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Abstract

Current Interchange Tearing Modes (CITM) have been proposed to explain an intermittent

eruption of electric current toward a divertor at an edge region of a tokamak device. Extended

magnetohydrodynamic (MHD) simulations combined with the Scrape-Off-Layer (SOL) diffusion

model, which has been developed by the authors (Miura, Zheng, and Horton, Physics of Plasmas

24(2017)), are carried out in order to study growth of a CITM under influences of two-fluid and

gyro-viscous effects, or non-ideal MHD effects. Numerical simulations both with and without an

externally-imposed azimuthal flow show that the growth of a CITM is observed for a relatively

small flow velocity, and that a CITM can be a candidate mechanism for intermittent eruption

of the current in a tokamak, whether the growth is under influences of non-ideal MHD effects or

not. The growth can be suppressed when an externally-imposed azimuthal flow is sufficiently large

to cause a finite radial displacement, because such a displacement prevents a transition from an

interchange to a tearing mode that is the key process of a CITM. Furthermore, It is also found

that a stripe pattern similar to so-called streamers is formed in the course of the CITM growth.

The basic nature of this streamer-like structure is also presented.

∗ miura.hideaki@nifs.ac.jp
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I. INTRODUCTION

Edge physics of magnetically confined fusion plasma continue to gather much interest

because of their complexity and importance. Amongst many subjects of edge plasma physics,

generation of the Edge Localized Mode (ELM) and a large heat load on a reactor wall or a

divertor plate, caused by an ELM eruption during the H-mode operation, are recognized as

important subjects for the ITER and next-generation tokamak devices[1–7]. In the context

of these studies, a quiescent H-mode (QH-mode) has been reported as an ELM-free operation

mode[5, 8, 9]. Current bursts in the Scrape-Off-Layer (SOL) during the ELM period suggest

a transition from a pressure-driven or peeling-ballooning mode[11] to a tearing mode[10].

In order to explain this transition theoretically, Zheng and Furukawa have proposed the

current interchange tearing mode (CITM) theory[12, 13]. At the edge region, there is a

steep pressure gradient which causes pressure-driven instabilities. Furthermore, the plasma

current in the core region is large, while the current outside the Last Closed Flux Surface

(LCFS) is low, due to saturation by the divertor sheaths, leading to formation of a current

jump across the LCFS. The current jump across LCFS can convert the peeling-ballooning

mode to the tearing modes due to the current interchange effects. On this occasion, a

magnetic field line reconnection, which occurs as a consequence of the excitation of tearing

modes, can enhance the discharging of particles and heat from the pedestal to the SOL. Since

the magnetic field lines outside the LCFS are open toward the divertor plates, the particles

and energy are brought beyond the LCFS and released rapidly to the divertor plates. This

also results in a SOL current jump, as observed during the ELM activities[10].

In our previous work we developed a numerical model, the SOL diffusivity model, to

enforce a low-level current outside the LCFS[14]. Numerical simulations of a resistive MHD

model combined with the SOL diffusivity model in the literature have shown that an in-

terchange mode transits to a tearing mode, as has been considered in [12, 13]. Since the

transition is the key process in the CITM theory, the numerical results indicate the growth

of a CITM in the course of a time-evolution.

Although growth of a CITM has been shown already in Ref.[14], edge plasma motions

consist of more complex physics than that are described by a resistive MHD model. For

example, since the edge pedestal width is often comparable to the ion skin depth, two-fluid

effects and ion Larmor radius effects (non-ideal MHD effects) should influence the growth
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of a CITM. In fact, edge plasma physics have been studied extensively by the use of ex-

tended MHD (XMHD), gyro-fluid, or gyro-kinetic models. (See Refs.[15]-[18] and references

therein.) For this reason, we extend our earlier work based on a resistive MHD model, to a

study based on an XMHD model which includes the non-ideal effects. The primary purpose

of this paper is to investigate growth of a CITM under the non-ideal MHD effects.

From the point of view of a CITM as a transition from an interchange to a tearing mode,

this mode is closely related with pressure-driven instability as the first stage of its growth.

With respect to a study of an unstable pressure-driven mode under the non-ideal MHD

effects, it has been shown that the effects can reduce the growth rate of the unstable modes

but do not necessarily suppress the instability sufficiently[19–22]. Thus we pay attention to

growth of a CITM, especially in its first stage, in light of these earlier works[19–22].

With respect to non-ideal MHD effects, we also need to pay attention to an influence

of flow to a CITM. While the non-ideal MHD effects often induce dia-magnetic flow, the

edge region is often exposed to a flow driven by other effects as well. For this reason, we

study a response of a CITM to an externally-driven flow, as the secondary purpose of this

paper. The generation of the dia-magnetic flow can include many interesting subjects, such

as interactions between the flow and magnetic islands. For all that, the center of our interest

exists in the growth of a CITM, not in the generation of the dia-magnetic flow. We focus on

the rapid growth of a CITM rather than long-term behavior such as flow-island interactions.

Our concern in this paper is basic nature of the CITM itself although the original CITM

theory was developed for ELM-related events. Since the CITM theory is quite simple and

is constructed without a complex edge physics, we are interested in the robustness of the

theory to physics which should be included in edge physics investigations. For this reason,

we study growth of a CITM in the shear-slab configuration, not in a toroidal configuration,

being apart from a realistic ELM-related subjects.

This paper is organized as follows. In §.2,outlines of numerical simulations are presented.

Initial equilibrium for a CITM, governing equations, numerical models including the SOL

diffusivity model developed in Ref.[14]. In §.3, simulation results are presented. In §.4,

concluding remarks and discussions are presented.
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II. OUTLINE OF NUMERICAL SIMULATIONS

A. Simulation model and initial equilibrium

We carry out numerical simulations of XMHD equations[23] on a two-dimensional (2D)

plane, keeping three components of a vector field. The XMHD equations read as

∂ρ

∂t
= −

∂ (ρuj)

∂xj

, (1)

∂ (ρui)

∂t
= −

∂

∂xj

(ρuiuj + pδij) + ǫijkJjBk +
∂Πij

∂xj

− ρgδj,2, (2)

∂p

∂t
= −uk

∂p

∂xk

− Γp
∂uj

∂xj

+ (Γ− 1)

(
ηJkJk + ui

∂Πij

∂xj

)
, (3)

∂Bi

∂t
= −ǫijk

∂Ek

∂xj

, (4)

∂Bk

∂xk

= 0, (5)

Ei = −ǫijk

(
uj −

ǫH
ρ
Jj

)
Bk −

ǫH
ρ

∂pe
∂xi

+ ηJi. (6)

The thermodynamic variables ρ, p are the mass density and the pressure, respectively.

Plasma is assumed to be an ideal gas: p = ρT , where T is the temperature. The variables

with a single subscript ui, Bi, Ei, and Ji = ǫijk∂jBk, are the i-th vector component of the

velocity, magnetic, electric, and current density fields, respectively. The subscripts are for

i = 1,2,3 (or x, y, z, equivalently). For our 2D 3-component computations in this paper, we

set ∂3 ≡ ∂z = 0. We take a sum from 1 to 3 for a repeated suffix. The gravity term −ρgδj,2

works in the −y direction. (The gravity is set g = 1 all through this paper.)

The variables with multiple subscripts Πij and ǫijk are the gyro-viscous tensor and the

Levi-Civita’s anti-symmetric tensor, respectively. The gyro-viscous tensor is given as

Π11 = Π22 = −ǫG
pi
2

(
∂u2

∂x1

+
∂u1

∂x2

)
, (7)

Π12 = Π21 = −ǫG
pi
2

(
∂u1

∂x1

−
∂u2

∂x2

)
, (8)

and Πij = 0 otherwise, assuming pi = pe = p/2. The parameters ǫH and ǫG represent the

two-fluid (Hall) and the finite ion Larmor radius effects, respectively.

The equations (1)-(8) are already normalized by some representative quantities: the mass

density ρ0, a typical length L0, the mean toroidal magnetic field BT , the vacuum permeability

µ0, the Alfvén velocity VA =
√

B2

T/µ0ρ0, and the Alfvén time unit τA = L0/VA. The symbol
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Γ denotes the ratio of the specific heats, Γ = 5/3. Basic variables ρ, p, ui, and Bi are evolved

in the time-direction keeping the equilibrium components within themselves.

Our numerical simulations are carried out by the use of the MUTSU/MINOS code which

has been developed originally for simulations of instability of the Large Helical Device[24–

27]. A difference of numerical techniques in this paper from those used in the original

MINOS simulations in the literature is that the fourth-order central finite difference scheme

is used instead of the eighth-order compact finite difference scheme. Numerical precision

and intrinsic resolution associated with the choice of the numerical techniques have been

verified in Refs. [20, 21] through a comparison with linear stability analysis.

In addition to the XMHD equations (1)-(8), we add a fourth-order hyper-diffusivity at the

right-hand-side of eqs.(2) and (4), since an XMHD simulation requires a very high numerical

resolution, as we can see in Ref.[20, 21]. In Ref.[21], the tail of energy spectra of the velocity

and magnetic fields of Rayleigh-Taylor turbulence extends to a scale as small as the electron

scale, unless being terminated by either normal or hyper-diffusivity.

B. The basic concept of a CITM and initial equilibrium for CITM simulations

A schematic image of the CITM is presented in Fig.1. In our simulation, the x = x1

coordinate is for an azimuthal direction (with the periodicity 2π) and −y = −x2 is for the

radial direction, bounded by yS ≤ y ≤ yN . Here we set yN = 1, yS = −1, and y0 = 0.125.

Magnetic shear exists in the region −y0 ≤ y ≤ y0, and the pressure gradient balances the

Lorentz force. Resistivity increases in the radial direction, in order to keep the current

level low outside the LCFS. A fixed solid-wall boundary condition (BC) is imposed both

at y = yN and y = yS. This BC differs from that in our earlier work[14], in which a slip

boundary condition is imposed both at y = yN and y = yS.
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A force-balanced equilibrium state is given as

ρ =





ρS , (y ≤ −y0)(
ρN−ρS
2y0

)
(y + y0) + ρS, (−y0 ≤ y ≤ y0)

ρN , (y ≥ y0)

(9)

p =





pS, (y ≤ −y0)(
pN−pS
2y0

)
(y + y0) + pS, (−y0 ≤ y ≤ y0)

pN , (y ≥ y0)

(10)

Bx =






−B0, (y ≤ −y0)(
B0

y0

)
(y + y0)− B0, (−y0 ≤ y ≤ y0)

B0, (y ≥ y0),

(11)

By = 0, (12)

ux = 0, (13)

uy = 0, (14)

uz = 0 (15)

as an initial condition for our CITM simulations. A part of the equilibrium component

bz = BZ0 is determined to satisfy the equilibrium equations

0 = −
∂p

∂xi

+ ǫijkJjBk, (16)

and BZ0 = BT at y = 0. The parameters ρS, ρN , TN , TS, and B0 are given a control

parameter. Since the mass density, pressure and temperature are related with each other by

the equation of state of an ideal gas, we can give two of the three variables at the boundaries

N and S. We give ρN , ρS, TN , and TS at the boundaries. Then pN and pS are determined

automatically. Another parameter, β = 2p/(B2

x + B2

y + B2

z ) at y = 0 is also given in the

initial step of a numerical simulation to determine the mean pressure level. Then pN and

pS are determined by the equation of the state of an ideal gas. The initial velocity field ui,

given in eqs.(9)-(16), is perturbed by sinusoidal functions with small amplitudes and random

phases at each wave number in the x-direction.

As has been mentioned already, plasma should be nearly current-free at the SOL region,

due to the divertor sheaths created by a fast electron transport toward the divertor. In order

to enforce this status in a numerical simulation, we adopt the SOL diffusivity model

η = [2− tanh (α1 (ρ− ρcrit))]
α2 × η0. (17)
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which has been proposed in Ref.[14]. Equation (17) gives a large diffusivity at the region of

ρ ≪ ρcrit (y < −y0) while η ∼ η0 is small at the region of ρ ≫ ρcrit (y > y0). (See Fig.1(b)

for the profile of this diffusion model.) The parameters α1 and α2 denote the width of the

transition layer between the two regions, and the amplification of the resistivity in the SOL

layer against the pedestal region, respectively. There are some control parameters, α1, α2,

ρcrit. Based on the study in Ref.[14], we set α1 = 8π and α2 = 12. Although ρcrit can remain

as a free parameter, we have verified that this parameter does not cause an essential change

of numerical results presented in this paper. Thus we set ρcrit = (ρN + ρS)/2 throughout

this paper.

We note that the magnetic field should be open outside the LCFS of a divertor tokamak

with separatrix, while the shear-slab configuration itself does not provide such open-field

magnetic field lines. However, by introducing the SOL diffusivity model (17), one aspect of

an open-field configuration, namely a low-level saturation of the current, can be expressed

by a large resistivity outside the LCFS. In other words, we simulate by the use of the SOL

diffusivity model a situation such that a transition from the interchange to the tearing mode

can occur in an open magnetic field region where the effective η is quite large. We may be

able to apply this model to a divertor tokamak with the separatrix by adjusting parameters

in (17) more likely for the device. We do not proceed to this adjustment in this article in

order to concentrate on investigating the robustness of the CITM to extended MHD effects

in the shear-slab geometry.

III. NUMERICAL RESULTS

A. Outline of numerical simulations

Numerical simulations are carried out for the parameter sets shown in Table I. The

plasma beta is fixed β = 5% throughout this paper. While run 0 is a traditional resistive

MHD simulation with a constant and uniform resistivity, runs 1-8 are simulations with the

SOL diffusion model. Non-ideal MHD parameters in runs 2-8 are ǫH = 0.05 and ǫG = 0.01.

A finite-amplitude initial flow is given in runs 3-8. Although we have carried out other sets

of parameters, we restrict ourselves to these in order to simplify our discussion to the growth

of a CITM.
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We recall that the initial condition in eqs.(9)-(15) is not an equilibrium solution for a finite

(non-zero) uN . An azimuthal flow ux with a finite uN induces a non-equilibrium electric field

in the y-direction (Er in a toroidal plasma) through the multiplication of ux×BZ0. We keep

in mind that, since this velocity perturbs the initial equilibrium strongly, we cannot set uN

very large from the point of view of plasma linear stability analysis.

We fix a number of grid points in our simulations Nx = 512 in the x-direction and

Ny = 1024 in the y-direction for the geometry of 2π× (yN − yS) (y0 = 0.125 here). We have

carried out numerical simulations with both a smaller and larger number of grid points for

some of the parameter sets in Table I, and have verified that the change of the maximum

resolution does not influence the physical views studied in this paper. Thus we concentrate

on computations with Nx = 512 and Ny = 1024.

B. Appearance of current-interchange tearing modes - verification of earlier re-

sults

Firstly, we verify that changes of the boundary conditions from the previous work[14]

does not affect qualitative views of the growth of a CITM obtained by a resistive MHD

simulation. In Fig.2(a), a color map of the mass density and magnetic field lines drawn

by the use of the (x, y) vector components of run 0 are shown. Mushroom-like structures

associated with the interchange instability grow in the mass density field, as we can expect

from earlier works such as Ref.[14]. Although small ellipses, which suggest occurrence of

magnetic reconnection due to a hyper-diffusivity, are observed, such an artificial magnetic

reconnection does not spoil the growth of the interchange modes.

In Fig.2(b), a color map of the mass density and the 2D magnetic field lines of run 1,

which has been carried out together with the SOL diffusivity model (17), are shown at the

same moment as in Fig.2(a). A transition from an interchange mode to a tearing mode,

induced by a plasma displacement toward a region of a large η, is observed as a generation

of magnetic islands. This transition is the key-process of a CITM.

We note here for a susceptibility of the shear slab configuration to multiple modes. In

a massive simulation, every types of modes of interchange, ripple and tearing modes may

develop[28]. We can only discuss the key factor or our focus there. Since we find that

the field line reconnection is the main factor, we therefore may exclude the interchange or
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rippling modes as the key factors and focus on the tearing modes. We further find that

the tearing modes at edge is closely related to the current gradient (or resistivity gradient).

This is simply because the plasma edge is special: one side is the plasma torus with closed

field lines, the other side is SOL with field lines open to the divertors as we have modeled

by the use of the SOL diffusivity model (17). This difference leads to a current jump across

the last closed flux surface. While the resistivity gradient effects have been considered by

Furth et al.[28] mainly for rippling modes, the convective contribution (−ξ · ∇σ) of current

sheet (ξ is the displacement vector and σ = 1/η) that drives CITM has not been considered

in the Furth’s work for tearing modes. We therefore relates the phenomena to CITMs. The

difference between the CITM and the conventional tearing modes [28] has been discussed in

Ref.[12].

As the consequence of the transition, the growth of the interchange modes is suppressed,

and so are the deformation of the mass density and magnetic fields. The most dominant

Fourier wave-number in the nonlinear stage of the time-evolution can be found in run 1 at

kx = 12, while the most dominant Fourier wave-number of run 0 is kx = 9. As above, we

confirm that the growth of a CITM is observed as in Ref.[14] and that the change of the

boundary condition at y = yN and y = yS does not affect the growth of a CITM.

C. Non-ideal effects on current-interchange tearing modes

While runs 0 and 1 are resistive MHD simulations, runs 2-8 are XMHD simulations with

the non-ideal MHD effects. Figure 3(a) shows a color map of the mass density and the

2D magnetic field lines in run 2, at the same moment of the simulation as that in Fig.2.

The magnetic islands generated by the growth of the tearing modes (the second phase of

a CITM) are somewhat deformed in the x (azimuthal) direction. We also find that stripe

patterns of low and high mass density are formed in the figure. (For a printed version of

this paper, a quarter of this figure is shown in Fig.3(b) in black-and-white. ) We come to

this stripe pattern formation later.

The growth of the unstable modes is studied more closely by defining the energy spectra

of the magnetic and velocity fields by the use of the Fourier transform of a variable into the
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x-direction as:

EM2D
(kx, t) =

1

(yN − yS)

∫
dy

(∣∣∣B̃x (kx, y, t)
∣∣∣
2

+
∣∣∣B̃y(kx, y, t)

∣∣∣
2
)
/2, (18)

EK (kx, t) =
1

(yN − yS)

∫
dx

(
|ũx (kx, y, t)|

2 + |ũy(kx, y, t)|
2 + |ũz(kx, y, t)|

2
)
/2, (19)

where ·̃(kx, y) is the Fourier-transform of a variable in the x-direction. The z-component of

the magnetic field field Bz is omitted from the definition of EM2D
because the z-component

in the equilibrium is too large to see fluctuations of the other components, while all three

components are kept in the definition of EK .

Figure 4 is a time-evolution of EM2D
for kx ≤ 20 in (a) run 1 and (b) run 2. We can find

a difference between them in the growth of the energy at each kx: a single-step jump (or a

nonlinear acceleration) at t ≃ 2.5 in (a) run 1 and two-step jumps at t ≃ 1.8 and 3 in (b)

run 2. Furthermore, the kx = 20 mode becomes the most dominant in (b) by an acceleration

at t ≃ 2.5 (only by a single-step jump for this mode), while it remains comparable to the

kx = 18 mode in (a). Since these accelerations and the reconnection of the magnetic field

lines are observed at about the same time, we consider that the acceleration is triggered by

the magnetic reconnection.

We note that the dominance by kx = 20 is considered as a consequence as the two-step

transition of instability from interchange to tearing modes. One possible understanding is

that this dominance can be closely related with the extended MHD effects associated with

the Hall term because the parameter ǫH = 0.05 indicates that the extended MHD effect

by the Hall term is dominant at the scale. With respect to a higher scale which is not

presented in the figure, the other extended MHD effects associated with the gyro-viscous

term is considered to suppress the growth of the interchange or a pressure-driven mode.

(Please also see Refs.[19–21] and references therein.)

We also note that the growth rate in runs 0 and 1 are estimated by additional computa-

tions of the linearized version of eqs.(1)-(6). We have also checked the profile of the Fourier

coefficients for separate kx as the function of y for the two runs. See Appendix for these

additional results.

Figure 5 represents a time-evolution of EK for kx ≤ 20 in (a) run 1 and (b) run 2. The

energy of the kx = 0 mode jumps to a finite level both in (a) and (b) at the beginning of

the simulations. This jump is generated by a small but finite non-equilibrium component of

the initial condition in eqs.(1)-(6) such as the ∂pe/∂xi term in eq.(6). In contrast to Fig.4,
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Fig.5 exhibits a clear difference between runs 1 and 2 in the kx = 0 mode. While the kx = 0

mode does not grow large in (a), it begins nonlinear growth as the time of the magnetic

reconnection comes, and evolves to the most-dominant Fourier-mode in the final time of the

simulation in (b). This represents a gradual formation of a finite-amplitude dia-magnetic

drift flow. The growth of the kx = 0 mode is contributed to by the gyro-viscosity, which

provides a nonlinear coupling of the pressure fluctuation and the velocity gradient tensor in

eqs.(7) and (8).

The observations above show that the growth of a CITM is not suppressed by the non-

ideal MHD effects, simply because they do not suppress growth of an interchange mode

completely, as we can see in Ref.[19, 21, 22]. In other words, growth of a CITM can trigger

an ELM-free current eruption through a transition from an interchange mode to a tearing

mode at a plasma edge region.

D. Response to an externally-imposed flow

In a toroidal plasma, edge plasma is exposed to various kind of flows or flow shears excited

in the plasma core side by an intrinsic mechanism (such as the E × B drift) and/or by an

extrinsic process such as a beam injection. The response of a CITM to such a flow can be

examined quickly by setting a finite azimuthal flow ux, with an initial (non-equilibrium) flow

ux =






uS, (y ≤ −y0)(
uN−uS

2y0

)
(y + y0) + uS, (−y0 ≤ y ≤ y0)

uN . (y ≥ y0)

(20)

The flow is driven as the boundary condition ux = uN (ux = uS) at the y = yN (y = yS)

boundary wall. Although this flow includes a flow shear, the shear is linear to the y-

coordinate and thus does not generate momentum through the gyro-viscosity. This enables

us to forget a momentum transfer between the x and y components of the momentum field

equation (2) by the gyro-viscosity, and focusing on an effect of the flow through the Reynolds

stress term in eq.(2) and the dynamo term in eq.(6).

The flow parameter uN is given in Table 1. We keep uS = 0 throughout this article.

By the use of a typical middle-size torus device parameters (minor radius ∼ 0.5m, toroidal

magnetic field BT ∼ 3T , the number density n ∼ 1019/m3, for example), a dimensional

velocity for uN = 1× 10−6 can be estimated as in the order of 0.1m/s, which is in the same
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order as the diamagnetic drift velocity of an edge plasma, while uN = 10−2 is in the order

of 103m/s which is roughly comparable to the core rotation velocity.

Figure 6 is a color map of the mass density and 2D magnetic field lines in (a) run 3

(uN = 1× 10−6) and (b) 4 (uN = −1× 10−6) at the same moment as those in Figs.2 and 3.

Both Fig.6(a) and (b) are very similar to Fig.3(a), in which the magnetic islands associated

with a tearing mode (the second stage of a CITM) are deformed, as in runs 1 and 2.

In Fig.7, a time-evolution of the Fourier energy in (a) run 3 and (b) run 4 is shown. The

time evolution of EM2D
at each kx shows frequent jumps and drops in time. These jumps

and drops suggest a strong coupling of the CITM with an externally-driven flow, resulting

in rapid growth and minor collapse. Nevertheless, the color map and magnetic field lines in

Fig.6 retain characteristics of the CITM (O-points of the magnetic field lines and a small

radial displacement), indicating that the growth of the CITM is robust against influences

of a small but finite externally-driven azimuthal flow. We note that the difference in (a)

and (b) is quite small. This means that, whichever the external flow and the consequent Er

direction might be, the radial displacement associated with |uN | = 1× 10−6 can induce the

transition to the tearing mode. In the case of outward Er, this Er can trigger transition to

the tearing mode directory. In the case of inward Er, a region of low ρ (and thus a high η

due to the SOL diffusivity model) comes to a strong magnetic shear region and induces the

transition to the tearing mode.

In the series of XMHD simulations (runs 3-8), we have increased the driving velocity

|uN |. Figure 8 is a color map of the mass density and 2D magnetic field lines in (a) run

5 (uN = 1 × 10−4) and (b) 7 (uN = 1 × 10−2) at the same moment as those in Figs.2, 3

and 6. The magnetic field lines in Fig.8(a) and (b) are similar to those in Fig.2(a) in which

interchange modes grow, and very different from those in Fig.2(b), Figs.3 and 6. In Fig.9,

the growth of the magnetic Fourier energy of (a) run 5 and (b) run 7 is presented. There

is no small jump nor drop in the time evolution, showing a simple interchange-like growth,

even though both the non-ideal MHD effects and the SOL diffusivity model are included in

the simulations. As in Figs.8 and 9, both the magnetic field lines and the Fourier energy

growth are quite different from those in runs 1-4. Those observations indicate disappearance

of the CITM due to a large |uN |.

The disappearance is attributed to induction of the electric field in the radial direction. A

finite initial ux induces the y-component of the electric field (Er in a torus plasma) through
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ux×BZ in the generalized Ohm’s law (6). As is well-known, Er causes a plasma displacement

in the radial direction. On an occasion of a large |uN |, a large radial displacement due to

the Er effect inhibits a transition from an interchange to a tearing mode. In this sense the

growth of the CITM under a finite flow is subject to the amplitude of the flow which causes

Er-originated displacement.

It may be noteworthy here that the autonomously-generated azimuthal flow (kx = 0

mode) is strongest in runs 3 and 4 among all runs, although we do not see plots of EK very

closely for each of runs 1-8. In runs 3 and 4, the EK(kx = 0, t) grows a few times larger than

that given by the externally-driven flow. On the other hand, the EK(kx = 0, t) in runs 5 and

6 does not grow very large, even though the externally-driven flow is 100 times stronger than

that in runs 3 and 4. Consequently the EK(kx = 0, t) in runs 3 and 4 is much larger than

that in runs 5 and 6. In runs 7 and 8, the EK(kx = 0, t) stays almost constant. This means

that the externally-driven flow dominates a flow field and autonomous flow generation is

quite minor. These may provide us a new subject to study nonlinear flow interactions at an

edge region.

E. Formation of a stripe pattern in the mass density field

In Fig.3, we observed a formation of a stripe pattern. This pattern somewhat look similar

to so-called streamers in the sense that kr = 0 and |kθ| > 1 where kr and kθ are the radial

and poloidal wavenumber in terms of a toroidal configuration, respectively. Streamers have

been studied extensively, sometimes together with zonal flows, in the context of turbulent

transport. (See Refs.[29–35] and references therein.) In order to concentrate on the non-ideal

MHD effects on a CITM in its growing stage, we do not pursue detail of this streamer-like

stripe structure. Instead we verify how this structure is formed at the growing stage by

comparing the structures in runs 1 and 2.

Figure 10 represents the mass density fluctuation plotted on the lines of (a) y = 0.25,

(b) y = 0 (on the LCFS), and (c) y = −0.25 at time t = 5, 5.5, 6, 6.5, 7 and 7.5. In

order to see plots closely, we restrict the range of the horizontal axis to −0.5 ≤ x ≤ 0.5. In

Figs.10(a) and (b), the mass density fluctuation grows on the LCFS without a disturbance

in the phase of the fluctuation of the mass density field. It is easily seen that the growth is

almost saturated at t ≃ 7, and that the most dominant wave-number, kx, of the structure in
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(a) is larger than that in (b). (The most dominant kx of the stripe structure in the vicinity

of the LCFS is comparable to that of the most dominant Fourier mode of the CITM.) The

mass density fluctuation in (c) is more irregular than those in the other two panels, (a) and

(b). Considering the symmetry of the governing equations (1)-(6) and the initial condition

in eqs.(9)-(15) with respect to the LCFS, the asymmetry between (a) and (c) is attributed

to the suppression of the current density by the SOL diffusivity model at y < 0.

Figure 11 represents the mass density fluctuation plotted on the lines of (a) y = 0.25, (b)

y = 0 (on the LCFS), and (c) y = −0.25 of run 2 at the same moments as in Fig.10. A clear

difference between Figs.10 and 11 can be found in the panel (b) of the two figures. While the

mass density fluctuation in Fig.10(b) does not drift but grows at the same place, the mass

density travels toward the positive-x direction on the LCFS, as can be seen in Fig.11(b).

This is a clear consequence of the non-ideal MHD effects, by which a dia-magnetic drift

motion has been induced. The drift velocity VD is estimated from Fig.11(b) as VD ≃ 0.15.

This value is comparable to the EK(kx = 0, t) in Fig.5 at the final moment. We also find that

the mass density fluctuation grows and saturates without drift velocity motion in Fig.11.

This is natural because the pressure gradient is small at y ≃ ±0.25, where (a) and (c) are

plotted, and thus a drift motion is not induced.

In Fig.12, the mass density ρ, the dilatation ∂ui/∂xi, the third component of the vorticity

ǫ3jk∂uk/∂xj , and (x, y) components of the electric field of run 2 at t = 7 are shown on the

same lines as Fig.11. The dilatation ∂ui/∂xi and the vorticity are scaled by the same factor.

In Fig.12(a), all the quantities show a very high coherence with each other. More specifically,

plots of the x-component of the electric field and the fluid dilatation ∂ui/∂xi represent that

the stripe pattern of the mass density fluctuation is generated through the dilatation term

in eq.(1) by the x-component of the electric field. We also find that the dilatation and

the vorticity are comparable to each other, representing that a fluid compressibility plays a

crucial role there. The y-component of the electric field is small at t = 7.

In Fig.12(b), in contrast to (a), the vorticity is much larger than the dilatation, and

show an apparent correlation with the mass density fluctuation, especially in the regions

x < −0.2 and x > 0.2. Even in the region −0.2 ≤ x ≤ 0.2, although some of the local

maxima/minima of the density may look correlating rather with the dilatation than with the

vorticity, relatively large maxima/minima of the mass density correlates with the vorticity.

This tendency is persistent after the CITM growth in finite an amplitude. This suggests

14

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
0
6
7
8
5



that strong vortices generated by a CITM dominate physics in this region, and other effects

can be dropped from discussion. The plots in Fig.12(c) are rather similar to those in (a)

rather than (b). Oscillatory patterns of Ex show an apparent synchronization with those of

the mass density and dilatation.

Similar behaviors of the mass density fluctuation, dilatation, vorticity and electric field as

above, can be seen commonly among runs 1-8. In runs 5-8, in which interchange modes grow

to a large amplitude, the formation of these structures is relatively unclear and irregular (in

the region of the higher side of the mass density especially), because a large deformation

of the mass density and other quantities is caused in association with violent interchange

modes, not by a static compression/dilatation associated with the growth of a CITM. On

the other hand, with respect to numerical simulations in which the non-ideal MHD effects

apparently emerge (such as runs 2, 3, and 4), the stripe structures are elongated in the radial

direction, being parallel to each other.

The formation of the stripe patterns reminds us of so-called streamers. According to

earlier studies on streamers (and zonal flows as well) [29–35], a streamer is understood

as a large convective cell. In this context we can expect that a fluctuation is advected

in the direction of a large-scale convection if the stripe-structures are streamers. To the

contrary, the wavy or stripe-structures observed in our study appear as the consequence of

a fluid compression/dilatation, and stay without traveling throughout the growing stage of

a CITM, showing a standing-wave-like nature. Although the stripe pattern can be advected

in a long period (in transport-time-scale) once the growing stage is over, we recognize that

the stripe-structures can be somewhat different from streamers.

In the end of this subsection, formation of the stripe structure is summarized as follows.

The typical wave-length is comparable to that of the most unstable mode of the CITM,

being closely related with the occurrence of CITM, or a transition to the tearing mode. The

drift velocity computed from the stripe structure VD = 0.15. This drift velocity is in the

order of 103 − 104m/s, being comparable to a typical poloidal rotation speed in the plasma

core side) in a typical middle-size torus experiment. (See Ref.[36], for example.) Since the

drift velocity coincides with the plasma core rotation velocity, the formation of a structure

may play some finite role in a real physics, too. However, the discussion above remains as

a conjecture yet and we need further study about this issue. Thus we restrict ourselves to

report simply that a structure formation which may look like a streamer but have some
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different characteristics from streamers is observed in our simulations.

IV. CONCLUDING REMARKS

We have studied non-ideal MHD effects on the growth of a CITM by means of extended

MHD simulations, combined with the SOL diffusivity model. We have shown that a CITM

can grow under the non-ideal MHD effects, as well as under the presence of a weak az-

imuthal flow. However, for a strong azimuthal flow, a CITM can be suppressed because Er

generated by the flow suppresses the transition from an interchange mode to a tearing mode.

Consequently, an interchange mode can grow large under the presence of a large flow. Since

an azimuthal flow can be generated by various processes in experiments, we need further

studies, including a more realistic flow.

In our simulations, a stripe pattern similar to a streamer is observed both in the high and

low mass density regions. A fluid compression and dilatation associated with the electric field

induced in the course of the CITM growth plays a crucial role in the structure formation.

The fluid dilatation can be as large as the vorticity in the higher or lower density region,

suggesting that a 2D model which keeps only the vorticity in a set of the equations does not

reproduce the structure.

With respect to study non-ideal MHD effects, the meaning of the results above are two-

fold. From a point of view of studying the robustness of CITM to the extended MHD effects,

the CITM is robust and consequently the extended MHD effects are not very essential. This

result supports the meaning of studying CITM as a primitive model of an edge plasma

instability. From a point of view of studying the CITM as a primitive model of ELM-

related events, the introduction of the extended MHD effects brings about generations of

diamagnetic flow, formation of a flow shear, and interaction with small islands. While we

place a higher priority on the first point in this paper, these physical effects can be more

important in a toroidal configuration. Thus the numerical results presented in this numerical

study provide information for this purpose.

This research is partially supported by JSPS KAKENHI Grant Number 17K05734 and

20H00225, Japan, and Department of Energy Grants DE-FG02-04ER54742. This research

is also partially supported by the Joint Institute for Fusion Theory (JIFT) program in

the US-Japan collaboration for fusion studies. The numerical simulations were performed
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APPENDIX

In this Appendix, we present additional results obtained by computations of the linearized

version of eqs.(1)-(6). The linear computations are carried out without the SOL diffusivity

corresponding to run 0, and with the SOL diffusivity corresponding to runs 1 and 2, respec-

tively. Thus these linear computations are also referred to runs 0-2 in this Appendix. In

runs 1 and 2, the SOL diffusivity is linearized for a small mass density fluctuation. These

additional computations are carried out so that readers can see linear aspects of the CITM.

In Fig.13, the growth rate at the exponentially growing stage is presented as a function of

kx for run 0 (box), run 1(filled circle), and run 2 (triangle). The growth rate of run 0 increases

as kx becomes large, and then decreases gradually for kx ≥ 12. Since the interchange mode

has a larger growth rate for a larger wave number, the peak of the growth rate at kx = 11

means that the wave number region kx ≥ 12 is affected by the hyper-diffusivity. We remark

that our earlier computations on the Rayleigh-Taylor instability gives a similar curve [20, 21].

In this sense, this linear computation is consistent with these earlier works.

While the growth rate of run 0 increases as the function of kx for kx < 12, the introduction

of the SOL diffusivity model changes this property. The growth rate of run 1 in Fig.13 has

a single peak at kx ≃ 5, being comparable to (smaller than) that of run 0 presented at

kx ≤ 5 (kx > 5). An influence of extended MHD effects, the Hall effect, appears clearly

in the growth rate of run 2. The linear growth rate of run 2 is larger than those of runs

0 and 1. We remember that the SOL diffusivity model brings about a strong suppression

of the magnetic field outside the LCFS. This can bring about a sharp jump of the current

density at y ≃ 0 (where ρ ≃ ρcrit). It is considered that the sharp jump of the current

density enhances an impact of the Hall term in run 2 while the jump does not influence run

17
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1 consequently.

Next, the cosine and sine parts of the Fourier component B̃y (the radial component of

the magnetic field) are presented in Fig.14 as functions of y for typical wave numbers of the

parameter sets (a) run 0, (b) run 1, (c) run 2, and (d) run 5. The representative modes

are chosen so that we can see the profiles of the lowest wave number kx = 1 as well as the

odd (kx = 7) and the even (kx = 8) wave number modes clearly. The normalization of the

radial profile is arbitrary, being set so that the profiles of the different wave numbers can be

distinguished from each other easily. See Figs.11 and 12 in the original CITM paper[12] for

the CITM profiles which appear as transition from resistive interchange modes to CITMs in

the cylinder limit.

In Fig.14(a), both the cosine and sine parts of the kx = 1 and kx = 7 modes, the odd

modes, have their peak in y < 0 and bottom in y > 0, respectively. On the contrary, the

cosine and sine parts of the even mode kx = 8 have their peak and bottom in the same

region: peak in y > 0 and bottom in y < 0. In this figure, the mode profile is smooth and

symmetrical to y = 0, being associated with the symmetry of the system.

On the contrary, the mode profile in Fig.14(b) is asymmetric to y = 0. This asymmetry

in Fig.14(b) is similar to that in Figs.12 of Ref.[12], and attributed to the presence of the

SOL diffusivity model in eq.(17). Furthermore, the Fourier mode profile is more localized

at y ≃ 0 than that in Fig.14(a), although the basic profile for even/odd wave-numbers are

kept the same as that in Fig.14(a). This localization is considered to arise from a large SOL

diffusivity introduced in run 1.

The Fourier mode profile of run 2 is shown in Fig.14(c). The Fourier coefficients have

sharp peaks at y ≃ 0, being localized much more strongly than those in Fig.14(b). The

strong localization is considered as the influence of the Hall term which takes a large value

due to the jump of the current density associated with the SOL diffusivity near y ≃ 0.

At the end of this Appendix, we note that the growth rate in Fig.13(b) and (c) may

require more careful estimation. Our linear computations with the linearization of the SOL

diffusivity model suffer from a numerical instability more severely than corresponding non-

linear simulations, and need a larger hyper-diffusivity for stabilization than corresponding

nonlinear simulations. This can contaminate the estimation of the growth rate. Since the

linear mode analysis requires careful treatment, especially with respect to the estimation of

the linear growth rate, we need further study on linear aspects of the CITM and the result

18

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
0
6
7
8
5



in Fig.13(b),(c) and Fig.14(b),(c) may be corrected there.
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Figure Captions

Figure 1 : (a) A schematic view of a CITM, and (b) SOL diffusivity model for the resistivity

gradient across the LCFS.

Figure 2 : A color map of the mass density and 2D magnetic field line of (a) run 0 and (b)

run 1.

Figure 3 : (a) A color map of the mass density and 2D magnetic field lines in run 2, and (b)

magnification of (a) in black and white for the printed version.

Figure 4 : Fourier energy growth of the magnetic field in (a) run 1 and (b) run 2

Figure 5 : Fourier energy growth of the velocity field in (a) run 1 and (b) run 2.

Figure 6 : A color map of the mass density and 2D magnetic field lines in (a) run 3 and (b)

run 4. The mass density is larger (or smaller) for a darker (or brighter) color.

Figure 7 : Fourier energy growth of the magnetic field in (a) run 3 and (b) run4.

Figure 8 : A color map of the mass density and 2D magnetic field lines in (a) run 3 and (b)

run 4. The mass density is larger (or smaller) for a darker (or brighter) color.

Figure 9 : Fourier energy growth of the magnetic field in (a) run 5 and (b) run 7.

Figure 10 : Time variation of the mass density of run 1 at (a)y = 0.25, (b)y = 0, and

(c)y = −0.25.

Figure 11 : Time variation of the mass density of run 2 at (a)y = 0.25, (b)y = 0, and

(c)y = −0.25.

Figure 12 : The mass density, dilatation, vorticity, and electric field components of run 2 at

(a)y = 0.25, (b)y = 0, and (c)y = −0.25.

Figure 13 : The linear growth rate in the linear computation corresponding to run 0 (box),

run 1 (filled circle), and run 2 (triangle).

Figure 14 : The cosine and sine parts of the Fourier coefficients of b̃2 as the function of the

y in the linear computations corresponding to (a) run 0, and (b) run 1, and (c) run 2.
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TABLE I. Parameters of numerical simulations

Run β ǫH ǫG/BZ ρcrit 2y0 ρN − ρS BC at y = yN

0 0.05 0 0 – 0.25 0.75 fixed, uN = 0

1 0.05 0 0 0.5 0.25 0.75 fixed, uN = 0

2 0.05 0.05 0.01 0.5 0.25 0.75 fixed, uN = 0

3 0.05 0.05 0.01 0.5 0.25 0.75 fixed, uN = 1× 10−6

4 0.05 0.05 0.01 0.5 0.25 0.75 fixed, uN = −1× 10−6

5 0.05 0.05 0.01 0.5 0.25 0.75 fixed, uN = 1× 10−4

6 0.05 0.05 0.01 0.5 0.25 0.75 fixed, uN = −1× 10−4

7 0.05 0.05 0.01 0.5 0.25 0.75 fixed, uN = 1× 10−2

8 0.05 0.05 0.01 0.5 0.25 0.75 fixed, uN = −1× 10−2
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(a) (b)

FIG. 1. (a) A schematic view of a CITM, and (b) SOL diffusivity model for the resistivity gradient

across the LCFS.
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(a) (b)

FIG. 2. A color map of the mass density and 2D magnetic field line of (a) run 0 and (b) run 1.
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(a) (b)

FIG. 3. (a) A color map of the mass density and 2D magnetic field lines in run 2, and (b)

magnification of (a) in black and white for the printed version.
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FIG. 4. Fourier energy growth of the magnetic field in (a) run 1 and (b) run 2.
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FIG. 5. Fourier energy growth of the velocity field in (a) run 1 and (b) run 2.
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(a) (b)

FIG. 6. A color map of the mass density and 2D magnetic field lines in (a) run 3 and (b) run 4.

The mass density is larger (or smaller) for a darker (or brighter) color.
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FIG. 7. Fourier energy growth of the magnetic field in (a) run 3 and (b) run4.
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(a) (b)

FIG. 8. A color map of the mass density and 2D magnetic field lines in (a) run 5 and (b) run 7.

The mass density is larger (or smaller) for a darker (or brighter) color.
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FIG. 9. Fourier energy growth of the magnetic field in (a) run 5 and (b) run 7.
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FIG. 10. Time variation of the mass density of run 1 at (a)y = 0.25, (b)y = 0, and (c)y = −0.25.
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FIG. 11. Time variation of the mass density of run 2 at (a)y = 0.25, (b)y = 0, and (c)y = −0.25.
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FIG. 12. The mass density, dilatation, vorticity, and electric field components of run 2 at (a)y =

0.25, (b)y = 0, and (c)y = −0.25.
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FIG. 13. The linear growth rate in the linear computation corresponding to run 0 (box), run 1

(filled circle), and run 2 (triangle).
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FIG. 14. The cosine and sine parts of the Fourier coefficients of b̃2 as the function of the y in the

linear computations corresponding to (a) run 0, and (b) run 1, and (c) run 2.
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FIG. 14. The cosine and sine parts of the Fourier coefficients of b̃2 as the function of the y in the

linear computations corresponding to (a) run 0, and (b) run 1, and (c) run 2.
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