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A radiative collapse predictor has been developed using a machine-learning model with high-density plasma
experiments in the Large Helical Device (LHD). The model is based on the collapse likelihood, which is quanti-
fied by the parameters selected by the sparse modeling, including n̄e, CIV, OV, and Te,edge. The control system
implementing this model has been constructed with a single-board computer to apply this predictor model to
the LHD experiment. The controller calculates the collapse likelihood and regulates gas-puff fueling and boosts
electron cyclotron resonance heating in real-time. In density ramp-up experiments with hydrogen plasma, high-
density plasma has been maintained by the control system while avoiding radiative collapse. This result has
shown that the predictor based on the collapse likelihood has the capability to predict a radiative collapse in
real-time.
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1. Introduction
The sudden termination of plasma is a critical risk of

a fusion reactor. The most known phenomenon is dis-
ruption, which is the major collapse in tokamak plasma.
In stellarator-heliotron plasma, where no disruption oc-
curs since the plasma current is not required to sustain the
plasma, radiative collapse is the major cause of plasma ter-
mination in a high-density regime. The operational density
is limited by radiative collapse. Improvement of density
limit is an essential issue in fusion energy development be-
cause of the advantages of high-density operation for im-
proving confinement for mitigating the divertor heat load.
The best-known density limit is the Sudo density [1].

nSudo
e [1020m−3] = 0.25P0.5B0.5a−1R−0.5. (1)

Here, P is the absorbed heating power (MW), B is the mag-
netic field strength on the plasma axis (T), a is the average
minor radius (m), and R is the major radius (m).

The data-driven approach using machine learning
techniques as recently attracted significant attention in the
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study of disruption prediction, which is a critical phe-
nomenon in a tokamak [2–5]. Some of these data-driven
studies have been applied to the real-time prediction of dis-
ruptions in tokamak devices [6, 7].

In our previous studies [8, 9], the collapse likelihood,
which shows the probability of the occurrence of radia-
tive collapse, was estimated based on experiment data in
Large Helical Device (LHD) [10]. To estimate the like-
lihood, a linear support vector machine (SVM) [11] was
trained with the plasma parameters selected by exhaustive
search (ES) [12]. A linear SVM, which is a supervised
machine learning technique, was employed as a basic two-
class classifier to distinguish “close-to-collapse” discharge
data from “stable” data. In the ES, all possible combi-
nations of parameters were evaluated and compared with
each other by F1 score [13], which is one of the metrics
commonly used in classification problems. The ES is one
of the sparse modeling techniques. Sparse modeling is one
of the frameworks of data-driven science and it exploits the
inherent sparseness in all high-dimensional data to extract
the essence of the data [14]. As a result of ES, a combina-
tion of key four parameters, n̄e, CIV, OV, and Te,edge, has
been selected from 15 candidate parameters (see Table 1
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Fig. 1 Schematic diagram of the collapse avoidance control system.

in [9]). Moreover, the proximity of radiative collapse was
quantitatively estimated as the “collapse likelihood” using
these four key parameters.

In this study, a predictor model of radiative collapse
based on the collapse likelihood has been applied to con-
trol fueling and heating the LHD plasma to avoid radia-
tive collapse. The remainder of this paper is organized as
follows. In section 2, the experimental setup of collapse
avoidance is described. The result and discussions of col-
lapse avoidance experiments are presented in section 3. Fi-
nally, section 4 presents the conclusion.

2. Development of a Collapse Avoid-
ance Control System
The predictor model based on the collapse likelihood

has been applied to a real-time feedback control system
for the operation of the LHD. The collapse likelihood was
quantitatively evaluated to take the continuous value from
zero to one using the key parameters extracted by the ES
[8]. Figure 1 shows a schematic diagram of the control sys-
tem. A single-board computer, Raspberry Pi 4 Model B,
with quad-core CPU, 8 GB RAM, and general-purpose in-
put/output (GPIO) interface, has been used as a controller1.
Since Raspberry Pi does not have any analog input/output
interfaces, an analog-digital converter with 24-bit resolu-
tion2 has been used to convert an input analog signal into
a digital signal. The controller calculates the collapse like-
lihood based on the input signals and compares the likeli-
hood with the threshold value, which is given by the GUI
interface, in real-time. On average, the controller calcu-
lates the likelihood every 8 ms, which is limited by the
transmission speed of the Raspberry Pi. When the like-
lihood exceeds the threshold, an alarm signal is sent out.
The alarm signal is turned off when the likelihood falls be-
low the threshold.

When the alarm signal is sent from the controller, the
gas-puff control system turns off the fueling and additional
power is injected by the electron cyclotron heating (ECH).
According to the result of ES-SVM, reducing plasma den-

1https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
2lhttps://www.seeedstudio.com/Raspberry-Pi-High-Precision-AD-

DA-Board.html

sity and raising edge temperature will effectively reduce
the likelihood, i.e., to prevent the occurrence of collapse
[8]. Therefore, gas-puff fueling and ECH have been em-
ployed as actuators of the control system. The gas puff is
one of the main fueling sources in LHD [15]. As ECH,
77 GHz gyrotrons for the fundamental O-mode heating
and 154 GHz for the second-harmonic X-mode heating are
available. These are controlled by a real-time interlock sys-
tem [16, 17]. Note that the time duration where ECH can
be turned on is limited by its technical capability and the
interlock system to avoid a blank injection.

The signals of plasma parameters selected by the fea-
ture extraction are input to the controller, i.e., n̄e, CIV, OV,
and Te. As Te, Te,edge measured using the Thomson scatter-
ing measurement has been used in the dataset. However, its
time resolution is 30 Hz, which is lower than the require-
ment of the control system. Therefore, Te,edge has been
replaced by Te,ECE, which is obtained through the electron
cyclotron emission (ECE) measurement with the channel
that detects 146.5 GHz. The Te,ECE corresponds to the elec-
tron temperature near the center of the plasma, and is only
available in experiments with Bt =2.75 T. Here the change
in the parameter requires the recalculation of the decision
function and the collapse likelihood. The SVM has been
trained again with n̄e, CIV, OV, and Te,ECE using avail-
able data in the training dataset. The decision function and
the collapse likelihood for the control system, fctrl(x) and
Likelihoodctrl, are calculated as follows:

fctrl(x) = exp (2.10)n̄−0.600
e CIV1.31OV−0.129T−1.89

e,ECE,

(2)

Likelihoodctrl

=
1

1 + exp
{−14.9

(
log10 fctrl(x) + 0.283

)} . (3)

The performance of Likelihoodctrl has not changed sig-
nificantly from the result of the previous study [8]. In
the discharge with control described below (#168701), the
Likelihoodctrl first reached the threshold 11 ms later than
the original likelihood. This delay is smaller enough than
the averaged prediction margin of 90 ms.
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3. Collapse Avoidance in LHD
3.1 Collapse avoidance experiments

The collapse avoidance with the control system has
been attempted in density ramp-up experiments in LHD.
Figure 2 shows two typical discharges in hydrogen plasma,
with and without collapse avoidance control. In these dis-
charges, the plasma has been sustained by gas-puff fueling
and NBI heating. ECH has been used to initiate plasma,
while two 154 GHz gyrotrons have been reserved for boost
injection.

In the discharge without control, shown by the dashed
blue line, a radiative collapse occurred in the early phase
of the density ramp-up at around 3.6 s. In this case, the gas
puff was injected at a constant until a preset time (about
4.5 s).

On the other hand, in the discharge with control,
shown by the solid red line, the radiative collapse in the

Fig. 2 The discharges with and without collapse avoidance con-
trol in hydrogen plasma, shown by red and blue lines,
respectively. The dashed horizontal line in the top panel
and the dotted vertical line show the threshold value and
the time when the likelihood exceeded the threshold at
first, respectively.

early phase was successfully avoided by turning gas puff
off and boosting ECH. In this case, likelihood threshold
has been set as 0.9, shown by the dashed horizontal line in
the top panel of Fig. 2. The change in the plasma toward
the collapse in the early ramp-up phase was detected about
65 ms before its occurrence, which is earlier enough for a
margin of 30 ms for the control. In the discharge with con-
trol, the gas puff was turned off within 10 ms after the con-
troller detected the collapse. Meanwhile, the boost ECH
was injected about 20 ms later when the controller detected
the collapse, while it was earlier than the collapse.

In the latter part of the discharge with control, the ra-
diative collapse has been avoided only by turning on/off
gas puff and n̄e was developed above 1.2 × 1020 m−3. In
this phase, the ECH was unavailable because of the tech-
nical limitation of duration time. When the change of NBI
heating power occurred at around 5.3 s and 6.3 s, the pre-
dictor detected the occurrence of the radiative collapse, and
the high-density plasma was successfully sustained by the
control. When the collapses were avoided, the recoveries
of electron temperature Te,edge and diamagnetic energy Wp

were observed.
The oscillation of the control signal, i.e., the oscilla-

tion of the likelihood, is mainly caused by the oscillation
of Te,ECE signal. Even a small oscillation is amplified by
the strong dependence on Te,ECE. It remains unclear how
turning on/off of gas puff with intervals shorter than the
confinement time scale of about 100 ms affects avoiding
collapse.

3.2 Discussions on collapse avoidance
Radiative collapse is likely to occur when n̄e is high;

thus, reducing n̄e is one possible way to avoid radiative col-
lapse. However, the likelihood recovery was not accompa-
nied by the decrease in n̄e, as shown in Fig. 2. This is also
seen in Fig. 3, indicating the trajectory of the discharges
with and without control on the contour of the collapse

Fig. 3 The trajectory of the discharges (solid) with control, (dot-
ted) without control, and (chain) with only ECH control
on the color contour which shows the likelihood of ra-
diative collapse against line averaged density and other
extracted parameters.
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Fig. 4 The temporal changes of n̄e, Hα line emission, and the
voltage signal that controls the gas puff in the discharge
with collapse avoidance control system (#168701).

likelihood against line averaged density and the term of
other extracted parameters. The likelihood shown in Fig. 3
is calculated with Te,edge and different from the likelihood
used in the real-time control. In the discharge without con-
trol, shown by the dotted line in Fig. 3, once plasma entered
the unstable (red) region, plasma went toward collapse.

In the discharge with control, it is seen that the plasma
returns from the unstable (red) region to the stable (blue)
region by the control, as shown in the solid line. Figure 4
shows that n̄e kept increasing (dn̄e/dt > 0), even while the
gas-puff fueling was turned off. During this time, recycling
was reduced but not extinguished, as shown by Hα line
emission in Fig. 4. This suggests that the fuel was supplied
by the recycling from the vessel wall when the plasma was
returning to the stable region.

In the latter phase of the controlled discharge, the
plasma stayed in the stable region near the boundary while
increasing the density. After the heating stopped at around
7.3 s, the plasma went into the unstable region and termi-
nated. This result shows that regulating gas-puff fueling
is effective in keeping plasma in the stable region. It also
demonstrates that the control system can achieve a higher
plasma density.

In other discharges with hydrogen plasma, collapse
avoidance with only boost ECH has been attempted. In
these cases, the collapse in the early phase has not been
avoided. The chain line in Fig. 3 shows a discharge where
collapse avoidance with only boost ECH has been at-
tempted. In this discharge, the boost ECH was injected
at 3.53 s and stopped at 3.6 s by the interlock. As shown in
Fig. 3, the plasma state never returned to the stable region
in this discharge. The possibility of avoiding radiative col-
lapse with only boost ECH by changing operational condi-
tions, such as off-axis injection, is under investigation.

4. Conclusion
In this study, a real-time collapse avoidance control

system has been developed based on the result of the data-
driven approach on radiative collapse. Collapse likelihood
has been quantified using the SVM trained with the plasma
parameters selected by ES, which is one of the sparse mod-
eling techniques. The control system calculates the col-
lapse likelihood in real-time; it actuates gas puff and ECH
for fueling and additional heating, respectively.

The control system has been applied to density ramp-
up experiments in hydrogen plasma in LHD to show that
the predictor based on the collapse likelihood has the ca-
pability to predict a radiative collapse in real-time. Conse-
quently, the radiative collapse in the initial density ramp-up
phase has been avoided, and the control system has main-
tained high-density plasma. This is the first case to con-
trol stellarator-heliotron plasma to avoid radiative collapse
based on the machine-learning results.

The discharges, where the plasma was about to col-
lapse but was avoided to collapse, are good examples that
reveal the radiative collapse mechanism. Further investiga-
tion focusing on plasma behavior, when the collapse was
avoided, is underway.

Acknowledgements
The authors are grateful to the LHD experiment group

for the excellent support of this work. This work is
supported by the National Institute for Fusion Science
grant administrative budgets NIFS21KLPP068, and JSPS
KAKENHI Grant Numbers 17H01368, 19J20641, and
20K20426.

[1] S. Sudo et al., Nucl. Fusion 30(1), 11 (1990).
[2] A. Murari et al., Nucl. Fusion 60(5), 056003 (2020).
[3] C. Rea et al., Fusion Sci. Technol. 76(8), 912 (2020).
[4] K.J. Montes et al., Nucl. Fusion 61(2), 026022 (2021).
[5] J. Kates-Harbeck, A. Svyatkovskiy and W. Tang, Nature

568(7753), 526 (2019).
[6] C. Rea et al., Nucl. Fusion 59(9), 096016 (2019).
[7] W. Hu et al. Nucl. Fusion 61(6), 066034 (2021).
[8] T. Yokoyama et al., J. Fusion Energy 39(6), 500 (2020).
[9] T. Yokoyama et al., Plasma Fusion Res. 16, 2402010

(2021).
[10] A. Iiyoshi et al., Nucl. Fusion 39(9Y), 1245 (1999).
[11] C. Cortes and V. Vapnik, Machine Learning 20(3), 273

(1995).
[12] Y. Igarashi et al., J. Phys.: Conf. Series 699(1), 012001

(2016).
[13] C. Van Rijsbergen, Information Retrieval. (Butterworths,

London, 1979).
[14] Y. Igarashi et al., J. Phys.: Conf. Series 1036, 012001

(2018).
[15] J. Miyazawa, K. Yasui and H. Yamada, Fusion Eng. Des.

83(2), 265 (2008). Proceedings of the 6th IAEA Technical
Meeting on Control, Data Acquisition, and Remote Partic-
ipation for Fusion Research.

[16] T.I. Tsujimura et al., Fusion Eng. Des. 153, 111480 (2020).
[17] T.I. Tsujimura et al., Nucl. Fusion 61(2), 026012 (2021).

2402042-4


