
Plasma and Fusion Research: Regular Articles Volume 8, 2401018 (2013)

Theory for Finite Temperature Effects on
Magnetosonic Waves in a Two-Ion-Species Plasma∗)

Yukio AOTA and Mieko TOIDA
Department of Physics, Nagoya University, Nagoya 464-8602, Japan

(Received 19 November 2012 / Accepted 14 February 2013)

The theory of magnetosonic waves perpendicular to a magnetic field in a two-ion-species plasma is extended
to include finite temperature effects based on the three-fluid model with finite ion and electron pressures. First,
the condition for the dispersion relation of the low-frequency mode, the lower branch of magnetosonic waves,
to be approximated as a form of weak dispersion is presented. Next, by virtue of this, it is shown that the KdV
equation for the low-frequency mode is valid for amplitude ε < εmax, where the upper limit of the amplitude
εmax is given as a function of the ratio of the kinetic to magnetic energies, the density ratio, and the cyclotron
frequency ratio of two ion species. The finite-temperature effects on linear and nonlinear high-frequency modes
and on heavy-ion acceleration by the high-frequency-mode pulse are also discussed.
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1. Introduction
Fusion and astrophysical plasmas usually contain

multiple ion species. The behavior of magnetosonic waves
in a multi-ion-species plasma is quite different from that
in a single-ion-species plasma. For example, in a two-ion-
species plasma, the magnetosonic wave propagating per-
pendicular to a magnetic field has two branches, high- and
low-frequency modes. The frequency of the low-frequency
mode is in the region 0 < ω < ω−r, whereω−r is the ion-ion
hybrid resonance frequency [1] defined as

ω−r = [(ω2
paΩ

2
b + ω

2
pbΩ

2
a)/(ω2

pa + ω
2
pb)]1/2. (1)

Here, the subscripts a and b indicate ion species, and Ω j

and ωp j ( j = a or b) represent their cyclotron and plasma
frequencies, respectively. In the following, we assume that
Ωa > Ωb. The frequency of the high-frequency mode is in
the region ω+0 < ω < ω+r. Here, the resonance frequency
ω+r is of the order of the lower-hybrid frequency and is
given by

ω2
+r = Ω

2
e(ω2

pa + ω
2
pb)/ω2

pe, (2)

where Ωe and ωpe are the electron cyclotoron and plasma
frequencies, respectively. The cut-off frequency ω+0 is
given by

ω+0 = (ω2
pa/Ω

2
a + ω

2
pb/Ω

2
b)ΩaΩb|Ωe|/ω2

pe, (3)

which is slightly greater than ω−r.
Although the dispersion curves of the high- and low-

frequency modes are quite different in the long-wavelength
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region, the nonlinear behavior of these modes can be de-
scribed by Korteweg-de Vries (KdV) equations [2]. The
characteristic soliton width of the low-frequency mode is
of the order of the ion inertial length c/ωpi, whereas that
of the high-frequency mode is of the order of the electron
skin depth c/ωpe. The normalized frequency gap between
ω−r and ω+0 defined by

Δω = (ω+0 − ω−r)/ω+0, (4)

is an important parameter for the nonlinear development
of these modes [3]. In fact, it was analytically found that
the KdV equation for the low-frequency mode is valid
for amplitude ε < 2Δω. Numerical simulations have
demonstrated that high-frequency-mode pulses are gener-
ated from a low-frequency-mode pulse if ε > 2Δω.

When hydrogen is the major ion component, the high-
frequency-mode pulse can accelerate heavy ions by the
transverse electric field in the pulse [4]. Because of this
energy transfer, the high-frequency-mode pulse is gradu-
ally damped even when it propagates perpendicular to a
magnetic field in a collisionless plasma [5]. This can be
important dissipation mechanism in a collisionless multi-
ion-species plasma such as in the solar corona.

Although extensive studies have been conducted on
magnetosonic waves in multi-ion-species plasmas, their
theoretical analysis is mainly based on the cold-fluid the-
ory. This theory is valid when Δω � β, where β is the ratio
of the kinetic-to-magnetic energy densities. This condition
can break down, for example, in the solar corona: Δω =
0.03 for the H-He plasma with density ratio nHe/nH = 0.1
and β = 0.02 for the plasma density n = 109 cm−3, temper-
ature T = 200 eV, and magnetic field B = 30 G. We there-
fore extend the linear and nonlinear theories for perpen-
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dicular magnetosonic waves in a two-ion-species plasma
to include finite temperature effects.

2. Overview of Linear Dispersion Re-
lation
We consider magnetosonic waves in a two-ion-species

plasma based on the three-fluid model with finite ion and
electron pressures. We assume that waves propagate in the
x direction in an external magnetic field that is in the z
direction. From the three-fluid equations, we obtained the
linear dispersion relation as
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Here, c is the light speed, the subscript j refers to
ion species (a or b) or electrons ( j = e), and c2

j =

Γ jP j0/(n j0mj), where Γ j is the specific-heat ratio, Pj0 is
the equilibrium pressure, and n j0 is the equilibrium den-
sity.

Figure 1 shows dispersion curves of the low- and high-
frequency modes in a H-He plasma with the density ratio
nH/nHe = 10 and β = 0.02, where β is defined as

β = 8π(Pa0 + Pb0 + Pe0)/B2
0, (6)

and the temperatures of H, He, and electrons are equal. The
two horizontal dotted lines denote ω−r and ω+r, defined by
eqs. (1) and (2), respectively. The frequency of the low-
frequency mode approaches zero as k → 0. The cut-off
frequency of the high-frequency mode is ω+0, which is in-
dependent of β. As k → ∞, the frequency of the low-
frequency mode does not approach ω−r, but increases with
k as

ω2
− = ω

2
−r + k2(ω2

pac2
b + ω

2
pbc2

a)/(ω2
pa + ω

2
pb). (7)

Fig. 1 Dispersion curves for low- and high-frequency modes in
H-He plasma with nH = 10nHe and β = 0.02.

The frequency of the high-frequency mode in the limit k →
∞ is

ω2
+ = ω

2
+r

(
1 + k2c2

e/Ω
2
e

)
. (8)

3. Low-Frequency Mode
We consider the low-frequency region ω � Ωi, as-

suming that β < 1. Then, the linear dispersion relation of
the low-frequency-mode can be approximated as a form of
weak dispersion

ω = vlk(1 − μlk
2/2). (9)

The velocity vl is given by

v2
l = v2

A + c2
s , (10)

where vA and cs are defined as

v2
A = B2

0/(4πρ0), (11)

c2
s = (ΓaPa0 + ΓbPb0 + ΓePe0)/ρ0, (12)

with ρ0 = na0ma + nb0mb + ne0me. We find that the disper-
sion coefficient μl can be expressed, in terms of Δω, as

μl = (2Δω/k
2
c )(1 + rβ) + (c2/ω2

pe)(1 + r′β), (13)

where rβ and r′β are of order of β and are given by

rβ = 2(Ωbc2
a − Ωac2

b)/[(Ωa − Ωb)v2
l ], (14)
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Ωev2
A

⎞⎟⎟⎟⎟⎠ , (15)

The wavenumber kc is defined as

kc = ω−r/vl, (16)

where ω−r is given by Eq. (1). In the limit β = 0, kc

becomes ω−r/vA, which is the characteristic wavenumber
for a cold two-ion-species plasma. The ratio of the first
term to the second term on the right-hand side of Eq. (13)
is estimated as Δωmi/me. When Δω � me/mi, we have
μl 	 (2Δω/k2

c )(1 + rβ), indicating that μl increases with β.
We now present the condition for which the approx-

imation (9) is valid. We consider the differences between
Eq. (9) and the exact dispersion relationωexact derived from
Eq. (5) and define the difference normalized by ωexact as

Dω− = [vl(1 − μlk
2/2) − ωexact]/ωexact. (17)

If Dω− is small, the approximation (9) is valid. The up-
per panel in Fig. 2 shows Dω− for the H-He plasma with
nH = 10nHe as a function of ck/ωpe. The gray solid, black
dashed, and black solid lines are for β = 0, 0.1, and 0.2,
respectively. As β increases, Dω− increases faster with
ck/ωpe. The lower panel shows Dω− as a function of k/kc,
where kc is ω−r/vl and includes finite temperature effects
through vl. Unlike in the upper panel, there are negligible
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Fig. 2 Differences between the approximated and exact values
of the dispersion relation of the low-frequency mode in
the H-He plasma (nH = 10nHe) with β = 0, 0.1, and 0.2 as
functions of ck/ωpe (upper panel) and k/kc (lower panel).

differences between the three β cases in the lower one. We
can therefore consider kc defined by Eq. (16) as the charac-
teristic wavenumber including a finite beta effect. Because
Dω− is negligibly small for k � kc, we can present the ex-
tended form of the condition for the approximation (9) to
be valid as

k � kc, kc = ω−r/vl. (18)

We next consider nonlinear waves. For waves with
weak dispersion in the long wavelength region, the KdV
equation can be derived with the reductive perturbation
method [6]. Using this method, we obtain the KdV equa-
tion for the low-frequency mode for the wavenumber re-
gion (18) as

∂Bz1

∂τ
+

3
2

vl(1−αlβ)
Bz1

Bz0

∂Bz1

∂ξ
+

vlμl

2
∂3Bz1

∂ξ3
= 0, (19)

where Bz1 is the perturbation of Bz, ξ and τ are the stretched
coordinates, ξ = ε1/2(x − vlt), and τ = ε3/2t, respectively,
with ε being the smallness parameter of the order of am-
plitude |Bz1/B0|, and αlβ is given by

αlβ =
1
3

v2
A

c2

∑
j

(2 − Γ j)
ω2

p j

Ω2
j

c2
j

v2
l

, (20)

which is of order β.
The soliton solution of this KdV equation is

Bz1/B0 = Bnsech2[(x − Mvlt)/Dl], (21)

where Bn is the normalized amplitude, M is the Mach num-
ber [M = 1 + (1 − αlβ)Bn/2], and Dl is the width,

Dl = 2
√
μl/[(1 − αlβ)Bn]. (22)

Fig. 3 Upper limit of amplitudes for the KdV equation of the
low-frequency mode to be valid as a function of β for the
H-He plasma with nH = 10nHe.

Because of Eq. (22), the characteristic wavenumber of the
solitary wave can be estimated as

k ∼ 1/Dl ∼ ε1/2
√

(1 − αlβ)/μl. (23)

The dispersion form (9) is valid in the long-
wavelength region (18). Then, using eqs. (18) and (23), we
obtain a condition for the amplitude of the low-frequency-
mode pulses as

ε � εmax, (24)

where εmax is the upper limit of the amplitude defined as

εmax = μl(1 − αlβ)
−1k2

c . (25)

Neglecting the quantity of order (me/mi), we can express
εmax in terms of Δω as

εmax 	 2Δω(1 + rβ + αlβ), (26)

where the magnitude of rβ + αlβ is of the order of β. This
indicates that even if β ∼ Δω(� 1), the finite tempera-
ture effects on εmax can be neglected and the dependence
of εmax on β is much weaker than on Δω.

Figure 3 shows εmax defined by Eq. (25) in the H-He
plasma with nH/nHe = 10 as a function of β, where ion and
electron temperatures are equal. Although εmax increases
with β, the difference from the value at β = 0 is smaller
than β; [εmax(β)−εma(0)]/εmax(0) < β. We can thus confirm
that Δω is the essential parameter in nonlinear evolution of
the low-frequency mode even in a finite beta plasma.

4. High-Frequency Mode
For a cold two-ion-species plasma [2], the linear

dispersion relation of the high-frequency mode for the
wavenumber region,

Δω(me/mi)
1/2 � c2k2/ω2

pe < 1, (27)

can be written in a form of weak dispersion as

ω = vh0k[1 − c2k2/(2ω2
pe)], (28)
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where the velocity vh0 is defined as

v2
h0 = c2(ω2

pa + ω
2
pb)Ω2

e/ω
4
pe. (29)

For a finite temperature plasma, we obtain from Eq. (5) the
linear dispersion relation of the high-frequency mode for
the region (27) as

ω = vhk(1 − d2
hk2/2). (30)

The velocity vh is given by

v2
h = (v′2h1 +

√
v′4h1 − 4v′4h2)/2, (31)

where v′2h1 and v′4h2 are

v′2h1 = v2
h0(1 + βe) + c2

a + c2
b, (32)

v′4h2 = c2Ω2
e(1+ βe)(ω2

pac2
a +ω

2
pbc2

b)/ω4
pe + c2

ac2
b, (33)

with βe defined as

βe = ω
2
pec2

e/(Ω
2
ec2) = 4πΓeTe/B

2
0. (34)

In the limit Δω = 0, v2
h becomes equal to v2

l in the same
limit. The characteristic length dh is given by
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h =
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pe
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e

⎛⎜⎜⎜⎜⎜⎝
∑

i

ω2
piv

2
h

(v2
h − c2

i )2

⎞⎟⎟⎟⎟⎟⎠
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In the limit Δω = 0, d2
h and d2

l are equal.
Equations (31) and (35) indicate that vh increases with

β and dh decreases with β. The increment of vh and the
decrement of dh are both of the order of β. For β � 1, we
can approximate vh and dh, retaining the first-order term of
β, as

v2
h 	 v2

h0

⎛⎜⎜⎜⎜⎜⎝1 + βe +
(ω2

pac2
a + ω

2
pbc2
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(ω2
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2
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⎞⎟⎟⎟⎟⎟⎠ , (36)

d2
h = (c2/ω2

pe)[1 − (v2
h − v2

h0)/v2
ho]. (37)

We now derive the KdV equation of the high-
frequency mode for the region (27) using a scheme
slightly different from the conventional reductive pertur-
bation method [2]. We introduce the stretched coordinates,
ξ = ε1/2(x − vht) and τ = ε3/2t and expand other variables
with ε. We also introduce the parameter η defined by

η = ωpevh/(|Ωe|c), (38)

which is of the order of (me/mi)1/2. To avoid the extremely
long-wavelength region where Eq. (30) is not valid and to
consider the region (27), we assume that

(me/mi)
1/2 � ε � 1, (39)

because kdh ∼ ε1/2. We also assume that (me/mi)1/2 �
β � 1. After some manipulation, we obtain the KdV equa-
tion
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+

3
2

vhαh
B1
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1
2

vhd2
h
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∂ξ3
= 0, (40)

where αh is given by
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⎛⎜⎜⎜⎜⎝3 + (1 + Γi)c2
i

(v2
h − c2

i )

⎞⎟⎟⎟⎟⎠
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− 4

3
βe

(
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2

)
. (41)

In the limit β = 0, αh becomes 1 + 2Δωω2−r/(ΩaΩb). The
soliton solution of Eq. (40) is

B1/B0 = Bnsech2{[x − (1 + αhBn/2)vht]/Dh}, (42)

with Dh = 2dh/(αhBn).
We next consider heavy-ion acceleration by the non-

linear high-frequency mode. Under the condition that hy-
drogen is the major ion component, heavy ions are accel-
erated by the transverse electric field Ey [4]. The y compo-
nent of the equation of motion for the ions is

mi
dviy

dt
= qi

(
Ey − vixBz/c

)
. (43)

In deriving Eq. (42), we have obtained the relation between
the lowest order quantities as

vix = vh
Ωi

|Ωe|η2

v2
h(1 + βe)

(v2
h − c2

i )

B1

B0
, Ey =

vh

c
B1. (44)

For a single-ion species plasma, Eq. (44) leads to Ey −
vixBz/c 	 0 and dviy/dt = 0. For a multi-ion-species
plasma, however, Ey − vixBz/c for heavy ions is positive
in the pulse region. Therefore, heavy ions are accelerated
in the y direction when they pass through the pulse region.
Substituting eqs. (42) and (44) in Eq. (43) and integrating
over time, we can estimate the maximum speed of acceler-
ated heavy ions as

vbym

vh
=

4
√

2
αhη

Ωi

|Ωe|
⎛⎜⎜⎜⎜⎝1− Ωi

|Ωe|η2

v2
h(1+ βe)

(v2
h−c2

b)

⎞⎟⎟⎟⎟⎠ B1/2
n . (45)

Figure 4 shows vbym for accelerated He ions in the H-He
plasma with nH = 10nHe as a function of β, where Bn is
set to 0.1. This indicates that vbym decreases with β and its
decrement is of the order of 10−2β.

Fig. 4 Maximum speed of He ions accelerated by the high-
frequency-mode pulse with Bn = 0.1 in the H-He plasma
with nH = 10nHe as a function of β.
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5. Summary
We have extended the theory of perpendicular magne-

tosonic waves in a two-ion-species plasma including finite
temperature effects using the three-fluid model with finite
ion and electron pressures. First, for the low-frequency
mode, we presented the condition for which the linear dis-
persion relation can be written as a form of weak disper-
sion and showed that the KdV equation is valid ε < εmax,
where the upper limit of the amplitude εmax is given as a
function of Δω and β. Next, we presented the dependence
of the quantities concerned with the high-frequency mode
on β. Heavy-ion acceleration by the high-frequency-mode
pulse was also discussed.

We have theoretically shown that the high-frequency-
mode pulse accelerates heavy ions perpendicular to the
magnetic field in finite beta plasmas. We can therefore
expect that if magnetosonic pulses are excited in the so-
lar corona, they would raise ion perpendicular tempera-
ture. This feature is consistent with observations that the
perpendicular ion temperatures are higher than the parallel

ones in the solar corona [7, 8]. Therefore, this acceleration
mechanism would be applicable to ion heating in the solar
corona. As for a future work, we will have to compare the
theory for the temperature effect on heavy ion acceleration
with particle simulations.
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