribution of possible flux surface topologies with the
use of a Bayesian approach. Instead of such filaments,
Feneberg et al. [4] assumed a ‘control surface’ inside the
plasma. The current density distribution on the surface
is expressed as a sum of Fourier modes. Hofmann and
Tonetti [5] proposed a method based on finite element ba-
sis functions to represent the plasma current distribution.
Kurihara [6] proposed the Cauchy condition surface (CCS)
method, which has been established for real-time oper-
ating control and diagnosis of JT-60U [6, 7], a tokamak.
Here, the Cauchy condition surface (CCS), where both the
Dirichlet and the Neumann conditions are unknown, is hy-
pothetically placed in a domain that can be supposed to

author’s e-mail: itagaki@qe.eng.hokudai.ac.jp

be inside the plasma. In the analysis, no plasma current
is assumed outside this CCS, where in reality the plasma
current does exist.

The works mentioned above focus mainly on toka-
maks, i.e., axisymmetric plasmas, so that the analyses can
be made in a 2-dimensional (2D), r-z system. On the other
hand, 3D analyses are required for non-axisymmtric plas-
mas, e.g., in a helical type device such as the Large Helical
Device (LHD) of the National Institute for Fusion Science
(NIFS). In the LHD, it is important to consider the follow-
ing characteristics of the plasma current:

(i) The plasma current itself is much weaker than the
toroidal current in a tokamak device.

(ii) The dominant plasma current is the so-called Pfirsch-
Schülter current, the average of which over a magnetic
surface is zero. However, this current still has a 3D
profile.

It is therefore difficult to apply most of the simplified meth-
ods quoted above to the plasma in a helical-device. Among
them, however, the CCS method [6] has a rigorous mathe-
matical background (see the Appendix of Ref. [8]) that is
applicable to 3D problems.

Recently, the authors’ research group developed the
3D Cauchy condition surface method [8, 9] to reconstruct
the 3D magnetic field profile outside the non-axisymmetric
plasma in the LHD. This 3D CCS method is not a straight-
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forward extension of Kurihara’s 2D CCS method. The
magnetic flux function ψ that satisfies the Grad-Shafranov
equation is at the same time a surface function that satis-
fies B · ∇ψ = 0. The plasma boundary in an axisymmet-
ric plasma can then be easily identified by drawing con-
tours of the scalar function ψ. Unfortunately, however, it
is not easy to define such a surface function for the 3D
non-axisymmetric plasma. The process of the 3D CCS
analysis is a little more complicated. First, one solves the
3D Laplace equation and in this case the unknowns to be
solved are vector potentials (not scalar quantities) on the
CCS. Next, one reconstructs a 3D profile of magnetic field.
Furthermore, one needs to perform a magnetic field line
tracing to investigate the magnetic surface structure.

As the 3D analyses consume a large number of un-
knowns, the problem becomes very ill- conditioned. The
10-fold rotational symmetry in the toroidal direction of the
LHD was considered to reduce the number of unknowns
[8–10]. However, the condition number [11] of the solu-
tion matrix still exceeds 1015 in some cases. In the be-
ginning of the research [8], the Tikhonov regularization
technique [11] was introduced so that the condition num-
ber was reduced to about 107. Later, the truncated sin-
gular value decomposition (TSVD) technique [11] instead
of Tikhonov’s regularization technique was adopted since
conveniently, the desired condition number can be speci-
fied directly in advance. In the newer analysis using the
TSVD technique [9] the reduced condition number was set
to be 105. The effect on the solution accuracy was satis-
factory, however, no guideline for the best regularization
in the SVD technique has not yet been well investigated at
this time.

In the previous work [9], the authors’ research group
succesfully reconstructed the magnetic field profile in the
LHD with a fairly acceptable accuracy, so that the last
closed magnetic surface (LCMS) could also be identified
with the aid of magnetic field line tracing for the recon-
structed field. However, in this analysis they had to assume
440 field sensors and 126 flux loops. It is impractical to as-
sume such a large number of sensors. An effort should be
made to reduce the number of magnetic sensors required
for the analysis.

In order to realize an inverse analysis with a smaller
number of sensors, possible measures are (a) reduction in
the number of unknowns, (b) consideration of the symme-
try of magnetic field profile and (c) interpolation of the
sensor signals. In the present research, the authors direct
their attention mainly to the reduction in the number of un-
knowns, i.e., the number of nodal points on the CCS that is
modeled by boundary elements. In more detail, it is found
that by considering the behaviour of singular values in the
TSVD process the magnetic field can be accurately recon-
structed with a small number of boundary elements and
hence with a small number of sensor signals. It is also re-
ported that, considering the symmetry of the field profile
in the LHD, the required number of magnetic sensors can

be further reduced by half.
This paper is arranged as follows. The outline of the

3D CCS method is given in Sec. 2. Section 3.1 reviews the
CCS analysis previously reported in Ref. [9], which was
performed using 440 field sensors and 126 flux loops. In
Sec. 3.2, one shows that there is a gap in the magnitude of
singular values, and finds that the most accurate field pro-
file can be reconstructed if one filters out all the singular
values smaller than the gap threshold, independent of the
number of unknowns. In Sec. 3.3, an analisys is made as-
suming only 110 field sensors and 25 flux loops with 12
boundary elements on the CCS. This can be made by trun-
cating the singular values smaller than the gap. In spite of
the drastic reduction in the number of sensors, one can ob-
serve better accuracy of the reconstructed field than that re-
ported in Ref. [9]. Section 3.4 describes the magnetic field
line tracing for the reconstructed field distribution. Sec-
tion 3.5 shows Poincaré plots for field line traces originat-
ing at various starting points. Also, using the radial basis
function (RBF) expansion [12] the Poincaré plot points are
converted to a ‘quasi magnetic surface’, which shows an
acceptable agreement with the true magnetic surface. It
is shown in Sec. 3.6 that the numbers of field sensors and
flux loops can be further reduced to 58 and 13 respectively
if one considers the symmetry of the field profile in the
LHD. Concluding remarks are in Sec. 4. As the reduced
number of sensors required is almost the same as the num-
ber of sensors installed in the LHD, the present research
results suggest the possibility of actual application to the
LHD.

2. Outline of the 3D CCS Method
The Cauchy-condition surface (CCS), where both the

Dirichlet and the Neumann conditions (the vector poten-
tial A and its normal derivative ∂A/∂n) are unknown, is
hypothetically placed in a domain that can be supposed to
be inside the plasma. In the analysis, no plasma current
is assumed outside this CCS, where in reality plasma cur-
rent does exist. Instead, the CCS plays the same role as the
plasma current in causing the field outside the plasma.

In the beginning of the research [8] the authors
adopted the simple ‘axisymmetric CCS’ shown in Fig. 1 (a)
that has a circular cross section with radius 0.075 m. How-
ever, they now use the ‘twisted CCS’ shown in Fig. 1 (b).
In this new model [9], the ellipse given by

(r − r0)2

a2
+

(z − z0)2

b2
= 1, (1)

rotates 180◦ clockwise in the poloidal direction when it
proceeds 36◦ counterclockwise in the toroidal direction
following the variation in vacuum vessel geometry of the
LHD. Independent of the toroidal angle, the twisted CCS
can keep a certain distance from its surface to the LCMS.
A reduction in the numerical error can then be expected.

In the present work, the values of a and b in Eq. (1)
are 0.15 m and 0.375 m, respectively, i.e., the minor axis is
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Fig. 1 Images of the axisymmetric CCS and the twisted CCS.
(a) Axisymmetric CCS. (b) Twisted CCS.

30 cm and the major axis 75 cm, respectively. The center
of the CCS is set to be at r0 = 3.7303 m (major radius) and
z0 = 0.0 m.

A 3D Cartesian coordinate system is adopted to re-
alize a boundary-only integral formulation. The first step
of the analysis is to solve the following boundary integral
equations (BIEs) and obtain the values of the vector poten-
tial and its derivative on the CCS in such a way that they
will be consistent with the sensor signals.

(i) For magnetic field sensor locations i:

Bj−W (B)
j =

∑
k

∫
ΓCCS

{
(L j

kφ
∗
i )
∂Ak

∂n
− Ak

(
L j

k

∂φ∗i
∂n

)}
dΓ.

( j = r, ϕ, z; k = x, y, z) (2)

The operator L j
k corresponds to a component in B = ∇× A

with A expressed in Cartesian coordinates, W (B)
j is the con-

tribution of external coil currents, and φ∗i the fundamental
solution of the Laplace equation.

(ii) For flux loops:

e.g., the BIE for a circle loop set in the toroidal direction is
given as

ψ(Tor)−W (Tor)

=
∑

k

∫
ΓCCS

{
∂Ak

∂n

(∫ 2π

0
ηkφ

∗
i dϕ

)
−Ak

(∫ 2π

0
ηk
∂φ∗i
∂n

dϕ

)}
dΓ,

(k = x, y) (3)

with ηx = −R sinϕ and ηy = R cosϕ for the radius R of the
circle loop.

(iii) For points i on the CCS (ΓCCS):

1
2

Ak, i=

∫
ΓCCS

(
φ∗i
∂Ak

∂n
− Ak

∂φ∗i
∂n

)
dΓ. (k = x, y, z) (4)

The above three types of BIEs are discretized and coupled.
Further, considering the 10-fold rotational symmetry of the
LHD in the toroidal direction, the number of unknowns is

reduced by a factor of 10 with the aid of a linear trans-
formation of the vector potential expressed in the Carte-
sian coordinate system [8–10]. The 36◦ portion of the CCS
torus was divided into a certain number of discontinuous
quadratic boundary elements, each of which has nine nodal
points [13]. Eventually the set of equations is converted to
a matrix equation that has the form

Dp = g, (5)

where the solution vector p contains the vector potentials
A = (Ax, Ay, Az) and their normal derivatives ∂A/∂n on
the CCS. This matrix equation is solved using the singular
value decomposition (SVD) technique [14]. The matrix D
is decomposed as D = UΛVT , where U and VT are orthog-
onal matrices. The matrix

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

is a diagonal matrix with nonnegative components, where
the singular values λi appear in non-increasing order, λ1 ≥
λ2 ≥ · · · ≥ λi · · · ≥ λn ≥ 0. The ratio of the largest to
the smallest singular values λ1/λn is called the condition
number [11]. When the condition number is very large, i.e.
Λ includes very small singular values, it causes a numerical
instability of the solution. To avoid this, the truncated SVD
technique [11] was employed. The regularized solution in
this case is given by

p = VΛ−1
k UT g, (7)

where Λk means that the singular values smaller than λk in
Λ are omitted so that the reduced condition number (the
ratio λ1/λk) is not larger than a certain value.

Once all the values of the conditions on the CCS are
known, the magnetic fields for arbitrary points outside the
CCS can be calculated using the formula

Bj=
∑

k

∫
ΓCCS

{(
L j

kφ
∗
i

) ∂Ak

∂n
−Ak

(
L j

k

∂φ∗i
∂n

)}
dΓ+W (B)

j .

( j = r, ϕ, z; k = x, y, z) (8)

Note here that the external coil effect W (B)
j is added to the

field caused by the plasma current. The magnetic field line
tracing can be made for the field distribution computed us-
ing Eq. (8).

3. Numerical Tests for the LHD
One considers the plasma with the magnetic field

strength, the magnetic axis location and the volume-
averaged β being Bax = 3 T, Rax = 3.6 m and 〈β〉 = 2.7%
respectively in the LHD. The reference MHD equilibrium
for this condition had been analyzed beforehand [15] us-
ing the 3D MHD equilibrium calculation code HINT2 [16].
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That is, the magnetic sensor signals and the magnetic field
caused by the external coil currents are known before the
present analysis. The reconstructed results are compared
with the reference solutions.

For the sake of the discussion from now on, the au-
thors should give the definition of the last closed magnetic
surface (LCMS). In this work, the LCMS means the out-
ermost closed surface that is recognized through field line
tracing with the Poincaré plot. If the tracing is made for the
accurate magnetic field distribution that is rigorously cal-
culated using the HINT2 code, the Poincaré plot draws the
LCMS clearly and correctly. On the other hand, the field
profile reconstructed using the CCS method as an inverse
analysis is usually a little dirty, so that the reconstructed
LCMS is not very clear but somewhat indistinct in most
cases.

3.1 Use of 440 field sensors and 126 flux
loops

As each boundary element on the CCS has 9 nodes,
the total number of nodes is given by N = 9nBE, where
nBE is the number of boundary elements. The number of
unknowns is then given by 6N = 54nBE, i.e., the product
of N (= 9nBE), components of vector potential (= 3) and
boundary conditions at each node (= 2: the Dirichlet and
the Neumann conditions). Since one consumes 3N equa-
tions for points i on the CCS (see Eq. (4)), the number of
sensor signals must be larger than the remaining number
of equations, i.e., 3N.

One here uses 48 boundary elements on the CCS, so
that the number of unknowns is 54nBE = 2592. Due to
this, one assumes 440 magnetic field sensors. Since each
of the field sensors is assumed to detect all of the three
components of magnetic field, the total number of signals
(= 440 × 3 = 1320) is a little larger than 3N = 1296.
In addition to the field sensors, one also assumes 126 flux
loops. Consequently, the total number of sensor signals
becomes 1446 (= 1320 + 126), which is larger than 3N =
1296.

Figure 2 illustrates sensor locations in the r-z plane
at the toroidal angle of 18 deg (the horizontally elongated
cross-section). The 440 field sensors are purposely placed
on 11 different r-z planes at 3.6◦ intervals within the range
of toroidal angle, 0◦ ≤ ϕ ≤ 36◦. This arrangement of
sensors is identical to the case where all of the sensors are
distributed carefully for the whole range of 0◦ ≤ ϕ ≤ 360◦

in such a way that there will be no equivalent point under
the 10-fold rotational symmetry. The small circles in Fig. 2
illustrate the positions of 40 field sensors placed in this r-z
plane.

The black dots in Fig. 2 show the set of 100 magnetic
flux loops in the toroidal direction, each of which is at a
distance of 0.9 m from the point (r, z) = (3.7303 m, 0.0 m).
The two circles depict the flux loops in the poloidal direc-
tion, which have radii of 1.0 m and 1.2 m respectively with

Fig. 2 Sensor locations on the horizontally elongated cross-
section: 440 field sensors and 126 flux loops.

the center (r, z) = (3.7303 m, 0.0 m). A total of 26 flux
loops of this type are set in 13 different r-z planes at 3.0◦

intervals within the range of 0◦ ≤ ϕ ≤ 36◦.
All of the above sensor locations are exactly the same

as those used in the previous work [8, 9].
The CCS analysis is made in such a way that the sen-

sor signals are reproduced. Figures 3 (a)-(d) depict the re-
production of field sensor signals for different values of
reduced condition number when using 48 boundary ele-
ments on the CCS. In each figure, the abscissa represents
the original sensor signal, whereas the ordinate indicates
the value reconstructed from the CCS computation. The
points denoting Br, Bϕ and Bz scatter around the diagonal
line (y = x) in all figures, but it is found that the larger the
condition number is, the smaller the scatter is. However,
good reproduction of the sensor signals does not always
mean good reconstruction of the entire profile of magnetic
field.

Figures 4 (a), (b) and (c) show the reconstructed field
profiles (the external coil effect is not included) when the
condition number is assumed to be 105. These figures give
the contours of Br, Bϕ and Bz respectively on the horizontal
elongated cross section. In each figure, the reconstructed
solution is shown on the left, while the reference one is
on the right-hand side. The results are exactly the same as
those found in Ref. [9]. Guidelines for the best choice of
the condition number have not been well investigated up to
now.

3.2 Behavior of the singular values
Figures 5 (a) and (b) show the behavior of the singular

values which appeared in the singular value decomposi-
tion process when assuming 440 field sensors and 126 flux
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Fig. 3 Reconstructions of field sensor signals. (a) Cond. No.= 101. (b) Cond. No.= 102. (c) Cond. No.= 105. (d) Cond. No.= 107.

loops with the twisted CCS. The vertical axis in each fig-
ure represents the singular values whose maximum value
is normalized to unity. In both figures, ‘TnPm’ means that
the CCS is divided into n and m boundary elements in the
toroidal direction and the poloidal direction respectively,
i.e., nm is identical to nBE, the number of boundary ele-
ments. In the T8P6 case, the number of unknowns is then
6N = 54 nm = 2592, which agrees with the number of
singular values found in the SVD process.

It is observed in Fig. 5 (a) for the T8P6 case that there
is a gap between 5.03 × 10−2 and 1.01 × 10−3 in the mag-
nitude of the normalized singular values. It is interesting
to point out that the numbers of singular values larger and
smaller than this gap threshold around 10−2 are both 1296,
exactly the same as each other. This phenomenon is always
the case independent of the number of boundary elements.

In Fig. 5 (b) the gap threshold can be found commonly in
the vicinity of 10−2 in the normalized singular values for
all cases of the boundary element segmentations.

Hereafter one will use the term the ‘reduced condition
number’ that is defined as the reciprocal of the normalized
singular value when one cuts off the values lower than this
value. It will be shown that the most accurate reconstruc-
tion can be realized if all the singular values smaller than
the gap threshold are eliminated.

To evaluate the reconstructed solution accuracy, the
reconstructed field results were compared with the refer-
ence solution obtained using the HINT2 code. Theoreti-
cally the field reconstructed using the CCS method under
the vacuum field assumption agrees exactly with the true
field if there is no plasma current. Notice that even outside
the LCMS plasma currents exist to some extent, although
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Fig. 4 Reconstructed field caused by plasma current only when assuming 440 field sensors and 126 flux loops with 48 boundary ele-
ments (T8P6). The condition number was set to be 105. (a) Br (Left: Reconstructed. Right: Reference.). (b) Bϕ (Left: Recon-
structed. Right: Reference.). (c) Bz (Left: Reconstructed. Right: Reference.).

they are weak. The field errors near the LCMS are there-
fore the most important for the field reconstruction using
the CCS method. Hereafter, based on the LCMS that is
given for the reference magnetic field, all the error tenden-
cies are investigated for the region 1.0 < ρ < 1.1 in the
minor radius (ρ) space, i.e. very near the LCMS.

Figure 6 (a) for the T8P6 case and Fig. 6 (b) for the
T5P4 case show (i) the maximum errors of each compo-
nent of the field and (ii) the portion of the area (%) where
the error is larger than 0.02 T, as a function of the condition
number after the truncation. In both cases the most accu-
rate results can be obtained when the condition number is
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Fig. 5 Behavior of singular values. (a) Singular values for the T8P6 case. (b) Singular values as a function of the number of boundary
elements when using 440 field sensors and 126 flux loops.

almost 102, i.e., when all the singular values smaller than
the gap threshold are filtered out.

3.3 Reduction in the number of magnetic
sensors

In this section one will perform an analysis with only
110 field sensors and 25 flux loops set in the toroidal di-

rection, as shown in Fig. 7. In this occasion, one does not
adopt any flux loop set in the poloidal direction since it has
been found that its signal is less sensitive to the magnetic
field reconstruction than that of the loop set in the toroidal
direction. The number of sensors cannot be reduced ef-
fectively without reducing the number of unknowns, i.e.,
the number of boundary elements on the CCS. Following
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Fig. 6 Error tendency of reconstructed field when assuming 440 field sensors and 126 flux loops. (a) 48 boundary elements (T8P6) (b)
20 boundary elements (T5P4).

Fig. 7 Sensor locations on the horizontally elongated cross-
section: 110 field sensors and 25 flux loops.

the drastic reduction in the number of sensors, one will use
only 12 boundary elements (T4P3) to enable the analysis.

As shown in Fig. 8, even in this ‘economical’ case the
most accurate field results are obtained when the condition
number is set to be 102 in such a way that the singular val-
ues smaller than the gap threshold are cut off. Figures 9 (a),
(b) and (c) depict the field profiles reconstructed under this
condition. These figures show the profiles of Br, Bϕ and
Bz, respectively on the horizontal elongated cross section
when the external coil effect is excluded. In each figure,

Fig. 8 Error tendency when assuming a smaller number of sen-
sors with 12 boundary elements (T4P3).

the reconstructed solution is shown on the left, while the
figure on the right-hand side show the distribution of abso-
lute error, ε(T), which is calculated as

ε(T)= |Reconstructed value - Reference value| , (9)

respectively for the components of the field, Br, Bϕ and Bz.
It can be found that these reconstructed field profiles agree
fairly well with the reference ones that are shown on the
right in Fig. 4.

The error tendencies were also investigated for the re-
gion 1.0 < ρ < 1.1 in the minor radius (ρ) space. Table 1
compares the error tendencies between the following two
cases:
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Fig. 9 Reconstructed field caused by plasma current only when assuming a smaller number of sensors with 12 boundary elements (T4P3).
(a) Br (Left: Reconstructed. Right: Absolute error.). (b) Bϕ (Left: Reconstructed. Right: Absolute error.). (c) Bz (Left: Recon-
structed. Right: Absolute error.).

(i) 12 boundary elements, 110 field sensors and 25 flux
loops, the condition number is 102,

(ii) 48 boundary elements, 440 field sensors and 126 flux
loops, the condition number is 105.

The calculation conditions and the results of the latter case
are the same as those reported in Ref. [9]. It should be no-
ticed that the accuracy of case (i) results are higher than
that of case (ii) in spite of the drastic reduction in the num-
ber of sensors.
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Table 1 Comparison of the error tendencies.

3.4 Magnetic field line tracing and Poincaré
plot

The field caused by the external coils was added to the
plasma-current-based field that had been obtained through
the CCS analysis. As the coil effect on the magnetic field
is ten or more times larger than that of the plasma current
effect, the relative errors of Br, Bϕ and Bz in this case are
considerably smaller than 5% in the greater part outside
the LCMS. A magnetic field line tracing was carried out
for the resultant field. This is performed using the MGTRC
code [9, 17].

In the same way as the procedure found in Ref. [9], the
starting points (r, z, ϕ) of the traces were set as

r = 4.30 + 0.01 k in [m] with k = 0, 1, · · · , 40,

(10)

z = 0.0 m and ϕ = 18◦ (the horizontally elongated cross
section). Each trace was terminated when the number of
toroidal transits reached 100 or when the field line ran out
of the analytic domain under consideration.

Figures 10 (a), (b) and (c) show the Poincaré plots on
the r-z plane at ϕ = 18◦ for traces originating at the same
starting point (r, z, ϕ) = (4.47 m, 0.0 m, 18◦). Through
careful investigation, it was found that this starting point
forms the LCMS if the tracing is based on the reference
field calculated using the HINT2 code. In each figure, the
dashed closed line shows the LCMS for the vacuum field,
i.e., 〈β〉 = 0%. This is shifted outward when 〈β〉 takes the
nonzero value 〈β〉 = 2.7%. The reference LCMS in this
case is the solid closed line. The red round symbols in each
figure show the results based on the reconstructed field.
The symbols in Figs. 10 (a) and 10 (b) are for the axisym-
metric CCS [8] and for the twisted CCS [9] respectively,
and both were based on 440 field sensors and 126 flux
loops with 48 boundary elements for the CCS. The results
in Fig. 10 (c) were also obtained using the twisted CCS but
one assumed only 110 field sensors and 25 flux loops with
12 boundary elements, setting the condition number to be
102. It is found that in spite of such a small number of sen-
sors being used the scatter of the plot points in Fig. 10 (c) is
the narrowest, i.e., the best results among the three cases.

Fig. 10 Poincaré plots for traces originating at rstart = 4.47 m.
(a) Using the axisymmetric CCS (Cond. No.: 107). (b)
Using the twisted CCS (Cond. No.: 105). (c) Using the
twisted CCS (Cond. No.: 102).
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Fig. 11 Comparison of Poincaré plots for the reference and the
reconstructed field. (a) Reference. (b) Reconstructed.

3.5 Reconstruction of magnetic surfaces
In this section, the discussion is limited to the case as-

suming 110 field sensors and 25 flux loops with 12 bound-
ary elements (T4P3). Figures 11 (a) and 11 (b) are the
Poincaré plots of the field line on the horizontally elon-
gated cross section. Figure 11 (a) is given from the refer-
ence field, while Fig. 11 (b) is the result reconstructed un-
der the above calculation conditions.

3.5.1 Poincaré plot for each starting point of the trace

Figures 12 (a)-(d) highlight Poincaré plots for traces
originating at different starting points. From these plots the
magnetic surface structure may be estimated. In each fig-
ure, the red points are the plot for the reconstructed field,
while the black points are for the reference field. As the
starting point rstart = 4.41 m is deep within the plasma re-
gion, the reconstructed plot points in Fig. 12 (a) scatter to-
wards the inside of the magnetic surface given by the ref-
erence field solution. This is caused by the dirtiness of the
CCS method solution under the vacuum field assumption
for the plasma region. Although rstart = 4.43 m is a little in-
side the LCMS, the reconstructed plot points in Fig. 12 (b)
show passable agreement with the reference ones for the
most part. Since rstart = 4.52 m is far away from the LCMS,
a magnetic surface cannot be recognized in both the recon-
structed and the reference Poincaré plots in Fig. 12 (d). The
tendency of the scatter of plot points in this figure is almost

the same between the reconstructed and the reference solu-
tions. Figure 12 (c) is a reproduction of Fig. 10 (c). In this
figure, the reconstructed Poincaré plot shows a fairly good
agreement with the reference one, which is supposed to be
the LCMS. However, the plot points are a little scattered
and do not always form a closed surface sharply.

3.5.2 quasi magnetic surface

To assist in the magnetic surface estimation, the
Poincaré plot points were converted to the ‘quasi magnetic
surface’. Outline of the technique for this conversion is
as follows. Ideally, the r-coordinate of the starting point
defined by Eq. (10) can be recognized as a label that corre-
sponds to each magnetic surface if it is a true surface. That
is, r(k)

start = ψ(r(k)
start, z

(k)
start) with

z(k)
start = 0 and r(k)

start = 4.30 + 0.01 k in [m] with

k = 0, 1, · · · ,K. (11)

With this idea, the set of discrete Poincaré plot points can
be converted to a contour map as a function of r(k)

start. One
here introduces the radial basis function (RBF) expansion
[12, 18]

ψ(r, z) =
N∑

i=1

wi fi(r, z; ri, zi), (12)

with N being the number of RBFs and (ri, zi) the center of
each RBF. In the present work one adopted the thin-plate
spline type RBF

fi(r, z; ri, zi) =
{(

(r − ri)
2 + (z − zi)

2
)/
σ2

}

log
√(

(r − ri)
2 + (z − zi)

2
)/
σ2, (13)

with the scaling factor σ (=1.0 m). The centers of 100
RBFs were distributed equidistantly in the rectangle do-
main : (2.2 m < r < 5.2 m, −1.5 m < z < 1.5 m). The
unknown weights wi are determined in a least square man-
ner. The details of the above technique are described in
Ref. [9].

The reconstructed Poincaré plot given by Fig. 11 (b)
was converted into contours of the quasi magnetic surface
that is shown in Fig. 13. Contours are found even outside
the LCMS and also deep inside the LCMS, however, they
are meaningless and just the result of interpolation in the
RBF expansion. As for the latter case the Poincaré plot
points originating at rstart < 4.30 m were not adopted as
sampling points for the expansion.

3.5.3 numerical determination of the LCMS

Itagaki et al. [9] proposed a numerical technique to
extract the surface that can be regarded as the LCMS from
the quasi magnetic surfaces. They introduced the ‘scatter’
given by

s2 =
1
m

m∑
j=1

d2
j , (14)
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Fig. 12 Poincaré plots for traces originating at various starting points. (a) rstart = 4.41 m. (b) rstart = 4.43 m. (c) rstart = 4.47 m. (d)
rstart = 4.52 m.

where d j denotes the distance between a reconstructed
quasi magnetic surface and the j-th point in the m Poincaré
plot points corresponding to the surface. Next, they defined
the ‘inside/outside’ ratio (I/O ratio) as

Rk =
(
s2

inside

/
s2

outside

)
k
, (15)

with s2
inside and s2

outside being the scatters calculated using
Eq. (14) respectively for the points inside and outside of the
k-th reconstructed surface under consideration. A strong
current exists inside the LCMS so that the reconstructed
magnetic field profile is very dirty due to the hypotheti-
cal vacuum field assumption in the CCS method analysis.
Because of this, the ratio tends to take a value larger than
unity (Rk > 1) inside the LCMS. It was observed in the
previous work (see Fig. 15 in Ref. [9]) that the ratio jumps
where r(k)

start is reduced to a value smaller than 4.47 m, which
corresponds to the most probable location of the LCMS.

This technique is also applied to the presently re-
constructed quasi magnetic surfaces that are depicted in
Fig. 13. The black dashed line in Fig. 14 shows the varia-
tion in the I/O ratio as a function of r(k)

start. The ratio does
not readily exceed unity even where r(k)

start goes a little inside
the LCMS (toward the left in Fig. 14). It increases with the

Fig. 13 Contours of quasi magnetic surface.

decrease in r(k)
start in the region where r(k)

start < 4.46 m, but no
clear jump indicating the LCMS can be found. This is be-
cause the reconstructed field profile at present is substan-
tially accurate even a little inside the LCMS (see Fig. 9).
The I/O ratio defined by Eq. (15) should then be modified.

One here notices the ‘total scatter’, s̃2
k , which is also

calculated using Eq. (14) but for all Poincaré plot points
(the points both inside and outside of the quasi surface)
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Fig. 14 Variation in the ‘inside/outside’ ratio

originating at the k-th starting point. Considering the phys-
ical assumption in the CCS method, it is understandable
that the total scatter tends to take a small value in the vicin-
ity of the LCMS. The black dotted line in Fig. 14 shows the
change in the normalized total scatter that is given by

γk =
s̃2

k

s̃2
min .

, (16)

with s̃2
min . being the minimum among the total scatters un-

der consideration. A newly defined I/O ratio is given by

R̃k = Rk · γk =

⎛⎜⎜⎜⎜⎝ s2
inside

s2
outside

⎞⎟⎟⎟⎟⎠
k

· s̃2
k

s̃2
min .

. (17)

The red solid line in Fig. 14 shows the variation in R̃k. The
minimum value of this new ratio is at r(k)

start = 4.48 m, and
the ratio begins to increase significantly when r(k)

start is re-
duced to 4.46 m. Halfway between the two lies the point
for r(k)

start = 4.47 m, which corresponds to the correct LCMS
given for the reference field.

As shown in Fig. 15, one here extracts the quasi mag-
netic surfaces for r(k)

start = 4.46 m, 4.47 m and 4.48 m. Each
of them agrees fairly well with the red solid line, i.e., the
reference LCMS. It is difficult to judge which value of
r(k)

start is the most probable; however, the authors believe that
the level of uncertainty observed in Fig. 15 is acceptable at
least for operating purposes. It should be stressed that this
result was carried out only using the small number of sen-
sors: 110 field sensors and 25 flux loops.

3.6 Consideration of symmetric properties
of the field profile

When setting the origin of the toroidal angle ϕ at the
horizontally elongated cross section in the LHD, there is

Fig. 15 Reconstructed magnetic surfaces compared with the ref-
erence LCMS

the stellarator-symmetry

Br(r, z,−ϕ) = −Br(r,−z, ϕ), (18a)

Bz(r, z,−ϕ) = Bz(r,−z, ϕ), (18b)

and

Bϕ(r, z,−ϕ) = Bϕ(r,−z, ϕ). (18c)

Also, up-down symmetry exists as follows:

Br (r, z, ϕ0) = −Br (r,−z, ϕ0) , (19a)

Bz (r, z, ϕ0) = Bz (r,−z, ϕ0) , (19b)

and

Bϕ (r, z, ϕ0) = Bϕ (r,−z, ϕ0) , (19c)

if the toroidal angle ϕ0 corresponds to the horizontally or
vertically elongated cross section.

In the ‘economical’ analysis, the total of 110 field sen-
sors were placed on 11 different r-z planes with the range
of toroidal angle 0◦ ≤ ϕ ≤ 36◦, i.e., 10 field sensors on
each plane. The horizontally elongated plane ϕ = 18◦ is
the stellarator-symmetry surface. The vertically elongated
planes ϕ = 0◦ and ϕ = 36◦ are the same as each other due
to the periodicity, however, the authors arranged the sensor
positions in such a way that no equal positions exist on the
planes ϕ = 0◦ and ϕ = 36◦ to avoid the singularity of the
solution matrix (see Fig. 16).

Except for these three planes ϕ = 0◦, 18◦ and 36◦, one
can apply the stellarator-symmetry to the sensors. That is,
the 40 sensors on 4 planes can be omitted, so the required
number of field sensors can be reduced from 110 to 70.

In each of the planes ϕ = 0◦, 18◦ and 36◦, 2 out of 10
field sensors are located at z = 0, but the other 4 pairs of
sensors are symmetrical with respect to the line z = 0. Be-
cause of this, applying the up-down symmetry, the above
70 sensors can be further reduced to 58 (= 70 − 4 × 3).

Also, for the signals of flux loops set in the toroidal
direction, one finds the up-down symmetry:

ψ(Tor) (r, z) = ψ(Tor) (r,−z) . (20)
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Fig. 16 Field sensor locations on the planes ϕ = 0◦ and ϕ = 36◦.

One of the 25 flux loops was set at the position (r, z) =
(4.6303 m, 0.0 m) but the others were set to make 12 pairs
each of which has the r-coordinate in common, i.e., (rk, zk)
and (rk,−zk) with k = 1, 2, · · · , 12. Therefore the above
number of flux loops, 25, can be reduced to 13.

4. Conclusion
In the reconstruction of the 3D magnetic field profile

in the Large Helical Device (LHD), accurate results have
been obtained even using only 110 field sensors and 25 flux
loops with 12 boundary elements on the CCS when one
cuts off the singular values smaller than the gap threshold.
The numbers of field sensors and flux loops can be further
reduced to 58 and 13 respectively if the symmetry of the
field profile in the LHD is considered. This required num-
ber is almost the same as the number of magnetic sensors
installed in the LHD, so that the present research results
suggest the possibility of actual application to the LHD.
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