
Plasma and Fusion Research: Regular Articles Volume 16, 2402010 (2021)

Data-Driven Approach on the Mechanism of Radiative Collapse in
the Large Helical Device∗)

Tatsuya YOKOYAMA1,2), Hiroshi YAMADA1), Suguru MASUZAKI3,4,5), Junichi MIYAZAWA3,5),
Kiyofumi MUKAI3,5), Byron J. PETERSON3,5), Naoki TAMURA3,5), Ryuichi SAKAMOTO3,5),

Gen MOTOJIMA3,5), Katsumi IDA3), Motoshi GOTO3,5), Tetsutaro OISHI3,5),
Gakushi KAWAMURA3,5), Masahiro KOBAYASHI3,5) and LHD Experiment Group3)

1)Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
2)Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-0083, Japan

3)National Institute for Fusion Science, National Institutes of Natural Sciences, Gifu 509-5292, Japan
4)Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580, Japan

5)The Graduate University for Advanced Studies, SOKENDAI, Gifu 509-5292, Japan

(Received 10 November 2020 / Accepted 17 December 2020)

A radiative collapse predictor has been developed using a machine-learning model based on high-density
plasma experiments in the Large Helical Device (LHD). Concurrently, the physical background of radiative col-
lapse was discussed based on the distinct features extracted by a sparse modeling, which is one of the frameworks
of data-driven science. Electron density, CIV and OV line emissions, and electron temperature at the plasma edge
have been extracted as the key parameters of radiative collapse. Those parameters are relevant to the physical
knowledge that the major cause of radiative collapse is the enhancement of radiative loss by light impurities in
the plasma-edge region. Using these four parameters, the likelihood of occurrence of radiative collapse has been
estimated. The behavior of plasma at the edge—in particular, the carbon impurities outside the last closed flux
surface—has been evaluated using EMC3-EIRENE code for the phase with increasing likelihood, that is, the
plasma is getting close to the collapse. It is shown that the radiation caused by the C3+ ion, which corresponds to
the CIV emission, is enhanced in the region where electron temperature is around 10 eV.
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1. Introduction
The most distinguished plasma termination event is

disruption in the tokamaks. Even in stellarator-heliotron
plasmas, which are free from disruption, radiative collapse
is a major cause of plasma termination in a high-density
regime and consequently limits operational density. The
best-known empirical density limit for the stellarator-
heliotron plasma is given by the Sudo density [1].

nSudo
e [1020m−3] = 0.25P0.5B0.5a−1R−0.5. (1)

Here, P is the absorbed power (MW), B is the magnetic
field strength on the plasma axis (T), a is the average minor
radius (m), and R is the major radius (m). In a theoretical
study, the radiation caused by light impurities is regarded
important in occurrence of radiative collapse [2]. The con-
tributions of other operational conditions and plasma pa-
rameters, such as wall condition and impurity concentra-
tion, to the occurrence of radiative collapse could be im-
portant, but these contributions are hidden behind the ex-
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pression of the Sudo scaling. In an early research on the
density limit in the Large Helical Device (LHD), electron
density was indicated to be greater than the Sudo limit by
40% [3].

In recent years, the data-driven approach using
machine-learning techniques has gained attention in the
study of disruption, which is a critical phenomenon in a
tokamak. Disruption prediction studies based on machine-
learning techniques were performed for many tokamaks
[4–7]. In parallel with improvement of predictive capabil-
ity, some studies suggested that it is important to reveal the
physical implication of the predictor to develop a reliable
predictor [8, 9].

In the present research, a model to predict the occur-
rence of radiative collapse has been constructed using a
linear support vector machine (SVM) [10], which is one
of the traditional machine-learning techniques. Data from
density ramp-up experiments in LHD has been used to con-
struct a dataset to train the model, and the plasma param-
eters which are relevant to radiative collapse have been
extracted by the exhaustive search (ES), which is one of
the sparse modeling techniques [11]. Based on the ex-
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tracted parameters, the likelihood of the radiative collapse
has been evaluated as an index between zero and one. Fi-
nally, the change in plasma was discussed during increases
in likelihood, which indicates that the plasma gets close
to collapse. EMC3-EIRENE code [12–14] was used to
evaluate the plasma condition and the impurity radiation
at the plasma edge. This code solves a steady-state dis-
tribution of the plasma and impurity using fluid equations
along magnetic field lines and with cross-field diffusion.

This article is organized as follows. In section 2, the
dataset and machine-learning model are described. Sec-
tion 3 presents the result of ES and likelihood estimation
based on the ES result. Impurity behavior in the edge re-
gion when the plasma approaches the collapse is discussed
in section 4. Finally, section 5 concludes the article.

2. Construction of Classifier Model
2.1 Dataset

High-density hydrogen and deuterium plasmas in the
LHD have been used to construct the dataset. In those
experiments, the magnetic axis position Rax was fixed at
3.6 m and the magnetic field at the magnetic axis in vac-
uum was either 1.375 T or 2.75 T. Neutral beam injection
(NBI) was mainly used to heat plasma. The 15 plasma pa-
rameters listed in Table 1 have been considered in sparse

Table 1 Plasma parameters used in the dataset.

Expression Description
n̄e Line averaged electron density [1019m−3]
B Magnetic field at magnetic axis in vacuum

[T]
Prad/Pabs Radiation loss normalized by absorbed in-

put power
Pabs Absorbed input power [MW]
βdia Diamagnetic beta value
Δsh Shafranov shift [m]
a99 Minor radius defined by the radius encom-

passing 99% of the stored energy [m]
CIII CIII (2s2 1S − 2s2p 1P, 97.7 nm) line in-

tensity normalized by n̄e

CIV CIV (2s 2S − 2p 2P, 154.9 nm) line inten-
sity normalized by n̄e

OV OV (2s2 1S − 2s2p 1P, 63.0 nm) line inten-
sity normalized by n̄e

OVI OVI (2s 2S − 2p 2P, 103.4 nm) line inten-
sity normalized by n̄e

FeXVI FeXVI (3s 2S − 3p 2P, 33.5 nm) line in-
tensity normalized by n̄e

I(7L)
sat Ion saturation current on a divertor target

plate [A]
D/(H + D) Ratio of deuterium ion to the sum of hy-

drogen ion and deuterium ions
Te,edge Electron temperature at the last closed flux

surface (LCFS) in vacuum [keV]

modeling. The typical waveform of a discharge with radia-
tive collapse is shown in Fig. 1.

In construction of the dataset, 71 discharges with col-
lapses and 27 discharges without collapses were consid-
ered. The data in discharges with collapses were labeled as
“close-to-collapse” and “stable” according to the normal-
ized time derivatives of radiation power xrad = Ṗrad/Prad.
Here, the dots indicate time derivatives. This index is
similar to the density exponent xdensity = (Ṗrad/Prad)/
(ṅe/ne) [15] since the temporal change of density is slower
than that of radiation power. The density exponent is a cri-
terion that shows a relationship between radiation power
and plasma density, and it is known that xdensity becomes ≥
3 when a thermal instability occurs in the plasma. As seen
in Fig. 1 (a), xrad increases drastically as the plasma ap-
proaches radiative collapse. In such discharges, the phase
with xrad > 2.5 (hatched in red) was labeled as “close-to-
collapse”. In contrast, the plasma is regarded as “stable”
against radiative collapse before xrad reaches 2. Therefore,
data of the phase with the same time width of the “close-
to-collapse” phase before xrad reaches 2 (hatched in blue)
were labeled “stable”. In the case of discharges without
radiative collapse, the data between 4 s and 5 s have been
labeled as “stable”.

Fig. 1 Typical discharge with a radiative collapse in the dataset.
The red and blue regions are “close-to-collapse” region
and “stable” regions, respectively. (a) The normalized
time derivatives of radiation power is shown in blue and
collapse likelihood (described in sec 3) is shown in red.
(b) Line-averaged electron density n̄e is shown in blue,
and diamagnetic stored energy Wp, in red. (c) Absorbed
heating power Pabs is shown in blue,4 and radiation loss
Prad, in red. (d) Electron temperature at the plasma center
Te,center is shown in blue, and that at plasma edge Te,edge,
in red. (e) Visible impurity line intensities normalized by
n̄e are shown.
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2.2 Machine-learning model
To construct a predictor model, a linear SVM has been

used as a basic two-class classifier. An SVM returns an
equation of boundary between both classes, described as
f (x) = 0, where x is a vector of input parameters. The
function f (x) is called decision function and it is a linear
function in a linear SVM as follows.

f (x) = wT x + b. (2)

Here, the coefficients w ∈ Rd and b ∈ R are called weight
and bias, respectively. In the present study, the dataset is
taken logarithms and min-max normalized before training
the model. By this preprocessing, the decision function
f (x) is deformed into the exponential form fexp(x). Note
that the boundary equation is deformed as fexp(x) = 1. In
training the SVM, a concept called “soft-margin”, which
allows some data to inhabit the opposite side of the bound-
ary, was used.

3. Collapse Likelihood Estimation
3.1 Feature extraction by exhaustive

search
ES is one of sparse modeling techniques in the frame-

work of data-driven science [11, 16]. Sparse modeling ex-
ploits the inherent sparseness in all high-dimensional data
and enables us to extract information from data effectively.
When selecting input parameters in a classification prob-
lem, it is necessary to consider not only the individual dis-
tribution of each parameter, but also the effect of combina-
tions of parameters. In the ES, all possible combinations
of parameters are evaluated and compared each other. To
avoid overfitting to the training data, 10-fold cross valida-
tion was performed to evaluate each combination by gen-
eralization performance. F1-score [17], which is one of the
metrics commonly used to evaluate machine learning clas-
sifiers, was used to evaluate the performance of the predic-
tor.

From the ES results, a combination of four parameters
have been selected as the key parameters, n̄e, CIV, OV, and
Te,edge. These parameters are included in many of the top
combinations of the ES when limited to combinations of
five parameters, as shown in Fig. 2. The decision function
using these four key parameters, which defines the bound-
ary in the multi-dimensional space, was obtained as fol-
lows.

fexp(x) = exp (−5.89)n̄0.864
e CIV0.995OV−0.395T−1.85

e,edge.

(3)

3.2 Collapse likelihood
The collapse likelihood has been estimated by corre-

sponding the distance from the boundary to the fitting of
the frequency of the occurrence by the sigmoid function as
follows.

Fig. 2 Exhaustive search (ES) result when limited to combina-
tions of 5 parameters. The blue and red bars in the left di-
agram show the distributions of F1-score with five param-
eters and that with the combinations including n̄e, CIV,
OV, and Te,edge. The right diagram shows the parame-
ters included in the top-10 combinations in the F1-score.
Each column corresponds to each combination, and the
color bar corresponds to the weight in the decision func-
tion.

Likelihood =
1

1 + exp
{−8.34

(
log10 f (x) + 0.3082

)} .

(4)

The likelihood takes a continuous value from zero to one.
In the top panel of Fig. 1, the temporal change of col-

lapse likelihood is shown by a red line. The likelihood is
close to 0 while the plasma is stable, but increases to about
1 when the plasma approaches collapse.

4. Numerical Estimate of Carbon
Radiation Distribution
According to Eq. 3, light impurities, especially car-

bon, seem to be important; this result agrees with previous
theoretical research [2]. However, most of the Te,edge val-
ues used in the dataset are distributed around 100 eV, while
the radiation rate of carbon has the first peak at around
10 eV [18]. Therefore it is necessary to investigate the re-
gion outside the LCFS to elucidate the physical mechanism
of radiative collapse.

In the present research, the EMC3-EIRENE code has
been used to evaluate the behavior of plasma with focus
on carbon impurity outside the LCFS. Figure 3 shows the
discharge with radiative collapse which was selected as a
reference for the simulation. EMC3-EIRENE simulations
were conducted for three time points shown by dotted lines
in Fig. 3. In these simulations, the diffusion coefficient of
carbon DC and the carbon sputtering yield were fixed so
that the distribution of C6+ ion becomes close to that was
measured by charge exchange spectroscopy [19] at 4.31 s.

The distributions of radiation power caused by the C3+

ion, which corresponds to the CIV line emission, against
Te at each location are shown in Fig. 4 for each time point.
According to Fig. 4, C3+ radiation was enhanced when the
electron temperature was less than 47.9 eV, which is the
third ionization potential of carbon. As the plasma ap-
proached the collapse and the likelihood increased, whole
radiation power resulting from C3+ increased. More-
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Fig. 3 Reference discharge with radiative collapse for EMC3-
EIRENE simulation. The top panel shows the temporal
change of collapse likelihood. In the bottom panel, dia-
magnetic energy Wp and Prad are shown by blue and red
lines, respectively.

Fig. 4 Contribution of each range of electron temperature Te for
radiation power caused by C3+ ion. From the top to the
bottom, the results at 4.31 s, 4.41 s, and 4.51 s are shown.
The dashed curves show the curves fitted by a logarithmic
normal distribution, and the vertical dashed lines show
the mean temperature of the fitted curves.

over, the mean temperatures, which were located between
10 and 15 eV, slightly shifted toward lower temperatures
when approaching collapse. Consequently, the change in
radiation power caused by C3+ was observed before the
collapse occurs. The increase of radiation was remarkable
in the region with an electron temperature of around 10 eV.
This change in radiation is supposed to be caused by de-
crease of electron temperature and increase in C3+ density,
and future work will tackle the task of identification of the
factors leading to increase in radiation.

5. Conclusion
In the present study, a radiative collapse predictor

model has been developed using the SVM based on high-
density experiment data in LHD. The features of radiative
collapse have been extracted by the ES, which is one of
a sparse modeling technique. From the ES results, the
combination of n̄e, CIV, OV, and Te,edge has been selected
as the key factor for radiative collapse. These parameters
were used to estimate the likelihood of radiative collapse.
This predictor model based on the likelihood will be ap-
plied to control LHD plasma in the near future to avoid
radiative collapse.

To reveal the mechanism of radiative collapse, this
study has focused on the plasma-edge region and the time
range in which the collapse likelihood increases. For
three time points in this range, EMC3-EIRENE simula-
tions were performed to evaluate the behavior of carbon
impurities. The radiation from C3+ ion was found to
be concentrated where the electron temperature is around
10 eV. Further investigation based on the simulation result
and measured data is underway.
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