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Conceptual Design of a Dispersion Interferometer Using a Ratio of
Modulation Amplitudes
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Since a dispersion interferometer is free from mechanical vibrations, it does not need a vibration compensa-
tion system even for a probe beam with a short wavelength. This paper describes a new signal processing of the
dispersion interferometer using a ratio of modulation amplitudes with a photoelastic modulator. The proposed
method is immune to changes in detected signal intensities, thus making the signal processing system simple.
Designs of the optical system of the dispersion interferometer for proof of principle, especially specification of a
nonlinear optical crystal, are also shown.
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1. Introduction
High reliability and resolutions are required for elec-

tron density measurements in fusion devices in order to
control plasmas and understand plasma physics.

Conventional heterodyne interferometry is widely
used and has a high-density resolution. It, however,
in a high-density range suffers from fringe jump errors,
which degrade the interferometer’s reliability. Recently,
the Large Helical Device (LHD) developed a high-density
operation regime whose central electron density is up to
several times 1020 m−3 [1], and the expected density range
in ITER is about 1× 1020 m−3 [2]. Consequently, the prob-
lem of fringe jump is becoming more significant. While
a short-wavelength laser can reduce probabilities of fringe
jumps, phase errors caused by mechanical vibrations be-
come significant. They have to be suppressed with a vi-
bration isolator or be compensated for by adopting two-
color interferometry, which consists of two probe beams
(light sources) with different wavelengths. Even then, it is
difficult to eliminate the vibration components completely
because of slight differences in the optical path and wave-
fronts of the probe beams. Besides, an optical system be-
comes complex and expensive.

One candidate for a solution is a density measurement
with a polarimeter based on the Faraday effect [3–5] or the
Cotton–Mouton effect [6–8]. Although density resolutions
of polarimeters are less than those of interferometers, po-
larimeters do not suffer from fringe jump errors and are in
principle immune to mechanical vibrations.

Another candidate for a solution is a dispersion in-
terferometer [9]. It is also insensitive to mechanical vi-
brations, and hence does not need the vibration isolator
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and the two-color interferometry system even if a short-
wavelength laser, a CO2 laser or a Nd:YAG laser, is used.

This paper describes a new signal processing of the
dispersion interferometer using a ratio of modulation am-
plitudes. The proposed method simplifies the signal
processing and can remove measurement errors due to
changes in the detected signal intensity. Section 2 briefly
explains the principle of the dispersion interferometer and
the new proposed signal processing. Section 3 shows a de-
sign of the proposed dispersion interferometer for the proof
of the principle. Section 4 contains a summary.

2. Principle of a Dispersion Interfer-
ometer
Dispersion interferometers were proposed in the early

1980s [10, 11] and were used for density measurements of
laser-produced plasmas, contouring the surface of three-
dimensional objects and so on. Physical quantities to be
measured were evaluated from the interferogram. In the
1990s, dispersion interferometers were adopted for mea-
surements of the line averaged electron density of fu-
sion plasmas (the mirror device: the gas-dynamic trap de-
vice) [9]. As described in Sec. 2.1, the density was ob-
tained from the phase shift of the interference signal, which
was almost the same as that of a homodyne interferome-
ter. Later, the phase modulation technique [12] was intro-
duced to the dispersion interferometer on TEXTOR in or-
der to overcome the disadvantages of homodyne detection
as shown in Sec. 2.2. The new signal processing method
proposed in this paper is shown in Sec. 2.3. It is a simple
technique to improve phase resolution for the above dis-
persion interferometer with a phase modulation.

c© 2010 The Japan Society of Plasma
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Fig. 1 Basic dispersion interferometer.

2.1 Basic dispersion interferometer
Figure 1 demonstrates the principle of the basic dis-

persion interferometer [9]. A probe beam with an angu-
lar frequency ω passes through a type-I nonlinear crystal
to generate the second harmonic with a polarization an-
gle perpendicular to that of the fundamental. The fun-
damental and the second harmonic components propagate
along almost the same optical path. Phase shifts due to
changes in the optical path length Δd by mechanical vi-
brations are ωΔd/c and 2ωΔd/c, respectively. The phase
shifts due to a plasma are cpn̄eL/ω and cpn̄eL/(2ω), where
cp = e2/(2ε0mec), n̄e is the line averaged electron density,
and L is the optical path length in the plasma. After pass-
ing through the plasma, the second harmonic is generated
from the fundamental again with the other nonlinear crys-
tal. The remaining fundamental, which is not converted
into the second harmonic, is cut by a following filter and
only the second harmonics go into the detector. Phases
of these second harmonics ϕ1 and ϕ2 (second harmonics
which are generated by the first and the second nonlinear
crystals are noted as 1 and 2, respectively) are given as fol-
lows:

ϕ1 = 2(ωt + ωΔd/c + cpn̄eL/ω + φ1),

ϕ2 = 2ωt + 2ωΔd/c + cpn̄eL/(2ω) + φ2,
(1)

where φ1 and φ2 are initial phases of second harmonics.
The detected interference signal I between these second
harmonic components becomes

I = A + B cos (ϕ1 − ϕ2) = A + B cos

⎛⎜⎜⎜⎜⎜⎝3

2

cpn̄eL

ω
+ φ

⎞⎟⎟⎟⎟⎟⎠ ,
A = I1 + I2, B = 2

√
I1I2 , (2)

I1, I2: intensities of second harmonics, φ = 2φ1 − φ2.

As shown in Eq. (2), the phase shift due to vibrations is
canceled out automatically. Therefore, the phase of the in-
terference signal is determined by only the dispersion of
the plasma and is free from vibrations even with short-
wavelength lasers.

2.2 Dispersion interferometer with a phase
modulation

As Eq. (2) is almost the same as the interference sig-
nal of a homodyne interferometer, the basic dispersion in-
terferometer has the same disadvantages as the homodyne

ones: (i) restriction of phase where Eq. (2) is a monotonic
function and (ii) the necessity for calibration experiments
of the detected intensity A and B and their variations dur-
ing discharges lead to phase errors. The phase modula-
tion method [12] with an electro-optical modulator (EOM)
can reduce the influence of the intensity variations. The
EOM, operating with a drive signal of π sinΩt, is inserted
between the first nonlinear crystal and the plasma. It gives
a phase modulation of π sinΩt only for the second harmon-
ics. As a result, the detected modulated interference signal
Ipm can be given by

Ipm = A + B cos
(
π sinΩt +

3
2

cpn̄eL
ω
+ φ

)
. (3)

Ipm is directly digitized with a higher sampling frequency
than Ω. Because of phase modulation, the amplitude of
Ipm changes between the maximum (A + B) and the mini-
mum (A − B). A and B are assumed to be constant during
one modulation period and are evaluated from the digitized
signal. Then A is subtracted from the digitized signal and
the amplitude of Ipm is normalized by B. The drive signal
of the EOM is also digitized coincidently, and the times t0
when sinΩt0 = 0 are determined. At t0, the normalized
signal Inorm

pm is given by

Inorm
pm = cos

(
3
2

cpn̄eL
ω
+ φ

)
. (4)

n̄e can be calculated from the arccosine of Eq. (4).

2.3 Dispersion interferometer using a ratio
of modulation amplitudes

Figure 2 shows a schematic view. A photoelastic
modulator (PEM) with a stable modulation frequency is
adopted for the phase modulation instead of the EOM. The
modulator axis of the PEM is arranged parallel to the po-
larization direction of the fundamental to give phase mod-
ulations to only the fundamental. In this configuration, an
interference signal I(t), almost the same as Eq. (3), is given
by,

I(t) = A + B cos
(
2ρ0 sinωmt +

3
2

cpn̄eL
ω
+ φ

)

= A + B
{

cos (2ρ0 sinωmt) cos
(

3
2

cpn̄eL
ω
+ φ

)}

−B
{

sin (2ρ0 sinωmt) sin
(

3
2

cpn̄eL
ω
+φ

)}
, (5)

where ρ0 is the maximum retardation of the PEM, deter-
mined by the voltage applied to the PEM, and ωm is the
modulation frequency of the PEM. Here, cos(2ρ0 sinωmt)
and sin(2ρ0 sinωmt) can be expanded with the Bessel func-
tion of order of n Jn.

cos (2ρ0 sinωmt) = J0 (2ρ0) + 2
∞∑

n=1

J2n (2ρ0) cos (2nωmt) ,

sin (2ρ0 sinωmt) = 2
∞∑

n=1

J2n−1 (2ρ0) sin {(2n − 1)ωmt} .
(6)
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Fig. 2 Dispersion interferometer with a photoelastic modulator
(PEM) and signal processing using a ratio of modulation
amplitudes.

In this way, the detected interference signal I(t) can be ex-
panded with harmonics of ωm. The following amplitudes
of fundamental and second harmonics Iωm and I2ωm of the
modulation frequency ωm can be measured with lock-in
amplifiers.

Iωm = −2BJ1 (2ρ0) sin

⎛⎜⎜⎜⎜⎜⎝3

2

cpn̄eL

ω
+ φ

⎞⎟⎟⎟⎟⎟⎠ ,

I2ωm = 2BJ2 (2ρ0) cos

⎛⎜⎜⎜⎜⎜⎝3

2

cpn̄eL

ω
+ φ

⎞⎟⎟⎟⎟⎟⎠ .
(7)

From the ratio of these amplitudes, n̄e can be obtained.

n̄e =
2
3
ω

cpL

{
tan−1

(
Iωm

I2ωm

)
− φ

}
. (8)

Here, ρ0 is set at 1.3 radians by applying adequate voltage
to the photoelastic material for J1(2ρ0) = J2(2ρ0). Since
tangent diverges at ±π/2, if necessary, the initial phase may
be adjusted by inserting a phase object after the filter.

An ellipsometer similarly uses sinusoidal phase mod-
ulation and harmonics for accurate measurement of the po-
larization state. This new method of phase extraction is
completely free from variations of detected intensities A
and B. In addition, the processing is simple and suited to
real time measurements.

3. Conceptual Design of a Dispersion
Interferometer Using the Ratio of
Modulation Amplitude
To prove the principle, we are designing a disper-

sion interferometer with a CO2 laser whose wavelength is
10.6µm. The dispersion interferometer on TEXTOR also
uses the CO2 laser [12]. The CO2 laser to be used is a GN-
802-GES (MPB Technology Inc.) with an output power
of 7.5 W or an LC-25 (DEOS) with 25 W. Either one of
them will be selected depending on its signal-to-noise ratio
(SNR). An important component for a good SNR is a non-
linear crystal for second-harmonic generation (SHG), be-
cause the power of the second harmonics depends strongly
on the specifications of the nonlinear crystal.

Table 1 Parameters of AgGaSe2 for 10.6 µm.

Transparency (µm) 0.8-18
Refractive index no (10.6 µm) 2.5912
Refractive index ne (10.6 µm) 2.5579
Refractive index no (5.3µm) 2.1634
Refractive index ne (5.3µm) 2.5808
deff (definition: P = dE2) 2.47 × 10−22

Surface damage threshold Psd

(kW/cm2, CW)
33-45

Thermal-lensing threshold Pl

(kW/cm2)
2

Thermal conductivity (W/cm/K) 0.011

3.1 Design of a nonlinear crystal for SHG
Silver gallium selenide (AgGaSe2) is commonly used

for SHG of 10.6µm laser light. Table 1 [13–15] summa-
rizes its properties. The conversion efficiency η = P2ω/Pω,
where P2ω and Pω are the powers of the second harmonic
and the fundamental, respectively, is given by [15]

η = 2

⎛⎜⎜⎜⎜⎜⎝ με0

⎞⎟⎟⎟⎟⎟⎠
3/2
ω2d2

effl2

n3

⎛⎜⎜⎜⎜⎜⎝ Pω
πw2

0

⎞⎟⎟⎟⎟⎟⎠
⎧⎪⎪⎨⎪⎪⎩

sin (Δkl/2)

Δkl/2

⎫⎪⎪⎬⎪⎪⎭
2

,

Δk ≡ k2ω − 2kω,

(9)

where deff is the effective nonlinearity, l is the length of
the crystal, n is the refractive index of the fundamental,
w0 is the beam waist (1/e2 power radius), and k2ω and kω
are wavenumbers of the second harmonics and the fun-
damental, respectively. The last term that includes Δk
stands for the phase matching condition. As mentioned
in Sec. 3.2, that condition is determined by the angle be-
tween the beam path and the optic axis of the crystal. Here,
the phase matching condition is assumed to be satisfied;
the term is unity. It is noted that Eq. (9) presumes a plane
wave for incident light. This is approximately valid when
the length of the crystal is less than the confocal focusing
length z0 = πw2

0n/λ of the Gaussian beam.
In general, η for continuous-wave (cw) laser light is

small (on the order of 0.1%). To improve the SNR, it is
favorable to increase the power of the second harmonic as
much as possible. Eq. (9) indicates that η increases with
the power density of the incident beam. On the other hand,
there are some limitations in the power density and the
crystal length as follows.

The maximum power density P0 = 2Ptotal/(πw2
0) of

the focused Gaussian beam into the nonlinear crystal
should be smaller than the surface damage threshold Psd of
33 kW/cm2 for a cw laser. Here, Ptotal is the total incident
power. In the case of AgGaSe2, the thermal-lensing effect,
which decreases the SHG efficiency, should be considered
because of the small thermal conductivity of AgGaSe2. A
threshold Pl for the thermal-lensing effect of 2 kW/cm2 is
reported in Ref. 13 and is smaller than Psd. Thus, allow-
able beam waist is determined by Pl. In this design, the
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Fig. 3 Dependence of (a) maximum power density, (b) upper
limit of crystal length, and (c) power of second harmonic
component on a beam waist at a nonlinear crystal in the
case of an incident beam with a power of 7.5 W. The non-
linear crystal is AgGaSe2.

maximum power density is set at half of Pl, 1 kW/cm2, for
safety. The resultant beam waist is 0.69 mm, as shown in
Fig. 3 (a), for a total incident power of 7.5 W.

The commercially available length of the AgGaSe2

crystal is less than about 20 mm at present. The upper limit
of the crystal length, determined by the confocal focusing
length, is much larger than the available length for a beam
waist of 0.69 mm, as shown in Fig. 3 (b).

Figure 3 (c) shows the power of the generated sec-

ond harmonic calculated with Eq. (9). In the case of a
15 mm-long crystal, 99 µW is generated from an incident
beam with a power of 7.5 W and beam waist of 0.69 mm.
The transmissivity at the second harmonic of zinc selenide
(ZnSe) with anti-reflection coating at the fundamental,
which is used for the PEM and two vacuum windows (not
shown in Fig. 2), is about 0.65. The transmissivity of an
IR filter made of sapphire that eliminates the fundamental
(see Fig. 2) is about 0.7. As a result, the total transmissiv-
ity of the second harmonics that are generated in the first
nonlinear crystal is 0.653 × 0.7 = 0.19. When the ther-
moelectrically cooled IR photovoltaic detector PVI-3TE-5
(Vigo system, responsivity = 2 (A/W)) and the preampli-
fier STCC-04 (Vigo system, transimpedance = 105 (V/A))
are used, the output voltages I1 and I2 become as follows.

I1 = (99 × 10−6) × 0.19 × 2 × 105 = 3.8V,

I2 = (99 × 10−6) × 0.7 × 2 × 105 = 14V.

Considering the efficiency of interference, the reflectivity
of mirrors, and so on, the detected power will be slightly
smaller. Nevertheless, these generated powers of the sec-
ond harmonics are enough to be detected.

3.2 Phase matching condition
The second harmonic is continuously generated along

the optical path in the nonlinear crystal. If phases of the
second harmonics which are generated at the entrance and
the central region in the crystal are different, they interfere
with each other and the total power of the second harmonic
decreases. In order to suppress that interference, the phase
of the second harmonic should be matched (phase match-
ing condition). For that purpose, the fundamental is in-
jected into the crystal at a certain angle θm against the op-
tic axis of the crystal to satisfy n(2ω)

e = n(ω)
o based on the

birefringence. In the case of the type-I nonlinear crystal,
the fundamental and the second harmonic are ordinary and
extraordinary waves, respectively. θm is given by following
expression [15].

sin2 θm =

{
n(ω)

o

}−2 −
{

n(2ω)
o

}−2

{
n(2ω)

e

}−2 −
{

n(2ω)
o

}−2 . (10)

Assigning refractive indexes, θm of AgGaSe2 becomes
55.4 deg. Δk is also given by

Δkl/2≈−ωl
c

sin(2θm)

{
n(2ω)

e

}−2 −
{

n(2ω)
o

}−2

2
{

n(ω)
o

}−3 (θ−θm) ,

(11)

and F = {sin(Δkl/2)/(Δkl/2)}2 is plotted in Fig. 4. The half
width of F for the 15-mm long crystal is only 0.3 deg.

Deviation from the phase matching angle may occur
because of beam bending due to an electron density gradi-
ent. Deviation is estimated to be negligible, on the order
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Fig. 4 Phase matching condition for AgGaSe2.

of 0.01 deg., in the case of a LHD plasma with a density
profile of 1 × 1020(1 − ρ8) m−3. However, it may become
significant to the reduction of the SHG in higher-density
range, where the beam bending angle becomes larger.

3.3 Potential problems
Because the power of the second harmonic is propor-

tional to P2
ω, beam dividing for multi-channel measure-

ment strongly affects the SHG at the second nonlinear crys-
tal. The possible number of channels will be determined by
the laser power, efficiency of SHG, sensitivity of the detec-
tor, and so on.

Displacement of the fundamental and the second har-
monic beams decreases interference and the accuracy of
vibration-cancelation. The displacement is caused by ef-
fects of walk-off in the nonlinear crystal and differences
in the beam refraction in plasmas. In our system, beam
displacements are estimated to be less than about 0.2 mm,
much smaller than an expected beam radius of about
10 mm for either effect. However, displacement may be-
come significant in the case of a long beam transmission
or a large wedge angle of vacuum windows.

4. Summary
A dispersion interferometer is a candidate for reliable

electron density measurement. We propose the dispersion
interferometer using a ratio of modulation amplitudes with

a PEM. This method removes measurement errors due to
changes in the detected signal intensity and makes the sig-
nal processing simple and easily applicable in real time
feedback control. AgGaSe2 is selected for SHG of CO2

laser light. The power of the second harmonics is esti-
mated for proof of the principle experiments.
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