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Identification of Magnetic Islands in Optimized Configuration
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To aim at the realization of a helical fusion reactor, we study multi-objective optimization of coil shapes,
which satisfy various requirements. In the magnetic field configuration created by these coils, several unfavor-
able examples are found: some of them have magnetic islands or doublet configurations. In order to automatically
and quickly exclude such cases that hinder the optimization, we have developed a new method to detect unfa-
vorable magnetic surfaces by using image recognition. Binarization and erosion are performed as preprocessing,
and then blanks of magnetic islands and doublets are extracted as recognition targets. Consequently, we have
developed a classifier with high performance. Using this trained classifier, we have shown that almost all cases
with unfavorable magnetic surfaces in various magnetic configurations can be excluded in a short time and with
high precision.
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1. Introduction
In order to aim at the realization of a helical fusion

reactor, it is necessary that the reactor simultaneously sat-
isfies various requirements, which is treated as a multi-
objective optimization problem [1–9]. In the optimiza-
tion of plasma confinement properties, improvement of the
symmetry of magnetic field in Boozer coordinates has of-
ten been used as an objective function. This is because
it is theoretically known that neoclassical transport is kept
low in magnetic field configurations with a certain sym-
metry [10, 11, and references therein]. Therefore, in tradi-
tional optimization studies, the optimization of the mag-
netic field, or the shape of the last closed flux surface
(LCFS) is initially carried out, and then a coil shape is ob-
tained to create a configuration with good symmetry, as
another optimization problem. On the other hand, in our
optimization of machine leaning, we use the winding law
of helical coils as parameters to create various magnetic
field configurations and to optimize the objective func-
tions. This method allows one to search for the optimal
configuration in a wide range of possible magnetic field
configurations under engineering constraints (e.g., maxi-
mum coil curvature and minimum distance between coils).
However, in our test calculations, although this method
allows a large degree of freedom in generated magnetic
field configuration, it sometimes results in the formation
of inappropriate magnetic field configurations as confine-
ment ones: some of them have magnetic islands or doublet
configurations, which have two split magnetic axes. They
must be automatically excluded during machine learning
because they would hinder optimization. For magnetic is-
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lands, a part of them can be detected by tracing magnetic
field lines and checking the radial distribution of iota, or
the rotation transformation. The iota profile can be cal-
culated by using a variation of the poloidal phase ∆θ and
one of the toroidal phase ∆ϕ along a magnetic field line.
If some of the field lines are contained in an island, then
a flat iota profile appears there. However, this calculation
sometimes fails near the magnetic axis. Moreover, a mag-
netic island cannot be found by this method, unless there
are several starting points of field lines located inside it.
Therefore, for the purpose of detecting magnetic islands
efficiently and avoiding this problem, we have developed
a new method to detect unfavorable magnetic configura-
tions by image recognition. With regard to the applica-
tion of image recognition in the research of fusion plasma,
several studies have used image processing and machine
learning for observed plasma image data [12, 13]. On the
other hand, graphical image has not been used as training
data for the detection of unfavorable magnetic configura-
tions in the optimization study so far.

The paper is structured as follows: in Sec. 2, we de-
scribe the method, which contains preprocessing of im-
age data, extraction of their features, evaluation of perfor-
mance of classifiers, and parameters. In Sec. 3, we show
the results of detection of unfavorable configurations and
the performance of classifiers. Section 4 summarizes the
results.

2. Method
2.1 Generation of magnetic field

Machine learning for the detection of unfavorable
cases by using image recognition proceeded as follows.
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First, various shapes of helical coils were generated by ran-
domly changing parameters of the coil shape, and the mag-
netic fields produced by the coils were calculated by using
a magnetic field line tracking code. Here, the winding law
of a helical coil is represented as follows:

R(t)
=Rax(t)+r00ϵr cos(ϕ+ϕ0r+αr sin ϕ)[1+ϵ2r cos(ϕ+ϕ2r)],

Z(t)
=Zax(t)+r00ϵz sin(ϕ+ϕ0z+αz sin ϕ)[1+ϵ2z cos(ϕ+ϕ2z)],
ϕ(t) = Nt,
Rax(t) = R00(1 + ϵaR cos (ϕ + ϕaR)),
Zax(t) = R00ϵaZ sin (ϕ + ϕaZ).

(1)

In the abovementioned equation, the parameters are de-
fined as follows: ϵr and ϵz are the magnifications of the
minor radius of the coil; ϵ2r and ϵ2z are the scalar values
to provide the bumpiness of coils; αr and αz are the he-
lical pitch modulation parameters, and ϕ0r, ϕ0z, ϕ2r, and
ϕ2z are the initial phases. Another coil is given by the law
(R(t), −Z(t), −ϕ(t)), which makes the produced magnetic
field stellarator symmetric. For simplicity, we set ϵr = ϵz
and ϵ2r = ϵ2z in the present study. The Poincaré mapping of
the magnetic field lines in the cross-section at the toroidal
angle ϕ = const. was generated by tracking each of the
lines starting from the points on the Z = 0 plane, which
divides the distance between the magnetic axis and LCFS
into 30 equal parts. The 500 points at an intersection of
each line with the ϕ = const. plane were recorded. Sec-
ond, preprocessing was performed for image data. This
method is described in detail in Secs. 2.2 to 2.3. Third,
some operations were executed to extract indispensable in-
formation for machine learning. The details of the pro-
cesses are explained in Sec. 2.4. Finally, machine learning
was conducted, and the performance of the classifier was
tested, which are described in Secs. 2.5 and 2.6. At this
time, classifiers were created by changing the parameters
and learning settings, which are described in Sec. 2.7, and
their performances were compared. In this study, we used
OpenCV library on Python for programming.

The images that correspond to positive and negative
examples, which are classification classes, are shown at
the top of Fig. 1. The images in the middle of Fig. 1 are
the preprocessed top ones, and the bottom ones are the coil
shapes corresponding to them.

2.2 Erosion
Binary erosion is a process for reducing the white area

of a binary image, which can be executed by using the
built-in function, cv2.erode. In this process, an array for
conversion, namely, a kernel, is determined in advance.
This array can be a rectangle, ellipse, and cross of any size.
In this study, the kernel is a square matrix. Then, if the ker-
nel is superimposed on a focused pixel in an image, and if
there are one or more black points in the area, then the pixel
is converted to black, and if not, it is left as it is. When this

Fig. 1 These images are original Poincaré plot data, after pre-
processing ones, and coil shapes. The top left shows
normal magnetic surfaces, which correspond to negative
cases in the present classification. The top center is an
image containing magnetic islands, and the top right is a
doublet example. These two images correspond to pos-
itive cases. Each of the middle and bottom images is a
preprocessed one just above it and the coil shapes gener-
ating the magnetic fields, respectively. In the images of
coil shapes, the four circles are two pairs of upper and
lower vertical magnetic field coils. Details of preprocess-
ing are explained in Sec. 2.2.

process is applied to Poincaré plots of magnetic field lines,
where the kernel is a 5 × 5 square matrix, it works to fill
the blanks between the plot points, and rational surfaces
(Fig. 1). The magnetic islands and blanks of unfavorable
cases become clearer.

2.3 Contour extraction
In image recognition with OpenCV, it is necessary to

give information about the positions of all detection tar-
gets as rectangles for learning. Therefore, all doublet con-
figurations and magnetic islands of the training data are
extracted, and they must be converted into rectangles en-
circling them. They are executed with built-in functions
in two steps. First, the algorithm of contour extraction
function, cv2.findContours, devised by S. Suzuki and K.
Abe [14], is applied. The pixels are checked from the up-
per left to the right to search for a white one, and if not,
the next line is scanned: this method is known as a raster
scan. If found, then the pixels around the white one are
checked clockwise, and the white pixel found at first be-
comes the next focused point. Repeating this operation,
when an edge or the first point is found, a raster scan starts
again. Looking for a white pixel, which is not included in
the contours already found, a contour is extracted again.
Repeating this sequence, all pixels that compose the con-
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Fig. 2 Images of the processes explained in Secs. 2.3 and 2.4 are executed for the preprocessed images at the bottom of Fig. 1, without
adjusting the aspect ratio. The red lines are the detected contours, and the green lines are the rectangles enclosing them. By setting
the width and height thresholds above 20, some small blanks are ignored.

tours are searched for. The outermost contour, which cor-
responds to the LCFS, can be removed by using the hierar-
chy of the contours obtained by cv2.findContours.

2.4 Specifying the rectangles
In the second step, the minimum and maximum values

in horizontal and vertical directions from the positions of
the pixels composing each contour are extracted, and they
are converted into rectangular information encircling the
contour. The “opencv_traincascade” command requires
rectangular information about target objects. Figure 2
shows the contours extracted from the preprocessed im-
ages of Fig. 1 by using the method described in Sec. 2.3 and
the rectangles encircling them. In this operation, whether
or not the positions, widths and heights of the rectangles
should be adjusted to make all of them a uniform aspect ra-
tio remains a problem. As shown in Sec. 3, training results
are better when the aspect ratio of the rectangle regions is
unified. However, whether the operation was executed was
treated as a parameter in training because the sizes of the
rectangles must be changed to unify the ratios. In addition,
by setting thresholds for the widths and heights of the rect-
angles, leftover small spot-like holes (Fig. 2) are excluded
from the training targets as much as possible.

Training was executed using the information about
rectangles, and the test data were classified. Finally, the
performance indexes of the classifier were calculated.

2.5 Haar-like features and cascade classifier
In this study, some classifiers were created by using

Haar-like features. The Haar-like feature was devised by
P. Viola and M. Jones [15]. It is less susceptible to noise,
compared with using pixel values. Harr-like features are
obtained as follows. First, some patterns with blue and
red regions, shown on the right in Fig. 3, are prepared to
calculate the features. Next, as shown on the left side of
Fig. 3, a detection window is set at an arbitrary position in
an image, and a rectangular area is set at an arbitrary posi-
tion inside it. Then the prepared pattern is arranged in this
area, and the average of pixels in the monochrome image,

Fig. 3 Method of obtaining Haar-like features. In the left figure,
a detection window is the area encircled by the reddish-
brown line and a rectangular region is the one encircled
by the deep-green line. Many different patterns, as shown
at the right are used to evaluate the Haar-like feature.

Fig. 4 Cascade classifier is composed of many strong classifiers
and it also contains several weak ones.

which is covered by the blue region (A), and red region (B)
of the pattern, are evaluated. The Haar-like feature H is the
difference between the two regions:

H = A − B. (2)

A sequence of operations is repeated by changing the po-
sition of the detection window, the position and size of the
rectangular area, and a prepared pattern.

A cascade classifier is created from the features col-
lected using the aforementioned method. It consists of
several weak and strong classifiers (Fig. 4). A weak clas-
sifier is a Haar-like feature. One weak classifier cannot
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determine a recognition target as a correct image, and a
combination of many of them is used as a strong classifier.
Strong classifiers have different detection accuracies, and
by arranging them in order from the one with the lowest
accuracy to the highest, a cascade classifier can quickly re-
move the images that are clearly different from the correct
ones and speed up the recognition. Finally, only the images
determined as correct by all strong classifiers remain.

2.6 Performance indexes
Indexes such as accuracy, precision, and recall are

used as criteria for performance evaluation of classification
by machine learning. Accuracy is the correct answer rate
for all predictions, and precision is the rate at which data
are determined to be positive in the prediction. In addition,
recall is the rate at which positive data are determined to
be so in the prediction. In general, a trade-off relationship
is observed between precision and recall. Using the sym-
bols of the confusion matrix shown in Fig. 5, the above-
mentioned indexes are described by using the following
equations:

Accuracy =
TP + TN

TP + FN + FP + TN
, (3)

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
. (5)

The higher the precision and recall are, the better the clas-
sifier is, but, as previously mentioned, a trade-off relation-
ship is observed. Therefore, in this study, a scalar value ,
namely, the F-score, was used for performance evaluation,
and the others were also used complementarily. It com-
prehensively evaluates two indexes, namely, precision and
recall. This scalar value is presented by as follows:

Fβ =
(1 + β2) × (precision) × (recall)

(β2 · precision) + (recall)
, (6)

where β is the weight of recall against precision. In this
study, β = 1.

Fig. 5 Confusion matrix for a binary classification. T, F, P, and
N indicate true, false, positive, and negative, respectively.
TP and TN are correctly classified. The larger these are,
the better the classifier is.

2.7 Parameters
During erosion, the size of a kernel and iterations

are used as parameters. In the contour extraction phase,
two kinds of parameters are identified. First, they are the
thresholds of width and height to exclude the white spaces
which are smaller than them. Such blanks appear near the
rational surfaces or are merely tiny islands which can be
accepted. The other parameter is whether the aspect ratio
of rectangles and the size of targets at training are unified.
If executed, then two cases are considered: the aspect ratio
is square, or the same ratio as the original image (10:7).
In the machine learning phase, two parameters are identi-
fied, namely, the size and view of the object. The classifier
module used in this study requires that the training targets
should have the same size. The size Y×Z is also treated as
a parameter. The view is whether the contour extraction is
executed for training data or only eroded images are used.

3. Result
AMD Ryzen 5 3600 6-core CPU was used as the ex-

ecution environment. The training data consisted of 100
or 1200 positive images and 800 negative ones, and the
test data consisted of 1000 images including 300 positive
cases. The common points among the three best classifiers
are to execute erosion processing using a 5 × 5 square ma-
trix as the kernel and one iteration, to set the thresholds of
rectangle width or height to more than 20, to unify the as-
pect ratios, and to extract contours. We tested several sizes
of the final unified images in the training phase, which are
denoted as “training size = Y × Z”.

The recognition results are shown in Fig. 6. The rec-
ognized blank spaces are enclosed with rectangles.

Figure 7 shows the F-score of three classifiers of
which 0.9 or higher and one or more best indexes in ones
created under various training conditions. The third num-
ber on the left is the time for learning, and “h” and “m”
indicate hours and minutes, respectively. The average time
required to classify the verification data is about 20 sec-
onds per 1000 images.

In the image recognition of unfavorable cases, when

Fig. 6 Recognition results. The left image is a doublet example
and the right one is an example containing several islands.
The detected objects are enclosed with green lines.
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Fig. 7 Comparison between the performance indexes of cascade
classifiers for anomalous cases. In classifiers with F1 ≥
0.9, those with the best indexes are listed. The numbers
on the left are, in order, the training size, the number of
positive data, and the training time.

Fig. 8. 1 Performance of some cascade classifiers created by us-
ing the whole of each image is compared. In cases (a),
(b), (c), and (d), the images were preprocessed, which
is contrary to cases (e), (f), (g), and (h). The former
had better performance than the latter. However, in two
cases, the recall got worse.
(a) With erosion, training size = 50 × 35, and positive
data = 1200
(b) With erosion, training size = 50 × 35, and positive
data = 100
(c) With erosion, training size = 30 × 21, and positive
data = 1200
(d) With erosion, training size = 30 × 21, and positive
data = 100
(e) Without erosion, training size = 50 × 35, and posi-
tive data = 1200
(f) Without erosion, training size = 50×35, and positive
data = 100
(g) Without erosion, training size = 30 × 21, and posi-
tive data = 1200
(h) Without erosion, training size = 30 × 21, and posi-
tive data = 100

the training size was set to 30 × 30 with 100 positive data,
the precision was the best, but the other indicators were
smaller than the others, and the F-score was slightly over
0.9. When the training size was set to 50 × 50 with 1200
positive data, the recall was the best, and the precision was
low. The F-score exceeded 0.95. Then, in the case of 50 ×

Fig. 8. 2 Performance of some cascade classifiers created by us-
ing each cavity in the images is compared. The images
were preprocessed. In cases (a), (b), (c), and (d), the
rectangle just surrounded each contour, and in cases (e),
(f), (g), and (h), one was slightly larger. The former is
called a “tight-fit rectangle,” and the latter is a called a
“loose-fit rectangle.” The latter had better performance
than the former.
(a) Tight-fit rectangle, training size = 50 × 35, positive
data = 1200
(b) Tight-fit rectangle, training size = 50 × 35, positive
data = 100
(c) Tight-fit rectangle, training size = 30 × 21, positive
data = 1200
(d) Tight-fit rectangle, training size = 30 × 21, positive
data = 100
(e) Loose-fit rectangle, training size = 50× 35, positive
data = 1200
(f) Loose-fit rectangle, training size = 50 × 35, positive
data = 100
(g) Loose-fit rectangle, training size = 30× 21, positive
data = 1200
(h) Loose-fit rectangle, training size = 30× 21, positive
data = 100

35, which had a slightly smaller training size, a classifier
with the best F-score and accuracy was created. In detail,
compared with the case of 50×50, precision improved, and
recall decreased. Given the similarity in their variations,
the F-score and accuracy were almost the same. However,
the training time was reduced to about half.

As a result of trials with various parameter changes,
several tendencies of learning were observed. First, during
preprocessing, that is, erosion, the performance indexes
were improved (Fig. 8.1). Next, a larger size of targets
at training and the number of images caused higher re-
call but lower precision. These two factors strongly af-
fected learning time, and appropriately setting the former
was particularly important for reducing the time and main-
taining high performance. Third, when contour extraction
was executed rather than using the images as they were, the
precision was improved, but the recall tended to decrease.
In this case, the recall became better by slightly expand-
ing the size of the rectangles (20 pixels added to the width
and height, Fig. 8.2). In addition, in preventing the defor-
mation of the targets caused by enlargement or reduction,
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Fig. 9 Left image is the original one in which rational surfaces are erroneously detected as islands, and the center one is the result of the
detection. The red line in the right graph is its iota profile. In this case, it does not monotonically increase, and it has the local
minimum near a rational value.

the aspect ratio of the rectangles in the contour extraction
phase was set the same as that of the size in the training
phase. By unifying the aspect ratios in the extraction and
training phases, the recall was improved (Fig. 7). However,
the rectangle to be cut out was enlarged to match the ratio
in two phases. Thus, whether the effect was on the size of
targets, the matched ratio, or both of them remained un-
clear.

By selecting a proper set of parameters for image
recognition, we demonstrated that the blank region of is-
lands and doublet configurations can be detected with high
precision. Checking for the flat-iota region in combination
with the image recognition, we can automatically detect
unfavorable magnetic configurations. However, we ob-
served several false positive cases in which blank spaces
around a rational surface were misjudged as islands. The
detail of one sample was checked. When an iota profile
has a local minimum or a weak magnetic shear region near
a low-order rational value, the Poincaré plot of magnetic
field lines is similar to the one on the left of Fig. 9. Despite
explicit magnetic islands appearing in such cases, they are
considered as inappropriate candidates for optimized con-
figurations in the view of MHD equilibrium. This is be-
cause such a wide region with iota value close to a low-
order rational value tends to be a wide island region by a
small change in magnetic field. Therefore, such images
should be excluded.

4. Summary
Doublet cases and magnetic islands could be recog-

nized in the image of magnetic field lines with image
recognition. Although the learning time was long, it took

less than 1 day, which was sufficiently acceptable. How-
ever, in the detection of magnetic islands, some blank
spaces near rational surfaces are often erroneously de-
tected. They will be treated as positive images because
their features are inappropriate as candidates of optimized
configurations. When dealing with a variety of magnetic
field configurations in the optimization study, unfavorable
cases such as large magnetic islands could be excluded in
a short time, with high precision, from the candidates for
the optimized configuration survey by using the classifier.
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