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The theory of magnetosonic waves perpendicular to a magnetic field in a two-ion-species plasma is extended
to include finite temperature effects based on the three-fluid model with finite ion and electron pressures. First,
the condition for the dispersion relation of the low-frequency mode, the lower branch of magnetosonic waves,
to be approximated as a form of weak dispersion is presented. Next, by virtue of this, it is shown that the KdV
equation for the low-frequency mode is valid for amplitude € < &yax, Where the upper limit of the amplitude
€max 1S given as a function of the ratio of the kinetic to magnetic energies, the density ratio, and the cyclotron

frequency ratio of two ion species. The finite-temperature effects on linear and nonlinear high-frequency modes

and on heavy-ion acceleration by the high-frequency-mode pulse are also discussed.
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1. Introduction

Fusion and astrophysical plasmas usually contain
multiple ion species. The behavior of magnetosonic waves
in a multi-ion-species plasma is quite different from that
in a single-ion-species plasma. For example, in a two-ion-
species plasma, the magnetosonic wave propagating per-
pendicular to a magnetic field has two branches, high- and
low-frequency modes. The frequency of the low-frequency
mode is in the region 0 < w < w_;, where w_; is the ion-ion
hybrid resonance frequency [1] defined as

w_r = (W5, 2} + w3, Q) (Wi, + w212 (1)

Here, the subscripts a and b indicate ion species, and Q;
and wp; (j = a or b) represent their cyclotron and plasma
frequencies, respectively. In the following, we assume that
Q, > Q. The frequency of the high-frequency mode is in
the region w9 < w < w,,. Here, the resonance frequency
w,; 1s of the order of the lower-hybrid frequency and is
given by

w? = Qg(wfm + wf)b)/wf)e, 2)

where €. and wp. are the electron cyclotoron and plasma
frequencies, respectively. The cut-off frequency w.q is
given by

W10 = (Wpo/ L + W3y 1 25)Q2u |2 /w5 3)

which is slightly greater than w_;.
Although the dispersion curves of the high- and low-
frequency modes are quite different in the long-wavelength
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region, the nonlinear behavior of these modes can be de-
scribed by Korteweg-de Vries (KdV) equations [2]. The
characteristic soliton width of the low-frequency mode is
of the order of the ion inertial length ¢/w,;, whereas that
of the high-frequency mode is of the order of the electron
skin depth ¢/wp.. The normalized frequency gap between
w-r and wy( defined by

Ay = (Wyo — W)/ Wy, @

is an important parameter for the nonlinear development
of these modes [3]. In fact, it was analytically found that
the KdV equation for the low-frequency mode is valid
for amplitude &€ < 24,. Numerical simulations have
demonstrated that high-frequency-mode pulses are gener-
ated from a low-frequency-mode pulse if &€ > 24,,.

When hydrogen is the major ion component, the high-
frequency-mode pulse can accelerate heavy ions by the
transverse electric field in the pulse [4]. Because of this
energy transfer, the high-frequency-mode pulse is gradu-
ally damped even when it propagates perpendicular to a
magnetic field in a collisionless plasma [5]. This can be
important dissipation mechanism in a collisionless multi-
ion-species plasma such as in the solar corona.

Although extensive studies have been conducted on
magnetosonic waves in multi-ion-species plasmas, their
theoretical analysis is mainly based on the cold-fluid the-
ory. This theory is valid when 4,, > S, where §3 is the ratio
of the kinetic-to-magnetic energy densities. This condition
can break down, for example, in the solar corona: 4, =
0.03 for the H-He plasma with density ratio ng./ng = 0.1
and 8 = 0.02 for the plasma density n = 10° cm™3, temper-
ature 7 = 200 eV, and magnetic field B = 30 G. We there-
fore extend the linear and nonlinear theories for perpen-
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dicular magnetosonic waves in a two-ion-species plasma
to include finite temperature effects.

2. Overview of Linear Dispersion Re-

lation

We consider magnetosonic waves in a two-ion-species
plasma based on the three-fluid model with finite ion and
electron pressures. We assume that waves propagate in the
x direction in an external magnetic field that is in the z
direction. From the three-fluid equations, we obtained the
linear dispersion relation as

wQ w(a) k22)

2
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Here, ¢ is the light speed, the subscript j refers to
ion species (a or b) or electrons (j = e), and c? =
I'jPjo/(njom;), where I'; is the specific-heat ratio, Pjy is
the equilibrium pressure, and njo is the equilibrium den-
sity.

Figure 1 shows dispersion curves of the low- and high-
frequency modes in a H-He plasma with the density ratio
ny/npe = 10 and 8 = 0.02, where S is defined as

B =81(Puo + Ppo + Peo)/ By, (6)

and the temperatures of H, He, and electrons are equal. The
two horizontal dotted lines denote w_; and w.;, defined by
eqgs. (1) and (2), respectively. The frequency of the low-
frequency mode approaches zero as k — 0. The cut-off
frequency of the high-frequency mode is w.o, which is in-
dependent of 8. As k — oo, the frequency of the low-
frequency mode does not approach w_,, but increases with
k as

2 2 2 2 2 2
W =W Lk (a)pacb + wpbcu)/(wpa + wpb). (7

Wyr

W-r

Fig. 1 Dispersion curves for low- and high-frequency modes in
H-He plasma with ng = 10ng, and 8 = 0.02.

The frequency of the high-frequency mode in the limit k —
00 is
wl =, (1+K%¢2/Q2). (8)
3. Low-Frequency Mode
We consider the low-frequency region w < €, as-
suming that 8 < 1. Then, the linear dispersion relation of

the low-frequency-mode can be approximated as a form of
weak dispersion

w = vik(l = wk?/2). ©
The velocity vj is given by

. ) (10)
where v and ¢ are defined as

vi = Bj/(4mpo), (1)

2 = (FyPuo + TvPro + TePeo) /o, (12)

with pg = ngom, + npomy + neom.. We find that the disper-
sion coefficient g can be expressed, in terms of 4, as

= QA + 1) + (Plal)(A 415, (13)

where 3 and r[’g are of order of 8 and are given by

rg = 2(Qpct — Qucp)/[(Qy — Qo7 ], (14)

’ (,L)pe v/6§ wgi Ci2 Cg

=2—5"5 2.5 > BE as)
Q; ® A\ Qvy  Qevy

The wavenumber k. is defined as
ke = w_i/w, (16)

where w_; is given by Eq.(1). In the limit 8 = 0, k.
becomes w_;/va, which is the characteristic wavenumber
for a cold two-ion-species plasma. The ratio of the first
term to the second term on the right-hand side of Eq. (13)
is estimated as A4,m;/m.. When 4, > m./m;, we have
~ (24, /kf)(l + rp), indicating that y; increases with .
We now present the condition for which the approx-
imation (9) is valid. We consider the differences between
Eq. (9) and the exact dispersion relation wexaet derived from
Eq. (5) and define the difference normalized by wexact as

Dy, = [vi(1 = k?/2) = Wexact]/ Wexact- 17)

If D,_ is small, the approximation (9) is valid. The up-
per panel in Fig.2 shows D,_ for the H-He plasma with
ng = 10ng, as a function of ck/wy.. The gray solid, black
dashed, and black solid lines are for 8 = 0, 0.1, and 0.2,
respectively. As S increases, D,,_ increases faster with
ck/wpe. The lower panel shows D,,_ as a function of k/k,
where k. is w_./v; and includes finite temperature effects
through v;. Unlike in the upper panel, there are negligible
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Fig. 2 Differences between the approximated and exact values
of the dispersion relation of the low-frequency mode in
the H-He plasma (ny = 10ny.) with 8 = 0,0.1, and 0.2 as
functions of ck/wy. (upper panel) and k/k. (lower panel).

differences between the three § cases in the lower one. We
can therefore consider k. defined by Eq. (16) as the charac-
teristic wavenumber including a finite beta effect. Because
D,,_ is negligibly small for k < k., we can present the ex-
tended form of the condition for the approximation (9) to
be valid as

k<ke, ke=w_/v. (18)

We next consider nonlinear waves. For waves with
weak dispersion in the long wavelength region, the KdV
equation can be derived with the reductive perturbation
method [6]. Using this method, we obtain the KdV equa-
tion for the low-frequency mode for the wavenumber re-
gion (18) as

5371 3 le 6BZ] VIM] 63BZ]
Z Z(l — 2zl Vi
o T2 m )y et e

where B is the perturbation of B, &€ and 7 are the stretched
coordinates, & = e2(x — ), and T = &¥/%, respectively,
with & being the smallness parameter of the order of am-
plitude |B;; /Bo|, and ayg is given by

=0, (19)

0.)22

ap = lé (z_r.)_pj& (20)
= E i ,
32 Qi v?

which is of order .
The soliton solution of this KdV equation is

B.1/By = Bysech?[(x — Mw1)/Dy], 21)

where B,, is the normalized amplitude, M is the Mach num-
ber [M =1+ (1 — aig)Bn/2], and D is the width,

Dy =2 /(1 — aip)Bn]. (22)
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Fig. 3 Upper limit of amplitudes for the KdV equation of the
low-frequency mode to be valid as a function of 8 for the
H-He plasma with ng = 10ng,.

Because of Eq. (22), the characteristic wavenumber of the
solitary wave can be estimated as

k~1/Di ~ " (1 = ayp) /. (23)

The dispersion form (9) is valid in the long-
wavelength region (18). Then, using eqgs. (18) and (23), we
obtain a condition for the amplitude of the low-frequency-
mode pulses as

£ < Emax» (24)
where &y« 18 the upper limit of the amplitude defined as
Emax = (1 — alﬁ)_lkz~ (25)

Neglecting the quantity of order (m./m;), we can express
Emax 1N terms of 4, as

Emax = 24,(1 + g + ), (26)

where the magnitude of 7z + ajg is of the order of 5. This
indicates that even if 8 ~ 4,(< 1), the finite tempera-
ture effects on enax can be neglected and the dependence
of emax on B is much weaker than on 4,,,.

Figure 3 shows &y, defined by Eq. (25) in the H-He
plasma with ny/ny. = 10 as a function of 8, where ion and
electron temperatures are equal. Although &,,x increases
with B, the difference from the value at 8 = 0 is smaller
than B; [emax(B)—€ma(0)]/emax (0) < B. We can thus confirm
that 4,, is the essential parameter in nonlinear evolution of
the low-frequency mode even in a finite beta plasma.

4. High-Frequency Mode

For a cold two-ion-species plasma [2], the linear
dispersion relation of the high-frequency mode for the
wavenumber region,

Ap(mefm)'* < A1 fw), < 1, (27)
can be written in a form of weak dispersion as

w = vpok[1 = K% 2w}, )], (28)
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where the velocity vy is defined as
Vio = (W + W22 W), (29)

For a finite temperature plasma, we obtain from Eq. (5) the
linear dispersion relation of the high-frequency mode for
the region (27) as

w = vpk(1 — dik?/2). (30)

The velocity vy, is given by

V= 02+ =), (31)

where v and v 5 are

v;lzl = vﬁo(l +Be) + cg + C127, (32)

vip = Q1+ Be) (Wi Co + whyCh) | whe + Cacp, (33)
with 3. defined as

Be = Wl /(Qic?) = 4nl T, /By, (34)

In the limit 4, = 0, vh becomes equal to v1 in the same
limit. The characteristic length dj, is given by

2 2 2

-1
w
= [Z(z”‘ ‘;)2] (1457 (35)

In the limit 4, = 0, d}21 and dl2 are equal.

Equations (31) and (35) indicate that vy, increases with
B and dy, decreases with 8. The increment of v, and the
decrement of dj, are both of the order of 8. For 8 < 1, we
can approximate vy, and dj, retaining the first-order term of

B, as

(W2,C2 + w? »C 2)

= |14+ 5] (36)
(a)pa + wpb)VhO

dy = (w1 = (v = vig) Vi - (37)

We now derive the KdV equation of the high-
frequency mode for the region (27) using a scheme
slightly different from the conventional reductive pertur-
bation method [2]. We introduce the stretched coordinates,
&=¢e"(x—wt)and T = /%t and expand other variables
with . We also introduce the parameter n defined by

17 = Wpevh/(|€2e[0), (38)

which is of the order of (m./m;)!/%. To avoid the extremely
long-wavelength region where Eq. (30) is not valid and to
consider the region (27), we assume that

(me/m)"? < e < 1, (39)

because kd, ~ €2, We also assume that (m./m;)'? <

B < 1. After some manipulation, we obtain the KdV equa-
tion
0B 1 3 B 1 0B 1 1 2 633 1
— + —Vhah— d

= 4
ar 2 "By 0¢ T2 hges 0. (40)

where ay, is given by

2 4
o - Whedy Z W Qv . (1 + T}
3¢? 7 4"-)12)e|Qe| (Vﬁ - 612)

- 3)

In the limit 8 = 0, @y, becomes 1 + 24,,w? /(2,8p). The
soliton solution of Eq. (40) is

(41)

B\ /By = Bysech?{[x — (1 + aB,/2)vnt]/Dy),  (42)

with Dy, = 2d,,/(anBy).

We next consider heavy-ion acceleration by the non-
linear high-frequency mode. Under the condition that hy-
drogen is the major ion component, heavy ions are accel-
erated by the transverse electric field E, [4]. The y compo-
nent of the equation of motion for the ions is

dvj,

"

= qi (Ey - viuB./c). (43)

In deriving Eq. (42), we have obtained the relation between
the lowest order quantities as

(o] Vﬁ(l +Be) By
v —_’
QP (02 =) Bo

Vi = E =B,  (44)

c
For a single-ion species plasma, Eq.(44) leads to E, —
vixB;/c = 0 and dv;,/dt = 0. For a multi-ion-species
plasma, however, E, — v;B;/c for heavy ions is positive
in the pulse region. Therefore, heavy ions are accelerated
in the y direction when they pass through the pulse region.
Substituting eqs. (42) and (44) in Eq. (43) and integrating
over time, we can estimate the maximum speed of acceler-
ated heavy ions as

Vbym ﬂ Q; [ Q (1+ﬂe)
2P (2=cD)

v ann 19|
Figure 4 shows vy, for accelerated He ions in the H-He
plasma with ny = 10ny as a function of 8, where B, is
set to 0.1. This indicates that vy,,, decreases with 8 and its
decrement is of the order of 10724.

)B}/Z. (45)

= 10 T T T *10
1l
-19.38
Q. ',>S
g 0.998
> \
Q0
> {936 g
N\ 0.998} z
g g
> .
>n . . . 9.34
00 005 01 015 0.2

Fig. 4 Maximum speed of He ions accelerated by the high-
frequency-mode pulse with B, = 0.1 in the H-He plasma
with ng = 10ny, as a function of .
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5. Summary

We have extended the theory of perpendicular magne-
tosonic waves in a two-ion-species plasma including finite
temperature effects using the three-fluid model with finite
ion and electron pressures. First, for the low-frequency
mode, we presented the condition for which the linear dis-
persion relation can be written as a form of weak disper-
sion and showed that the KdV equation is valid &€ < gy,
where the upper limit of the amplitude &, is given as a
function of 4, and 8. Next, we presented the dependence
of the quantities concerned with the high-frequency mode
on 8. Heavy-ion acceleration by the high-frequency-mode
pulse was also discussed.

We have theoretically shown that the high-frequency-
mode pulse accelerates heavy ions perpendicular to the
magnetic field in finite beta plasmas. We can therefore
expect that if magnetosonic pulses are excited in the so-
lar corona, they would raise ion perpendicular tempera-
ture. This feature is consistent with observations that the
perpendicular ion temperatures are higher than the parallel

ones in the solar corona [7, 8]. Therefore, this acceleration
mechanism would be applicable to ion heating in the solar
corona. As for a future work, we will have to compare the
theory for the temperature effect on heavy ion acceleration
with particle simulations.
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