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Abstract 
 

The transition of trapped-particle orbit topologies has been investigated in 
quasi-axisymmetric (QA) configurations, such as Chinese First Quasi-axisymmetric 
Stellarator (CFQS). It is found that the axisymmetry breaking phenomenon in QA 
configurations is of great significance at some specific locations, which could easily induce 
blocked particles to transit into localized particles. A novel aspect is presented to interpret 
the transition mechanism of trapped particle orbit topologies in this paper, i.e., as the 
amplitudes of non-axisymmetric field increase along the radius direction, the region of 
large toroidal inhomogeneity is gradually generated, which makes the length of the trapped 
particle trajectory substantially short, and hence, may restrict particles to a single helical 
field period. Meanwhile, at such locations the ‘pseudo-axisymmetric’ field results in 
coupling of the maximum radial drift and the minimum poloidal drift, which enables the 
transition of trapped particle orbit topologies considerably and form specific loss channels, 
degrading plasma confinement. These results may shed a light on the optimization of QA 
configurations via avoidance of such coupling with respect to energetic particle 
confinement. Moreover, this work is also relevant to the generation of inhomogeneity of 
particle flux deposition on the devertor plates. 

 
1. Introduction 
 

In the fusion devices the axisymmetry breaking and three dimensional (3D) effects 
grow more and more interesting and important[1]. In the tokamak a three-dimensional 
configuration generated by resonant magnetic perturbation coils could mitigate the edge 
localized modes[2]; in the optimization of stellarator configurations[3], plasma 
confinement and MHD stability could be enhanced via suppression of large non-symmetric 
components[4]; in the reversal field pinch self-organization driven a single-helical 
equilibrium with a 3D magnetic topology reduces the magnetic fluctuations, resulting in 
the onset of a transport barrier[5]. 

As a subclass of omnigenity, the QA configuration[6], is particularly interesting, as it 



can be thought of as a generalization of axisymmetry. Similarly to tokamaks, QA equilibria 
possess a magnetic field strength that is nearly symmetric in the toroidal Boozer coordinate. 
They thus share many neoclassical properties with tokamaks. These configurations are 
capable of being compact due to their relatively large bootstrap current which provides a 
source of rotational transform, in addition to that from the coils. On the other hand, the 
similarity to stellarators provides potential benefits: QA configurations can run in steady 
state potentially without any plasma current drive, avoiding MHD disruptions. However, in 
fact it is generally not possible to achieve axisymmetric features across the entire volume 
on behalf of keeping a sufficient amount of freedom in the configuration solutions[7]. This 
paper is focused on the significant axisymmetry breaking phenomenon on the QA 
configurations to distinguish at which specific locations the serious pseudosymmetry takes 
place and how to drive the transition of trapped particle orbit topologies to form loss 
channels. 

Generally, in an axisymmetric geometry, two kinds of trajectories may be produced by 
the shape of trajectories projected on the cross section[8]: the circle-shaped orbits for 
passing particles and banana-like orbits for trapped particles in axisymmetric tokamaks. In 
QA configurations there are toroidal ripple (dominant one) and non-axisymmetric ripples. 
The toroidal ripple is similar to that in tokamaks and the non-axisymmetric ripples mainly 
contains bumpy ripples and helical ripples which could induce the axisymmetry breaking 
phenomena. These two kinds of ripples can cause localized particles and the blocked 
particles respectively, which are interpreted as follows[9-11]: 
Localized particle: localized particles which are trapped within a single helical field period 
would remain locally and can never travel to the next helical field period. 
Blocked particle: blocked particles’ trajectories are not restricted to a single helical field 
period due to the slowly variational toroidal ripple but extend to neighboring helical field 
periods. However, they do not pass completely round the minor cross section, which are 
toroidally bounded by two isosurfaces, B=Bref (Bref represents magnetic field strength at the 
bounce point). These motions of particles are simultaneously affected by toroidal ripple 
and non-axisymmetric ripples. Therefore, the distinction of types of trapped particles is 
primarily determined by which kind of ripples have more pronounced effect. It implies that 
the transition of trapped particle orbits can come up by the spatial variation of the 
dominant ripple in QA configurations. 
   In this paper the CFQS configuration is mainly utilized for revealing the transition 
mechanism of trapped particle orbit topologies and generation of loss channels. The CFQS 
is a joint project of international collaboration. It is designed and fabricated by the 
Southwest Jiaotong University (SWJTU) in China and the National Institute for Fusion 
Science (NIFS) in Japan[12]. The equilibrium calculation has been performed with VMEC 
code[13].  

 
2. The distinction between axisymmetric and QA configurations 
 

The plasma geometry is defined by the shape of a constant pressure surface near the 
edge of the plasma. In (R,φ,Z) cylindrical coordinates, R and Z have no dependence on the 
toroidal angle in the axisymmetric configuration. The shape of poloidal cross sections is 
conventionally expressed as: 

           (1) 
                    (2) 

Where R0 is the major radius, a is the minor radius or half-width of the plasma, κ is the 
elongation and δ is the triangularity [1]. Similarly, the magnetic field strength is just 
dependent on the θ and R. 
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In stellarators a standard expression for the plasma boundary is the Garabedian 
representation which is described in cylindrical coordinates by Fourier decomposition, as 
follows[14]: 

       (3) 

       (4) 

                           (5) 
where θ and ζ are mathematic poloidal angle and toroidal angle, ѱ represents the magnetic 
flux. R and Z are dependent on the toroidal angle and form a three dimensional 
non-axisymmetric geometry which is utterly different from tokamak. The 3D magnetic 
field strength can be expanded in the Boozer coordinates with a form of Fourier series: 

 (6) 

The coefficients Bmn are referred to as the spectrum of the magnetic field strength. The 
ѱ, θB and ϕB form spatial Boozer coordinates. The quasi-axisymmetry means that only the 
first row of coefficients Bm,0 are large enough to matter, as in tokamaks. The ordinary 
differential equations for guiding center orbits show that good neoclassical transport will 
prevail in the quasi-axisymmetric configurations [15,16]. 
 

 
Figure 1. Magnetic field strength spectrum in the Boozer coordinates for a vacuum case without B0,0 in the CFQS. 

The normalized radius . 

 
The figure 1 depicts the spectrum of the magnetic field strength in the CFQS 

configuration. The magnetic field strength is 1.0 T. To distinguish the small-amplitude 
components, the largest component B0,0 is omitted and the other components are 
normalized by B0,0. The non-axisymmetric ripples consist of bumpy ripple (B0,1) and 
helical ripples (B1,1, B2,2, B1,-1, etc) from the magnetic field strength spectrum. These 
non-axisymmetric ripples are much less than B1,0, which indicates a tokamak-like or 
quasi-axisymmetric configuration. 

The figure 2 displays three poloidal cross-sections of the magnetic flux surfaces for 
the plasma pressure-free case. These magnetic flux surfaces indicate large axisymmetric 
(or toroidal average) crescent, elongation and triangularity, which enhance stability of 
ballooning and kink modes. On the other hand, the spatial variation of non-axisymmetric 
ripples can cause the differences of cross-section shapes along the toroidal precession in 
the CFQS configuration, which can give rise to existence of locally maximum 
axisymmetry breaking. It plays an important role on the transition of particle orbit 
topologies which will be illustrated as follows. 
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Figure 2. Poloidal cross sections of magnetic flux surfaces in the CFQS equilibrium calculated by VMEC code. 

 
3. Transition of trapped particles in the CFQS 

 
                              Figure 3. the contour mJ on the (ρ, ζN) plane in the CFQS. 
 

The figure 3 shows the contour of mJ on the (ρ,ζN) plane in the CFQS configuration. J 
is the second adiabatic invariant and m is the mass of the trace particle. The 

normalized poloidal angle  and toroidal angle . Input 
parameters Bref=0.95T and traced particle energy is 0.01KeV. Such low particle energy 
could lead the trapped particle orbit to rest on a magnetic flux surface without significant 
deviation from that surface. It is beneficial to the calculation of J[17,18]. In the figure 3 a 
‘singular’ characteristic is observed that the value of J is decreased rapidly at the ‘blue’ 
points A. It indicates the loss of length of particle orbit is of significance there. In 
stellarators, the trapped particles encounter transitioning regions and their orbital type is 
changed and radial drift may cause them to escape the last closed flux surface (LCFS) 
before detrapping occurs. It indicates that at these specific regions exist loss channels 
where particles could fall in and transit into outward drifted localized particles in QA 
configurations. In the next section, we will investigate what physical mechanism induces 
such an orbital transition and loss channels. 
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4. Transition mechanism of trapped-particle orbit topologies 

 

 
Figure 4. (a) The time evolution of 

 
of tracer particles launched from ζN=0.5 on ρ=0.35(blue), 0.6(red) and 

0.95(yellow), (b) Contours of  on the (ζN, θN) plane at ρ=0.35, 0.6 and 0.95. Trajectories of tracer particles 

launched from ζN=0 and 0.5 are also shown by bold straight lines. 
 

One reason for the transition of trapped particle orbit (blocked particles convert to 
localized particles) may arise from the length loss of the trajectory. In order to find 
what parameters make the trajectory short, the evolution of  of test particles along 

trajectories is examined. The figure 4(a) shows the variation of  as a function of 
time along a trajectory. Input parameters Bref=0.95T and particle energy is 0.01KeV. 
The area below the  curve corresponds to the length of the particle orbit l because dl 

can be expressed as on account of the low energy of trapped particle. Due to 
its periodicity, only a quarter of the banana orbit is displayed. The ratio of the length of 
each trajectory from ζN= 0.5 on ρ=0.35, 0.6 and 0.95 is about 1:0.88:0.75. The 
difference of initial  is dependent on the difference of B at initial points. The figure 
4(b) shows the contours of the toroidal inhomogeneity of B, , on 
magnetic surfaces (-1≦θN≦1 and 0≦ζN≦2) at the three radii. The trajectories (bold 
straight lines) of particles launched from ζN=0 and 0.5 on each surface are also depicted. 
The contours of λ=0 are represented by dashed curves and the interval of contours is 
1%. The maximum and minimum strength of the inhomogeneity are labeled in figure 
4(b). The coupling of toroidal ripple and non-axisymmetric ripples are more evident 
when ρ≧0.6 and λ≧6%. The region with λ<0 (λ>0) represents that B decreases 
(increases) as ρ is increased. This contour plot is greatly beneficial to interpret the 
contribution from toroidal inhomogeneity of B to the variation of . It shows that the 
non-axisymmetry of B is enhanced as ρ is increased. In the angular phase space domain 
where , the B1,1 and B0,1 components of B interfere 
constructively, causing their contribution to B to become significant (because B1,1 < 0 
and B0,1 > 0 as shown in Fig.1), which gives rise to a localized region with enhanced λ 
as seen in figure 4(b). Notably the toroidal inhomogeneity λ≧6% could cause the  
to decease efficiently as the particles launched from ζN=0.5 pass this region in the 
figure 4(b). This is more obvious for the outer radius and the length of trajectories of 
trapped particle becomes smaller compared to that of the inner radius by a large 
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reduction in . The particle launched from ζN=0 is similar to the former. This aspect is 
a novel feature to interpret the transition of trapped particles at the outer radius.	

 
Figure 5. The contour of radial drift (a, b, c) and poloidal drift (d, e, f) on the three flux surfaces with ρ=0.35, 0.6 and 
0.95 for a vacuum field case in the CFQS. 
 

The other factor for the transition of blocked particles could result from particle drift 
motions in QA configurations. The figure 5 shows the topography of radial drift (a, b, c) 
and poloidal drift (d, e, f) at three radii, where the normalized radius ρ are 0.35, 0.6 and 
0.95 respectively(-1≦θN≦1 and 0≦ζN≦2). The spectrum of B in the CFQS configuration is 

given in the figure 1. The two formulas  are examined to evaluate radial 

(poloidal) drift[19,20]. The radial drift is outwards for the region where the contours have 
positive values. Particles which remain in the region with positive values will finally reach 
the plasma boundary. On the contrary if particles remained in the region with negative 
values will drift inward. This paper is focused on the region with positive values.  

The figure 5(a, b, c) shows the contours of the radial drift, on magnetic 

surfaces at these three radii in the CFQS. The contours of  are plotted by dashed 
curves and the interval of contours is 1%. It is worth noting that at some specific locations, 
θ near -π/2, the positive maximum of  appears and the magnitude of αdr increases with 
increasing of the normalized radius. The figure 5(d, e, f) depicts the contours of the 

poloidal drift, 
 

on magnetic flux surfaces. The contours of  are also 

shown by dashed curves and the interval of contours is 10%. The value of  decreases 
as the normalized radius are increased. The strength of poloidal drift (d, e, f) is much 
stronger than the strength of radial drift (a, b, c) in figure 5. Thus, the QA configurations 
have good confinement properties for collisionless particles. However, at some regions the 
minimum  turns up close to where the maximum  exists, which could shorten the 
length of particle trajectories and could induce blocked particles to convert into localized 
ones more easily. In addition, this coupling regions indicate loss channels where particles 
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fall in and escape the last closed flux surface (LCFS). These coupling regions of the 
maximum radial drift and the minimum poloidal drift come up at θ near -π/2 and ζ near π 
or 2π. The coupling between maximum radial drift and minimum poloidal drift is caused 
by locally significant symmetry-breaking fields. In the CFQS, the first two dominant 
components of B are B1,0 and B1,1, whose spatial variation could be expressed as the 
following equations: 

                 (7) 

             (8) 
The component B1,0 is much larger than other components and almost determines the 
distribution of magnetic field strength along the poloidal direction. Therefore, the poloidal 

drift is highly dependent on it because of  . Therefore, the 

minimum poloidal drift ( ) comes up when , which is in agreement 

with the simulation results shown in the figure 6(d,e,f). In addition, the radial drift is 
attributed to the conjunct contribution from and  i.e., 

(N=2 in CFQS). Thus, 

can maximize the outward radial drift. In other word, when 
θ=-π/2 and ζ=π, 2π the maximum radial drift takes place, which is consistent with the 
results given in the figure 6(a,b,c). Therefore, at θ=-π/2 and ζ=π and 2π exist loss channels 
where particles could fall in and transit into outward drifted localized particles in the CFQS 
configuration.   

 
Figure 6.  Orbit topologies of transition particle with various particle kinetic energies, (a) for 0.1keV, (b) for 1keV, (c) 
for 10keV, (d) for 100keV. (e, f, g, h) The normalized poloidal position evolution of transition particle. (i, j, k, l) The 
toroidal position evolution of transition particle. 
 

The figure 6 displays transition of trapped particle-orbit topologies with various 
particle kinetic energies. The simulated particles are hydrogen ions with 0.1KeV, 1KeV, 
10KeV and 100KeV respectively in figure 6(a, b, c, d), whose initial spatial positions are 
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located at the point A in figure 3. The traced particles are able to change its orbit class 
(from blocked particles to localized ones) when their non-adiabatic properties are largely 
changed. It is also depicted in the figure 3, the J value at blue points decreases rapidly. In 
that case trapped particles fall into specific loss channels where the maximum radial drift 
and the minimum poloidal drift come up simultaneously. The figure 6(e, f, g, h)and (i, j, k, 
l) shows normalized poloidal position and toroidal position of transited particle over time, 
respectively. It displays that the transition regions of trapped particles are exactly 
corresponding to the predicted overlapping regions, where θ near -π/2 (θN≈-0.5) and ζ near 
π and 2π (ζN≈1 or 2). In other word, there are two loss channels caused by transition 
particles in the CFQS configuration. 
 

 
Figure 7. The loss rate evolution of trapped particles in the CFQS, (a) for 0.1keV, (b) for 1keV and (c) for 10keV. The red 
curve represents the total loss rate evolution of trapped particles. The blue curve represents the loss rate evolution of the 
transition particles from blocked particles to localized ones. (d,e,f) Lost particle position in the θN − zN plane, the red 
dashed rectangles represent specific loss channels by transition particles. 
 
The figure 7(a,b,c) shows the loss rate of trapped particles in the CFQS configuration at the 
outer radius (ρ=0.7). In each simulation 2000 mono-energetic particles with 0.1keV,1keV, 
and 10keV are initially located at ρ=0.7, θN=0 and ζN=0. Pitch angles of particles almost 
cover entire trapped-particle region from . The red curve represents the total 
loss rate evolution of trapped particles. The blue curve represents the loss rate evolution of 
the transition particles from blocked ones converting to localized ones. It is shown that the 
loss rate caused by transition particles accounts for more than 70% of lost trapped particles. 
The figure 7(d,e,f) shows locations of the loss particles in the θN − zN plane. The red 
dashed rectangles emphasize the coupling regions (loss channels) of the maximum radial 
drift and the minimum poloidal drift, where θN is around -0.5 and ζN is close to 1 and 2.  It 
displays most trapped particles are lost from these specific loss channels. These loss 
channels are in great agreement with what are illustrated in the Fig.5 and analytic 
predictions of Eqs. (7) and (8). This feature is unique in QA stellarators. Moreover, as the 
particle energy increases, the loss rate is increased.  

70 110! !
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Figure 8. The contour of radial drift (a, b, c) and poloidal drift (b, e ,f) on the three flux surfaces with ρ=0.35, 0.6 

and 0.95 in a NCSX-like configuration. 
  

The phenomenon of the trapped particle trajectory transition has been observed in the 
CFQS configuration with N=2. It would be of very necessity to examine whether in other 
QA categories the special loss channels for the transition of trapped particles are generated 
or not. Thus, the other QA configuration with N=3, National Compact Stellarator 
Experiment (NCSX)-like configuration (major radius R=1m, Ap=4.4), is also taken into 
account[21]. The figure 8 shows the topography of radial drift (a, b, c) and poloidal drift (d, 
e, f) at three radii, ρ = 0.35, 0.6 and 0.95 respectively. Similarly, at θN≈-0.5, the 
overlapping of maximum radial drift and minimum poloidal drift also appears. The 
difference is that in this configuration there are three toroidal regions with maximum radial 
and minimum poloidal drifts ζN≈0.2, 0.8 and 1.5, arising from toroidal periodic number 
N=3. In other word the dominant non-axisymmetric component in the NCSX is different 
from that in the CFQS, which mainly determine the toroidal positions of trapped-particle 
orbit transition. It may be predicted that the transition of trapped particles in the QAs with 
high N is more considerable than that in the QAs with low N when other 
conditions/parameters are fixed. 
 
5. Summary 
  

 The symmetry breaking field driven the transition of trapped particle orbit topologies 
has been investigated systemically in the CFQS configuration. The helicity B1,1 and bumpy 
field B0,1 mainly give rise to the toroidal inhomogeneity of the magnetic field globally on 
magnetic flux surfaces. As the amplitude of helicity and bumpy field increase the region of 
toroidal inhomogeneity with λ≧6% is gradually hatched at outer radius (ρ=0.6~1). In this 
region, the length of a trapped particle trajectory is lost substantially, which is capable to 
restrict particles to a single helical field period. 

Meanwhile, the enhancement of the radial drift and wakening of the poloidal drift 
arise as the radius increases. On a magnetic flux surface variation of toroidicity B1,0 and 
helicity B1,1 cause the coupling between the maximum radial drift and the minimum 
poloidal drift. This coupling can make the length of trapped particle trajectories short 
dramatically, which enhances the transition from blocked particles to localized particles. 
These particles located in such regions drift radially outwards and eventually escape the 
last closed flux surface. The same phenomenon is also observed in the NCSX-like 



configuration. 
Above all, the voidance of such coupling (loss channels) would mitigate this drift 

induced trapped-particle orbit transition and may be worthwhile to be taken in account as 
an additional strategy to optimize stellarators with respect to energetic particle-orbit 
confinement. Concerning the CFQS, auxiliary trim coils might be considered to mitigation 
of such transition. 
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