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A new gyrokinetic plasma simulation model for electromagnetic phenomena is presented. In this model, the
total characteristic method, where the δ f particle-in-cell simulation model is complemented with the fluid model
to satisfy the conservation properties, is applied to electrons. The electric field component parallel to the magnetic
field is calculated from the time derivative of Ampère’s law. It is demonstrated that both the real frequency and
damping rate of kinetic Alfvén wave are computed correctly for various electron beta values. It is also shown that
with respect to the number of marker particles, the numerical convergence of real frequency and damping rate is
faster with the total characteristic method than with the conventional δ f method. Specifically, it is demonstrated
that the total characteristic method enables a simulation of a kinetic Alfvén wave with a grid size ten times larger
than the electron skin depth, while the wave damps spuriously for the same physical condition in a conventional
δ f simulation.
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1. Introduction
The gyrokinetic particle-in-cell (PIC) simulation

model is a powerful tool for investigating low frequency
microinstabilities in magnetized plasmas [1]. When the fu-
sion core plasmas are simulated with the gyrokinetic PIC
method, the δ f method [2–5] is often employed to reduce
the numerical noise. Electromagnetic phenomena can be
simulated with the gyrokinetic model coupled with the
Poisson and Ampère equations. The internal kink mode
was investigated with the gyrokinetic δ f PIC method [6].
A difficulty was suggested in accurately solving Ampère’s
law with a term in proportion to the inverse square of the
electron skin depth, when the gyrokinetic PIC method is
applied to electromagnetic phenomena [7, 8]. In order to
overcome this difficulty and relax the restriction of the
Courant condition for electrons, split-weight schemes of
the δ f PIC method have been devised [8, 9]. It was also
reported that this difficulty could be resolved with a con-
ventional δ f scheme with careful normalization applied to
the skin terms [10]. In another trend for electromagnetic
gyrokinetic simulation, electrons are simulated with a fluid
model [11] or with fluid-kinetic hybrid models [12, 13].

The total characteristic method [14] was presented to
improve the conservation properties, i.e., the conservation
of particles, momentum, and energy, in the δ f PIC sim-
ulation. In the δ f PIC simulation, the distribution func-
tion is expressed as the sum of the reference distribution
and variation distribution. The PIC model is not applied to
the reference distribution, often represented by f0, which
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is defined in advance of the simulation. Only the variation
distribution δ f is approximated by the Klimontovich dis-
tribution function δ fK using Lagrangian markers (marker
particles). The time evolution of δ fK is described by an
advection term and a source term associated with f0. It
was shown that the source term, which is a Monte Carlo
estimate in the δ f method, violates the conservation prop-
erties [14]. In the δ f simulation, each Lagrangian marker
represents a characteristic of the Vlasov equation. How-
ever, the characteristics which the Lagrangian markers do
not represent are not considered in the δ f simulation. In
the total characteristic method, a fluid system provides
characteristics complementary to those represented by the
Lagrangian markers. The corrections to the Monte Carlo
estimate of the source term propagate along the comple-
mentary characteristics provided by the fluid system.

In this paper, an electromagnetic gyrokinetic simu-
lation model is presented using the total characteristic
method. The new model is described in Sec. 2. In Sec. 3,
both the real frequency and damping rate of the kinetic
Alfvén wave are demonstrated to compute correctly for
various electron beta values. It is shown that with respect
to the number of marker particles, the numerical conver-
gence of real frequency and damping rate is faster with the
total characteristic method than with the conventional δ f
method. Specifically, it is demonstrated that the total char-
acteristic method enables a simulation of a kinetic Alfvén
wave with a grid size ten times larger than the electron skin
depth, while the wave damps spuriously for the same phys-
ical condition in the conventional δ f simulation. A sum-
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mary is given in Sec. 4.

2. Construction of an Electromagnet-
ic Plasma Model with the Total
Characteristic Method

2.1 Vlasov-Poisson-Ampère system
We consider phenomena with frequency lower than

the ion cyclotron frequency in the uniform magnetic field
B0. We express the electromagnetic field using the scalar
potential φ and the vector potential parallel to the magnetic
field A‖

E = −∇φ − b
∂

∂t
A‖ , (1)

B = B0 + ∇ × (A‖b) , (2)

where b = B/B. The perpendicular components of the
vector potential are neglected because we focus on incom-
pressible perturbations of the magnetic field. For the low
frequency phenomena, the gyrokinetic model provides a
useful physical framework.

When the equilibrium number density and the elec-
tron temperature are given by n0 and Te0, the Debye length
is λD =

√
ε0Te0/n0e2. The gyrokinetic Poisson equation

in the long wavelength approximation for the electrostatic
potential is

(
ρs

λD

)2

∇2
⊥φ = −

qini + (−e)ne

ε0
, (3)

where ni and ne are the ion and electron number density,
and qi is the ion charge. In the definition of ni and ne,
the polarization drift effects are not included. The ion po-
larization charge density is given by the left-hand side of
Eq. (3). Thus, Eq. (3) represents the quasi-neutrality con-
dition without the electron polarization charge density. We
define ρs = cs/Ωi, where cs =

√
Te0/mi, Ωi = qiB0/mi, and

mi is the ion mass. The operator ∇2⊥ is ∇ · [∇ − b(b · ∇)].
The Ampère’s law for the vector potential is

∇2
⊥A‖ = −µ0( ji + je) , (4)

where ji and je are the ion and electron current density
parallel to the magnetic field.

The equations of motion for electrons and ions are

ẋ = v‖b +
E × B

B2
, (5)

v̇‖ =
qσ
mσ

E‖ (σ = i, e), (6)

where v‖ is the velocity parallel to the magnetic field. The
parallel electric field E‖ is needed for the time integration
of the equations of motion. The parallel electric field E‖ is
given from Eq. (1)

E‖ = −b · ∇φ − ∂
∂t

A‖ . (7)

Operating ∇2⊥ to Eq. (7) and coupling the resultant
equation with the time derivative of Eq. (4), we find that

the parallel electric field is given by the following equa-
tion,

∇2
⊥E‖ = −∇2

⊥(b · ∇φ) + µ0
∂

∂t
( ji + je) . (8)

The distribution function of the guiding-center
evolves following the drift kinetic equation (σ = i, e):

∂

∂t
fσ+

(
v‖b+

E×B
B2

)
· ∇ fσ+

qσE‖
mσ

∂

∂v‖
fσ=0 . (9)

Finite Larmor radius effects are omitted for simplicity.
Equation (9) is multiplied by qσv‖ and integrated in the
velocity space. This procedure gives the time evolution of
the current density on the right-hand-side of Eq. (8)

∂

∂t
jσ = − qσ

mσ
b · ∇P‖σ − E × B

B2
· ∇ jσ +

nσq2
σ

mσ
E‖ ,

(10)

P‖σ =
∫

mσv
2
‖ fσd3v . (11)

Finally, we obtain the equation for the parallel electric
field

∇2
⊥ −

∑
σ=i,e

ω2
pσ

c2

 E‖ = −∇2
⊥(b · ∇φ)

−
∑
σ=i,e

µ0

(
qσ
mσ

b · ∇P‖σ +
E × B

B2
· ∇ jσ

)
, (12)

where ωpσ =
√

nσq2
σ/ε0mσ. Equations (1)-(6) and (12)

constitute a closed set of the electromagnetic plasma
model.

2.2 1-dimensional simulation model with the
total characteristic method

In this subsection, we construct a 1-dimensional sim-
ulation model. The 1-dimensional phase space (x, v‖) is
considered. We assume cold ions with constant number
density n0 and focus on electron dynamics. For cold ions,
ni does not change in time, because the E × B drift in the
x direction vanishes in the 1-dimensional model. Note that
the ion polarization charge density is considered in the left-
hand side of Eq. (3). The equilibrium distribution of elec-
trons is assumed to be a Maxwellian distribution:

fe0(x, v‖) =
n0√

2πTe0/me
e−mev

2
‖ /2Te0 . (13)

We simulated the evolution of the distribution func-
tion using the total characteristic method where the δ f PIC
model is complemented with the fluid model [14]. The
position and velocity of Lagrangian markers evolve ac-
cording to the equation of motion (Eqs. (5) and (6)). The
Lagrangian markers were loaded uniformly in the phase
space, 0 ≤ x ≤ L, −5vt ≤ v ≤ 5vt, where vt =

√
Te0/me

and L is the wavelength to be investigated. The initial ve-
locity of the Lagrangian markers was scrambled with the
bit-reversed technique [15]. The probability density of the
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Lagrangian markers is uniform p(x, v‖) = 1/V , where V is
the phase space volume and V = 10vtL.

The following equation gives the weight evolution of
marker particles:

dw j

dt
= −V

N
(−e)
me

E‖(x j, t)
n0√
2πvt

(
−v j

v2t
)e−v

2
j/2v

2
t ,

(14)

w j(t = 0) = 0 . (15)

In the conventional δ f simulation, the electron num-
ber density, current density, and parallel pressure are esti-
mated using the δ f Klimontovich distribution function:

n(x, t) = n0 + δnK(x, t) , (16)

δnK(x, t) ≡
N∑

j=1

w jS (x − x j) , (17)

j(x, t) = δ jK(x, t) , (18)

δ jK(x, t) =

N∑
j=1

w j(−e)v‖ jS (x − x j) , (19)

P(x, t) = n0Te0 + δPK(x, t) , (20)

δPK(x, t) =

N∑
j=1

w jmev
2
‖ jS (x − x j) , (21)

where S (x− x j) is a shape factor. We should notice that n0,
j0, and Te0 are constant in space and time. With the total
characteristic simulation model, the equations for the num-
ber density and current density are derived from Eq. (15)
of Ref. [14], while the isothermal model is assumed for the
pressure evolution. The following fluid equations are em-
ployed in the total characteristic simulation:

∂

∂t
δng(x, t) = − bx

(−e)
∂

∂x
δ jg(x, t)

−
N∑

j=1

dw j

dt
S (x − x j) , (22)

∂

∂t
δ jg(x, t) = − (−e)bx

me

∂

∂x
δPg(x, t)

+
e2

me
E‖(x, t)

[
n0 + δng(x, t)

]

−
N∑

j=1

dw j

dt
(−e)v‖ jS (x − x j) , (23)

∂

∂t
δPg(x, t) = −mevt

2bx

(−e)
∂

∂x
δ jg(x, t)

+ 2E‖(x, t)
[
j0 + δ jg(x, t)

]

−
N∑

j=1

dw j

dt
mev

2
‖ jS (x − x j) , (24)

δng(x, t = 0) = 0 , (25)

δ jg(x, t = 0) = 0 , (26)

δPg(x, t = 0) = 0 . (27)

The E × B drift in the x direction vanishes in the 1-
dimensional model. The spatial derivatives are calculated

with the spectrum method. In the total characteristic sim-
ulation, the number density, current density, and pressure
are given by

n(x, t) = n0 + δnK(x, t) + δng(x, t) , (28)

j(x, t) = δ jK(x, t) + δ jg(x, t) , (29)

P(x, t) = n0Te0 + δPK(x, t) + δPg(x, t) . (30)

3. Benchmarks on Kinetic Alfvén
Wave
The real frequency and damping rate of the kinetic

Alfvén wave for various electron beta values have been in-
vestigated with the simulation model described in the pre-
vious subsection. The physical parameters are the same as
those used in Ref. [12], mi/me = 1837, k⊥ρs = 0.4, and
k‖/k⊥ = b0x/b0y = 10−2 with b0z = 0. The number of
grid points is 64, the time step width ∆t = 0.5∆x/b0xvt,
and the number of Lagrangian markers N = 32768. The
4th-order Runge-Kutta method is employed for the time
integration. The time step with the total characteristic
method is restricted by the Courant condition for electrons.
With regards to computational time, the total characteris-
tic method requires additional computational time for the
fluid equations, Eqs. (22)-(24). In the fluid equation calcu-
lation, the calculation of the terms with

∑N
j=1

dw j

dt S (x−x j) in
Eqs. (22)-(24) demands the most computational time that is
comparable to the calculation of δnK, δ jK, and δPK. The
calculation of δnK, δ jK, and δPK often takes the longest
time in the conventional δ f simulations. Thus, the compu-
tational time with the total characteristic method is at most
roughly twice that with the conventional δ f method.

The real frequency and damping rate of the simulation
results are compared with the theoretical values in Fig. 1.
There is good agreement between the simulation results
and theoretical values both for real frequency and damping

Fig. 1 Real frequency (= ωr) and damping rate (= −γ) of the
kinetic Alfvén wave in the simulation results are plotted
with closed circles for various electron beta values. Solid
curves represent the theoretical frequencies.
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Fig. 2 Real frequency and damping rate versus number of
marker particles. Solid line and dashed line represent an-
alytical values of the real frequency and damping rate,
respectively. Closed (open) circles and closed (open)
squares represent the real frequency and damping rate in
the simulation with the total characteristic method (with
the conventional δ f method).

rate. There is also good agreement for the low electron beta
values (βe < 10−3) for which the frequencies were not well
reproduced with the hybrid method devised in Ref. [12]
(see Fig. 1 of Ref. [12]). The theoretical frequencies of the
kinetic Alfvén wave were calculated from Eq. (16) of Ref.
[12] using a plasma dispersion function library DSPFNV
[16]. In Fig. 1, the real frequency is roughly in propor-
tion to the inverse of the square root of the electron beta.
This can be explained as follows. The real frequency of the
Alfvén wave in the fluid limit is given by k‖B0 /

√
µ0min0.

With the condition k‖ = 10−2k⊥ and k⊥ρs = 0.4, k‖ is in pro-
portion to the inverse of ρs. The ratio of the real frequency
to the ion cyclotron frequency (= ωr/Ωi) is in proportion
to B0 /

√
µ0min0ρsΩi = B0 /

√
µ0n0Te0 =

√
2/βe. Then, we

have ωr/Ωi ∝ β−1/2
e .

In Fig. 1, we see a discrepancy in the damping rate be-
tween the simulation and theory for βe = 0.2. For this case,
the numerical convergence of real frequency and damping
rate were investigated with respect to the number of marker
particles using the total characteristic method and the con-
ventional δ f method. The results are compared in Fig. 2.
It can be seen that the convergence with the total char-
acteristic method is faster than with the conventional δ f
method. For N = 32768 with the conventional δ f method,
the damping rate is −γ/Ωi = 1.6 × 10−3 and is not shown
in Fig. 2.

For the application to fusion plasmas, it is important
to simulate with a grid size larger than the electron skin
depth. For example, when the electron number density is
1020 m−3, the electron skin depth is c/ωpe = 0.53 mm. If
two-hundred grid points are assigned for a 1m minor ra-
dius, the grid size is 5 mm, which is larger than the electron
skin depth by one order of magnitude. Thus, it is impor-
tant to simulate with a grid size larger than the electron

Fig. 3 Time evolution of the cosine part of Bz in simulations
(a) with the total characteristic method and (b) with the
conventional δ f method are compared to the theoreti-
cal evolution plotted in dashed curves. The grid size is
∆x = 10c/ωpe.

skin depth. We carried out a run with ∆x = 10c/ωpe which
is larger than the grid sizes for the runs shown in Fig. 1,
for example, ∆x = 0.15c/ωpe for βe = 3.9 × 10−4 and
∆x = 3.3c/ωpe for βe = 2.0 × 10−1. The physical param-
eters for the present run are mi/me = 1837, βe = 10−2,
k⊥ρs = 3.0 × 10−2, and k‖/k⊥ = b0x/b0y = 10−2. The
number of grid points is 64. The results are compared to
those with the conventional δ f method in Fig. 3. It can
be seen that the results with the total characteristic method
are close to the theoretical curve, while the kinetic Alfvén
wave damps spuriously with the conventional δ f method.

4. Summary
In this paper, we described how an electromagnetic

plasma model is constructed with the total characteristic
method. We demonstrated that both the real frequency and
damping rate of kinetic Alfvén wave were computed cor-
rectly for various electron beta values. We found that with
respect to the number of marker particles, the numerical
convergence of the real frequency and damping rate with
the total characteristic method is faster than with the con-
ventional δ f method. Specifically, we demonstrated that
the total characteristic method enables a simulation of a
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kinetic Alfvén wave with a grid size ten times larger than
the electron skin depth, while the wave spuriously damps
in the conventional δ f simulation. The gyrokinetic simu-
lation model with the total characteristic method presented
in this paper is useful for magnetically confined plasmas
such as tokamak plasmas and helical plasmas.
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