# NATIONAL INSTITUTE FOR FUSION SCIENCE An Extended Formula for the Energy Spectrum of Sputtered Atoms form a Material Irradiated by Light Ions T. Ono, Y. Aoki, T. Kawamura, T. Kenmotsu, Y. Yamamura (Received - Sep. 17, 2004) NIFS-DATA-89 Oct. 2004 This report was prepared as a preprint of work performed as a collaboration research of the National Institute for Fusion Science (NIFS) of Japan. The views presented here are solely those of the authors. This document is intended for information only and may be published in a journal after some rearrangement of its contents in the future. <u>Inquiries about copyright</u> should be addressed to the Research Information Center, National Insitute for Fusion Science, Oroshi-cho, Toki-shi, Gifu-ken 509-5292 Japan. E-mail: bunken@nifs.ac.jp #### <Notice about photocopying> In order to photocopy any work from this publication, you or your organization must obtain permission from the following organization which has been delegated for copyright for clearance by the copyright owner of this publication. ## Except in the USA Japan Academic Association for Copyright Clearance (JAACC) 6-41 Akasaka 9-chome, Minato-ku, Tokyo 107-0052 Japan Phone: 81-3-3475-5618 FAX: 81-3-3475-5619 E-mail: jaacc@mtd.biglobe.ne.jp #### In the USA Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923 USA Phone: 1-978-750-8400 FAX: 1-978-646-8600 An extended formula for the energy spectrum of sputtered atoms from a material irradiated by light ions\* T. Ono<sup>a</sup>, Y. Aoki<sup>a</sup>, T. Kawamura<sup>b</sup>, T. Kenmotsu<sup>c</sup>, Y. Yamamura <sup>a+</sup> <sup>a</sup> Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan <sup>b</sup> Chubu University, 1200 Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan <sup>c</sup> Kibi International University, 8 Iga-cho, Takahashi-shi, Okayama 716-8508, Japan Abstract We extend a formula proposed by Kenmotsu et al. (hereafter Paper I), which fits with the energy spectrum of atoms sputtered from a heavy material hit by low-energy light ions (H<sup>+</sup>, D<sup>+</sup>, T<sup>+</sup>, He<sup>+</sup>) by taking into account an inelastic energy loss neglected in Paper I. We assume that primary knock-on atoms produced by ions backscattered at large angles do not lose energy while penetrating the material up to the surface, instead of the energy-loss model used in Paper I. The extended formula is expressed in terms of a normalized energy-distribution function and is compared with the data calculated with the ACAT code for 50 eV, 100 eV and 1 keV D<sup>+</sup> ions impinging on a Fe target. Our formula fits well with the data in a wide range of incident energy. PACS: 68.49.Sf, 52.40.Hf, 52.40.-W, 02.70.Uu Keywords: Sputtering, erosion, Plasma-Materials interaction, First Wall Materials <sup>†</sup>Deceased on 30<sup>th</sup>, March, 2004. A manuscript of a paper presented at 16<sup>th</sup> International Conference on Plasma Surface Interactions in Controlled Fusion Devices during May 24-28, 2004 in Portland, Maine, U.S.A.. 1 #### I. Introduction The energy distribution function of atoms sputtered from the divertor plate and the first wall of a fusion device is indispensable in the analysis of the impurity transport in a scrape-off layer. The Thompson formula [1] has been used widely for this purpose. It assumes that sputtered atoms originate in a well-developed collision cascade created only by heavy ions in a material. However, an experiment [2] shows that the energy spectrum due to low-energy light ions differs from that calculated with the formula. This deviation can be understood from the fact that light ions cannot produce such a cascade, but rather a single or multiple collision sequence. Considering that an elastic energy loss is greater than an inelastic one for ions with energy of about a few hundred eV, we derived a formula for the energy spectrum of sputtered atoms due to light ions (H+, D+, T+, He+) by assuming that the primary knock-on atoms created near the surface with large-angle backscattered ions are the main candidates for ejection and by neglecting inelastic energy loss in Paper I [3]. In what follows, we derive an extended formula which can be applied to an energy region ranging from several tens of eV to keV, by considering both elastic and inelastic energy losses. We assume that primary knock-on atoms do not lose energy while penetrating a material up to the surface [4]. The extended formula is expressed in terms of a normalized energy distribution function and is compared with the data calculated with a Monte Carlo code ACAT [5], the Thompson and other formulas for 50 eV, 100 eV and 1 keV D<sup>+</sup> ions impinging on a Fe target. #### II. Model In this paper, we treat sputtering of heavy materials with light ions with incident energy ranging from several tens of eV to a few keV. We use the same sputtering mechanism as in Paper I. We introduce a primary recoil density $F_p(E, E_0)$ in the way that $F_p(E, E_0)dE_0$ is the average number of primary recoil atoms created with energy $E_0$ in a collision cascade or sequence initiated by a light ion with initial energy E. For a collision between a light ion and a heavy target atom, from eqs.(1) and (2) of Paper I, the integral equation for $F_p(E, E_0)$ can be reduced to the following equation [3, 6]: $$\int d\sigma(E,T) \left[ T \frac{\partial}{\partial E} F_{P}(E,E_{0}) \right] + S_{e}(E) \frac{\partial}{\partial E} F_{P}(E,E_{0}) = \frac{d\sigma(E,E_{0})}{dE_{0}}, \tag{1}$$ where T is the energy of a recoil atom after a collision governed by a differential cross section $d\sigma$ : $S_e(E)$ is an electronic stopping cross section: According to Lindhard et al. [7], $d\sigma$ is defined in reduced notation as $$d\sigma = \frac{\pi a^2}{2} \frac{f(t^{1/2})}{t^{3/2}} dt,$$ (2) with $$t \equiv \varepsilon^2 \frac{T}{T_{\text{max}}},\tag{3}$$ where $$T_{\max} = \gamma E, \tag{4}$$ with $\gamma = 4M_1M_2/(M_1 + M_2)^2$ : $M_1$ and $M_2$ are the masses of an incident ion and a target atom: $\varepsilon$ is the dimensionless reduced energy defined as $$\varepsilon = \left(\frac{a}{Z_1 Z_2 e^2}\right) \left(\frac{M_2 E}{M_1 + M_2}\right),\tag{5}$$ where $Z_1$ and $Z_2$ are their atomic numbers: e is the unit charge: $a = 0.04685(Z_1^{2/3} + Z_2^{2/3})^{-1/2}$ nm is the Thomas-Fermi screening length: $f(t^{1/2})$ is a scattering function defined by $$f(t^{1/2}) = \lambda t^{1/2-m} (1 + (2\lambda t^{1-m})^q)^{-1/q}, \tag{6}$$ where m, $\lambda$ and q are fitting variables for interatomic potentials. A data set of $(m, \lambda, q) = (0.25, 2.54, 0.475)$ was derived in the range $10^{-5} \le t^{1/2} \le 10$ [8]. We approximate the right-hand side of eq.(6) with above data set with an accuracy of 30 % by a simple function $$f(t^{1/2}) = \lambda_m t^{1/2-m}. (7)$$ Then, we have m = 1/4 and $\lambda_{1/4} = 2.54$ for $10^{-5} \le t^{1/2} \le 1.18 \times 10^{-2}$ referred to as region (I) and m = 1/2 and $\lambda_{1/2} = 0.276$ for $1.18 \times 10^{-2} \le t^{1/2} \le 1.11$ referred to as region (II). Substituting eqs.(3) and (4) for eq.(2), one reaches $$d\sigma(E,T) = C_m E^{-m} T^{-1-m} dT, \tag{8}$$ with $C_m = \pi \lambda_m a^2 (M_1/M_2)^m (2Z_1 Z_2 e^2/a)^{2m}/2$ . In the energy range concerned here, $S_c(E)$ is given as $$S_{*}(E) = K_{1} E^{1/2}, (9)$$ with $K_L = 1.216 \times 10^{-2} Z_1^{7/6} Z_2 / M_1^{1/2} (Z_1^{2/3} + Z_2^{2/3})^{3/2} \text{ eV}^{1/2} \text{ nm}^2$ [9]. Substituting eqs.(8) and (9) for eq.(1) results in $$\left[ C_m E^{-m} \int_0^{T_1} T^{-m} dT + K_L E^{1/2} \right] \frac{\partial}{\partial E} F_p(E, E_0) = C_m E^{-m} E_0^{-1-m},$$ (10) where $T_1$ is the maximum energy of a recoil atom transferred from a colliding atom. As cited above, an ion is backscattered at a large angle first by a target atom and then knocks off a target atom near the surface, mostly in the top layer, on its way out [10]. Thus, we set $T_1 = \gamma E_{\text{back}}$ , where $E_{\text{back}}$ is the energy of a backscattered ion. $E_{\text{back}}$ varies with the position of an ion, since it loses energy while moving along its trajectory in a material. However, in this work, we set $E_{\text{back}} = (1-\gamma)E_{\text{inc}}$ for simplicity, where $E_{\text{inc}}$ is the incident energy of an ion. Then, we finally take $T_1 = \gamma (1-\gamma)E_{\text{inc}}$ . By setting $E = E_{\text{back}}$ in eqs.(4) and (5), from eq.(3), the regions (I) and (II) for $f(t^{1/2})$ are reduced to (I) $10^{-5} \le \varepsilon T^{1/2}/T_{\text{max}}^{1/2} \le 1.18 \times 10^{-2}$ and $1.18 \times 10^{-2} \le \varepsilon T^{1/2}/T_{\text{max}}^{1/2} \le 1.11$ for a collision between a backscattered ion and a target atom. Then, from eq.(10), one obtains $$\frac{\partial F_{p}(E, E_{0})}{\partial E} = AE_{0}^{-5/4}E^{-3/4}, \tag{11-I}$$ where $A=C_{1/4}/(4C_{1/4}(\gamma(1-\gamma))^{3/4}/3 + K_L)$ with $C_{1/4}=\pi\lambda_{1/4}a^2(M_1/M_2)^{1/4}(2Z_1Z_2e^2/a)^{1/2}/2$ for region (I), and $$\frac{\partial F_{p}(E, E_{0})}{\partial E} = \frac{C_{1/2} E_{0}^{-3/2} E^{-1/2}}{2C_{1/2} (\gamma(1-\gamma))^{1/2} + K_{L} E^{1/2}},$$ (11-II) with $C_{1/2} = \pi \lambda_{1/2} a^2 (M_1/M_2)^{1/2} (2Z_1Z_2e^2/a)/2$ for region (II). In obtaining eq.(11), the lower limit of the integration over T is extended to zero for simplicity, which, however, does not influence the result. In deriving eq.(11-II), we ignore the integration value in region (I), since it is smaller than that in region (II). Since the second term becomes larger than the first one in the denominator of eq.(11-II) for $\varepsilon T^{1/2}/T_{\text{max}}^{1/2} \ge 1.11$ and since $f(t^{1/2})$ given by eq.(6) with the above data set decreases sharply there, we can use the right-hand side of eq.(11-II) for approximation to $\partial F_p(E,E_0)/\partial E$ even beyond the upper limit of region (II). The lower limit of the integral of the derivative (11), $E_{\text{min}}$ , is the minimum energy of a backscattered ion. We use the same physical hypothesis in estimating $E_0$ from $E_{\text{min}}$ as that employed above to calculate $T_1$ from $E_{\text{inc}}$ , i.e., $\gamma (1-\gamma)E_{\text{min}} = E_0$ . Thus, we can set $E_{\text{min}} = E_0/\gamma (1-\gamma)$ . The upper limit of the integration over E is clearly $E_{\text{inc}}$ . From a physical reason for $F_p(E,E_0)$ , it is clear that $F_p(E,E_0) = 0$ for $E_0 \ge E$ . Under this condition, we can obtain $F_p(E,E_0)$ by integrating eq.(11) for regions (I) and (II). The double differential sputtering yield is expressed as [4] $$J(E_1, e_1) = \int_{U}^{\gamma(1-\gamma)E_{inc}} dE_0 \int_{0}^{\infty} dx \int d^2e_0 \hat{F}(E_{inc}, e; E_0, e_0, x) P(E_0, e_0, x; E_1, e_1),$$ (12) where $E_1$ and $e_1$ are the energy and the direction of a sputtered atom: $\hat{F} \, dx dE_0 d^2 e_0$ is the average number of primary knock-on atoms created at a depth x from the surface and with energy $E_0$ into a solid angle $e_0$ , by an incident ion with initial energy $E_{inc}$ and direction e: $P dE_1 d^2 e_1$ is the probability that a recoil atom with $(E_0, e_0, x)$ is ejected from the surface with energy $E_1$ into a solid angle $e_1$ without undergoing collisions. Atoms are ejected if they overcome the surface potential U. By assuming a planar barrier and considering the refraction at the surface, one has [4] $$P(E_0, e_0, x; E_1, e_1) = \delta(E_1 + U - E_0) \exp[-x/L\cos\theta_0] \delta(\varphi_1 - \varphi_0)$$ $$\delta(\cos\theta_1 - [(1 + U/E_1)\cos^2\theta_0 - U/E_1]^{1/2}), \tag{13}$$ where $\theta_0$ and $\varphi_0$ are the polar angle and azimuth belonging to $e_0$ with respect to the surface normal, whereas $\theta_1$ and $\varphi_1$ are the corresponding quantities belonging to $e_1$ : $\delta$ is the Dirac delta function: L is the collision mean free path [4]. As discussed in Paper I, almost all light ions at near-normal incidence are subject to randomization because they are backscattered near $180^\circ$ by target atoms, and primary recoil atoms produced then by those ions are nearly isotropic [3,11]. Then we can assume $\hat{F}(E_{\rm inc}, e; E_0, e_0, x) \approx \hat{F}(E_{\rm inc}; E_0, x)/4\pi$ . That almost all of the sputtered atoms are created near the surface is a fairy good approximation for sputtering of a heavy target material with light ions. Thus, we can also assume $\hat{F}(E_{\rm inc}; E_0, x) \approx \hat{F}(E_{\rm inc}; E_0, x) \approx \hat{F}(E_{\rm inc}; E_0, x)$ and (II), respectively, $$J(E_1, e_1) = AL\cos\theta_1 E_1 / \pi (E_1 + U)^{9/4} \cdot \left[ (\gamma (1 - \gamma) E_{\text{inc}})^{1/4} - (E_1 + U)^{1/4} \right], \quad (14 - 1)^{1/4}$$ $$J(E_1, \mathbf{e}_1) = BL\cos\theta_1 E_1 / \pi (\gamma (1 - \gamma))^{1/2} (E_1 + U)^{5/2} \cdot \ln \left[ (B + E_{\text{inc}}^{-1/2}) / (B + (E_1 + U)^{1/2} / (\gamma (1 - \gamma))^{1/2}) \right], \tag{14-II}$$ where $B = 2C_{1/2}(y(1-\gamma))^{1/2}/K_L$ . Integrating eq.(14) over $e_1$ yields a differential sputtering yield in energy. We introduce a normalized energy distribution function of sputtered atoms, i.e., a normalized yield, $Y_N(E_{inc}, E_1)$ , defined by a differential sputtering yield in energy divided by its sputtering yield. Then, $Y_N(E_{inc}, E_1)$ can be expressed for regions (I) and (II), respectively, as $$Y_{N}(E_{inc}, E_{1}) = N(E_{inc})E_{1}(E_{1} + U)^{-9/4} \left[ (\gamma(1-\gamma)E_{inc})^{1/4} - (E_{1} + U)^{1/4} \right], \qquad (15-1)$$ $$Y_{N}(E_{inc}, E_{1}) = N(E_{inc})E_{1}(E_{1} + U)^{-5/2} \cdot \ln[(B + E_{inc}^{1/2})/(B + (E_{1} + U)^{1/2}/(\gamma(1 - \gamma))^{1/2})],$$ (15 - II) where $N(E_{inc})$ is a normalization factor. $N(E_{inc})$ is certainly dependent on a combination of projectile ion species and a target atom. It is noteworthy that the present formula (15) depends #### III. Results and discussions We refer to sputtering yield data calculated with the ACAT code. In Figs. 1-3, we compare our results with the ACAT data for a Fe material irradiated normally by D<sup>+</sup> ions with incident energy of 50 eV, 100 eV and 1 keV. For these conditions, $T_1$ enters into region (II). Thus, we have used eq.(15-II) to calculate $Y_N(E_{inc}, E_1)$ . Kenmotsu [3], Thompson [1] and Falcone [4] formulas are also referred to for comparison, where each spectrum is normalized to give a sputtered energy distribution function as discussed above. We have normalized the truncated Thompson formula (which includes a cut-off factor) and the conventionally used untruncated Thompson formula (which does not have a cut-off factor), by setting the maximum of sputtered energy at $\gamma E_{inc}$ -U. Fig. 1 shows that our present formula and Kenmotsu's formula fit with the calculated data for 50 eV D<sup>+</sup> ions, although there is a difference between the data and our present formula at about $E_1 = 0.5$ eV. In contrast to these formulas, both Thompson formulas and the Facione formula differ clearly from the ACAT data and have large tails even in the higher energy range where there are no ACAT data. In Fig. 2, our formula fits quite well with the ACAT data, and reasonable agreement is also seen for the Kenmotsu, Falcone and the truncated Thompson formulas. On the other hand, the untruncated Thompson formula differs clearly from the ACAT data and has again a large tail in the higher energy range. Fig. 3 shows that the peak value of the ACAT data differs from the present formula, the Falcone and the untruncated Thompson formulas by about 30 % for 1 keV D<sup>+</sup> ions. However, except for this discrepancy, they represent the spectrum well, whereas the Kenmotsu formula has a much smaller value at its maximum. Fig. 3 also shows that the truncated Thompson formula matches the ACAT data very well. In the 1-5 keV energy range of D<sup>+</sup> ions (not shown here), our present formula, the Falcone, and both Thompson formulas agree well with the ACAT data, except for the discrepancy at the peaks of the ACAT data. #### IV. Conclusions To represent the energy distribution of atoms sputtered from a heavy material irradiated by light ions with a wide range of energy, we have extended a formula presented in Paper I, by considering inelastic and elastic energy losses and by keeping the same sputtering mechanism as before. However, we have assumed that primary knock-on atoms produced by backscattered ions do not lose energy while penetrating the material up to the surface, instead of the energy-loss model used in Paper I. We have expressed our formula in terms of a normalized energy distribution function and compared it with the ACAT data for 50 eV, 100 eV and 1 keV D<sup>+</sup> ions impinging on a Fe material. The agreement is very good for 100 eV. It is also good for 50 eV and 1 keV except for some differences near the peaks of the spectra. We have shown that there are considerable differences between the *truncated* Thompson formula and *untruncated* Thompson formula for 50eV and 100 eV. Our present formula agrees well with the ACAT data for incident light ions (H<sup>+</sup>, D<sup>+</sup>, T<sup>+</sup>, He<sup>+</sup>) with energy ranging from several tens of eV to about 2 keV and for heavy target materials, although the corresponding results have not been shown in this work. ## Acknowledgements The authors would like to thank Professor A.A. Haasz for making numerous corrections and for suggesting valuable changes. They also thank Professor H.J. Whitlow for his valuable comments. This work was supported partially by a Grant-in-Aid of the Academic Frontier Project promoted by the Ministry of Education, Culture, Sports, Science, and Technology of Japan. This work has been done under the collaboration research of National Institute of Fusion Science. #### References - [1] M.W. Thompson, Philos. Mag. 18 (1968)377. - [2] H.L. Bay, B. Schweer, P. Bogen and E. Hint, J. Nucl. Mater. 111-112 (1982)732. - [3] T. Kenmotsu, Y. Yamamura, T. Ono, T. Kawamura, J. Plasma Fusion Res. Vol.80, No.5 (2004) 406-409. - [4] G. Falcone, Surf. Sci. 187 (1987)212. - [5] Y. Yamamura, Y. Mizuno, IPPJ-AM-40, Inst. Plasma Physics Nagoya Univ. (1985). - [6] P. Sigmund, Rev. Roum. Phys. Tome 17, no. 8 (1972) 969. - [7] L. Lindhard, V. Nielsen, M. Scharff, K. Dan. Vidensk. Selsk. Mat-Fys. Medd. 36 no.10 (1968). - [8] S. Kalbitzer, H. Oetzmann, Radiat. Efft. 47 (1980)57. - [9] L. Lindhard, M. Scharff, Phys. Rev. 124 (1961)128. - [10] Y. Yamamura, J. Bohdansky, Vacuum 35 (1985)561. - [11] H.L Bay, J. Bohdansky, W.O. Hofer, J. Roth, Appl. Phys. 21 (1980)327. Fig.1 Normalized yields of atoms sputtered from a Fe material irradiated by 50 eV D<sup>+</sup> ions at normal incidence vs. sputtered atom energy in eV. The legend shows the curves obtained with the different formulas. The closed circles are the data calculated with the ACAT code. Note that the *truncated* Thompson and the Falcone curves completely overlap. Fig.2 Normalized yields of atoms sputtered from a Fe material irradiated by 100 eV D<sup>+</sup> ions at normal incidence vs. sputtered atom energy in eV. Refer to Fig. 1 for legend. Fig.3 Normalized yields of atoms sputtered from a Fe material irradiated by 1 keV D<sup>+</sup> ions at normal incidence vs. sputtered atom energy in eV. Refer to Fig. 1 for legend. # Publication List of NIFS-DATA Series | NIFS-DATA-72 | M. Hayashi Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century - Argon - Jan. 2003 | |--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | NIFS-DATA-73 | J. Horacek, K. Houfek, M. Cizek, I. Murakami and T. Kato<br>Rate Coefficients for Low-Energy Electron Dissociative Attachment to Molecular Hydrogen<br>Feb. 2003 | | NIFS-DATA-74 | M. Hayashi Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20 <sup>th</sup> Century - Carbon Dioxide - Apr. 2003 | | NIFS-DATA-75 | X. Ma, H.P. Liu, Z.H. Yang, Y.D. Wang, X.M. Chen, Z.Y. Liu, I. Murakami and C. Namba Cross-section Data Measured at Low Impact Energies for Art Ions on Argon and Neon Targets Apr. 2003 | | NIFS-DATA-76 | M. Hayashi Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century - Sulphur Hexafluoride - May 2003 | | NIFS-DATA-77 | <ul> <li>M. Hayashi</li> <li>Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century</li> <li>Nitrogen Molecule</li> <li>June 2003</li> </ul> | | NIFS-DATA-78 | A. Iwamae, T. Fujimoto, H. Zhang, D. P. Kilcrease, G. Csanak and K.A. Berrington Population Alignment Collisional Radiative Model for Helium-like Carbon: Polarization of Emission Lines and Anisotropy of the Electron Velocity Distribution Function in Plasmas Aug. 2003 | | NIFS-DATA-79 | M. Hayashi Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century - Xenon - Sep. 2003 | | NIFS-DATA-80 | M. Hayashi Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20 <sup>th</sup> Century – Halogen Molecules – Dec. 2003 | | NIFS-DATA-81 | M. Hayashi Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century – Water vapour | | | Dec. 2003 | | NIFS-DATA-82 | M. Hayashi Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century - Hydrogen molecules - Feb. 2004 | | NIFS-DATA-83 | M. Hayashi Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20 <sup>th</sup> Century - Hydrogen Halide Molecules - Mar. 2004 | | NIFS-DATA-84 | K. Ohya, A. Chen, J. Kawata, K. Nishimura, D. Kato, T. Tanabe and T. Kato ELECTRAN - Monte Carlo Program of Secondary Electron Emission from Monoatomic Solids under the Impact of 0.1 - 10 keV Electrons Mar. 2004 | | NIFS-DATA-85 | I. Murakami, T. Kato, U.I. Safronova and A.A. Vasilyev Dielectronic Recombination Rate Coefficients to Excited States of Boronlike Oxygen and Dielectronic Satellite Lines May 2004 | | NIFS-DATA-86 | 1. Murakami, J. Yan, H. Sato, M. Kimura, R. K. Janev, T. Kato<br>Collision Processes of Li <sup>3+</sup> with Atomic Hydrogen: Cross Section Database<br>Aug. 2004 | | NIFS-DATA-87 | M. Hayashi Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century - Ammonia and Phosphine - Aug. 2004 | | NIFS-DATA-88 | N. Yamamoto, T. Kato and F.B. Rosmej<br>Opacity Free and Space Resolved X-ray Diagnostics Based on Satellinte Lines near H-like Lyα of Highly Charged Ions<br>Sep. 2004 | | NIFS-DATA-89 | T. Ono, Y. Aoki, T. Kawamura, T. Kenmotsu, Y. Yamamura An Extended Formula for the Energy Spectrum of Sputtered Atoms form a Material Irradiated by Light Ions Oct. 2004 |