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Abstract

In the present paper, a new theoretical approach is described for the
calculation of the atomic characteristics of the multiply charged ions (MCI) in
various electronic configurations. This theoretical approach is based on the
perturbation theory using the nuclear charge of the ion as a parameter and the inter
electron interaction and relativistic corrections as a perturbation. In order to reduce
a large number of the calculations of atomic data for many different electron
configurations which may be formed in MCI colliding with a surface, the transition
energies, radiative transition probabilities and autoionizing rates are averaged over
the orbital and spin quantum numbers. It turned out that these atomic characteristics
can be expressed in analytical forms as a function of the number of electrons in
different shells of the ions and the suggested method can be applied for the
calculation of the atomic characteristics of practically any atomic system with
arbitrary number of electrons.
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L. Introduction

At present much attention is being paid to experimental and theoretical
studies of interactions of slow, highly charged ions with a surface. This attention is
caused by the formation of a new physical object - so-called "hollow atom". The
main feature of such a state of atom is a great number of vacancies in inner shells
while the ionization degree of atom is low - almost neutral. With today's availability
of powerful multicharged ion sources such as electron cyclotron resonance (ECR)
sources, the electron-beam ion trap source (EBIS), and the electron-beam ion trap
(EBIT), investigations on mechanisms of productions and decays of such "hollow
atoms” near solid surfaces have become a subject of considerable interest. These
investigations are mainly aimed at understanding the neutralization dynamics of
highly charged ions as they approach the surface and penetrate into the solid. Such
highly charged projectile ions carry very large potential energy up to several
hundred keV and X-ray emission studies are particularly suited to illuminate
different deexcitation and interaction processes which lead to the transfer of this
energy to the surface. Furthermore, such new experiments allow the observation of
surface modifications induced by a medium-to-heavy ion impact.

1. Formation of "hollow atom': Reviews of neutralization processes

The scenario so far developed for the interaction of a slow multicharged ion
(MC) with a metal surface has evolved from numerous experimental investigations
of total electron yields, electron emission statistics and fast Auger electron energy
distributions, together with the analysis of scattered projectiles and soft X-ray
emission [1]. Up to now, it is best described in terms of so-called "classical over-
barrier model", which has recently been developed by Burgdoerfer et al. [2,3). The
approach of a slow MCI (charge state q; its velocity is much smaller than the Fermi
velocity of electrons inside the metal target) towards the metal surface
(characterized by a conduction band with the work function Wy, and the Fermi

energy Ep, see Fig.I.1.1) causes a collective response of the metal electrons which

at a large distance from surface R can be described by the classical image potential
(the atomic units are used through the present paper, unless otherwise noted)
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Fig.I.1.1. Electronic potential barrier between the MCI and the metal surface,

exemplified for the cases of Ar!2* projectile ion at about 50 a.u. (dotted curve)
and 26 a.u. (full curve), respectively, above an Au surface. In the second case,
the potential barrier has decreased below the Fermi level of Au, and then the
electron capture becomes classically permitted [1].

This image potential accelerates MCI towards the metal surface and therefore
imposes the lower limit to the projectile impact velocity, corresponding to an upper
limit for the available MClI-surface interaction time. In addition, the image
interaction causes a shift of the projectile electronic states and decreases the height
of electronic potential barrier between the ion and surface, which is formed by the
projectile's potential, its image potential, and the image potential of the particular
electron to be captured. At a cntical distance
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(W is the work function of metal), this potential barrier decreases below the

Fermi level of the metal and the ion starts to capture electrons resonantly from the
conduction band into highly excited states of projectiles (resonant neutralization -
RN, see Fig.1.1.2). The electron capture can in principle occur at larger distances
than RN via tunneling processes through the potential barrier but this has been
found to be of minor importance.

The classical over-barrier model also predicts the principal quantum number
of the highly excited states of projectiles in which the RN takes place:



1
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(1.1.3)
The RN stops as soon as the captured electrons have screened the 1on charge and, as

a consequence, the potential barrier has moved up again above the Fermi level.
With further approach of the projectile towards the surface, the over-the-barrier
condition will be restored as the image interaction mentioned above and the
screening of the projectile charge by the electrons already captured will shift the
energy levels of the projectile upwards ("image shift”, IS, and "screening shift", SS,
see Fig.1.1.2), and again RN can go on. Thus, n, in Eq.I.1.3 designates the highest

n-shell of the projectile which can be reached during the whole neutralization
sequence.

peeling off

critieal
distance

metal §-DOS -<+— approaching MCI

Fig.1.1.2. States of a neutralizing MCI approaching a metal surface.
Electrons capiured via RN can be emitted via autoionization (Al), promotion into vacuum
due to screening and image shift (SS/IS), and "peeling off" of all electrons which can not
stay bound to the projectile inside the solid. Furthermore, electrons can be recaptured into
the solid via resonant ionization (RI) [1].

Further evolution of such a multiply excited projectile depends on
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competition between resonant neutralization and other classes of electronic
transitions such as intra-atomic Auger transitions, Auger deexcitation and inter-
atomic Auger transitions (see Fig.I.1.3). However, all electrons lost from the
projectile are rapidly replaced by RN and finally a fully neutralized "hollow
atom" is formed.

Fig.1.1.3. Energy diagrams describing (a) resonant neutralization,
(b) intra-atomic Auger transition, (c) Auger deexcitation, and
(d) and interatomic Auger transition {4,5].

The complete deexcitation of this highly excited species to its neutral
ground state, via the above mentioned manifold of electronic interactions, would
require a time not available because of the upper limit set by image charge
attraction. When such a highly excited "hollow atom" approach the surface,
electrons of the projectile with Rydberg radius rg=n?/q larger than the screening

length within the solid, ?Ls=vFlwp (vg is the Fermi velocity of electrons inside the
metal and w,, is the surface plasmon frequency) can be removed (ionized) from

projectile ("peeling off" effect). However, such electrons removed are rapidly
refilled by electrons from the conduction band of the solid and a "hollow atom” in
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less excited states is formed.

Further relaxation of the projectile within the solid will be finished with the
filling of inner shell vacancies not yet recombined through a series of cascade
processes and electron transfer between inner shells of projectile and metal. These
transitions result in the majority of the observed fast (projectile) Auger electrons,
in competition with X-ray emission.

2. Brief reviews of studies on deexcitation processes in a "hollow
atom"

Deexcitation of this short-lived complex can take place via various electronic
transitions between intra-atomic states in the particle or between the particle and
metal. Besides their fundamental interest, this process is also of practical relevance
for plasma - wall interactions in gas discharges including thermonuclear fusion
experiments or ion beam-activated material modification.

Various neutralization-deexcitation processes in interactions of MCI with
surface are the subject of numerous papers. Hagstrum [4,5] and Arifov ef al. [6]
first treated such cases both experimentally and theoretically. They assumed
multiple-resonant transitions to take place between MCI and surface thus rapidly
forming a multiply excited neutral particle which then starts to decay via sequential
autoionization processes. The shake-off process and Auger decay in the production
and the decay of "hollow atoms", and the final charge state distributions of
projectile have been studied in work of Omar and Hahn [7,8]. Donets [9.10] was
the first to observe the np-1s radiative decay in the interaction of Ar!7*ions with
Be target. The X-ray spectra produced by MCI such as Arl7+, Xe#448+ 1J62-73+
interacting with solid surface have been theoretically and experimentally studied by
Briand ef al. [11,12] , Clark e al. [13]}, Andra [14], and Schuch et al. [15]. The
review of some recent theoretical investigations of autoionization rates for highly
ionized atoms has been written by Desclaux [16] in which the dependence of the
Auger rates as a function of the level of the capture (i.e., the principal and orbital
quanturn numbers), the total angular momentum of the initial state and the number
of electrons (either in the same shell or in different ones) has been considered.
Competition between Auger and radiative processes has also been studied.

A number of papers devoted to investigations of the "hollow atom" show that
the transfer of many electrons in low velocity collisions between MCI and neutral
atomic, molecular, and solid state targets have now been the subject of extensive
mvestigations.



3. Purpose of the present work

To calculate the atomic characteristics of neutralization-deexcitation processes
such as electron transition energy, radiative transition probability and
autoionization rate, a series of methods have been developed. The most accurate
methods are based on the perturbation theory [17-22], Hartree-Fock-Pauli
approximation (HFP) [23,24], multiconfiguration Dirac-Fock method (MCDF) [25-
27], and model potential methods [28]. All the methods mentioned above take a lot
of time to calculate atomic characteristics of complex many-electron systems.
Although there exist very powerful numerical calculation techniques such as super
computers, there still remains strong need for efficient analytical approaches.
Indeed, in cases (for example, in interpretation of the observed spectra including a
large number of unresolved line groups) the high accuracies of the calculations may
not be necessary.

In this work an attempt is made to find a compromise between precision and
general applicability of theoretical approach. Thus, the purpose of the present
work is to obtain explicit formulas for calculating the atomic characteristics
averaged over the orbital and spin quantum numbers and to create numerical
codes which need a considerably less time in comparison with the well known
methods in order to calculate these atomic characteristics with the accuracies
sufficient for various applications. The author introduces in the present theoretical
approach the combination of the 1/Z-expansion method based on the perturbation
theory over 1/Z (Z being the nuclear charge), the screening parameter for the each
subshell of the electronic configuration, and the averaging over the orbital and spin
quantum numbers LS. Such a combination allows us to reduce the vast number of
possible states for a complex, many-electron system, to take into account the
screening effect for each atomic subshell and to calculate the atomic characteristics
of the atomic system as a function of the number of electrons in different subshells
of the system. Therefore, the present theoretical method can be applied to calculate
atomic characteristics of practically any atomic system with arbitrary number of
electrons.

This approach has been applied to study the deexcitation process of "holiow
atom" during the interactions of multicharged Xed* (q=44-48) and Ar?* (q=17) ion
with a metal surface [13,32,38,37]. The deexcitation process involves different
mechanisms which result in a large number of intermediate states of the atom
before it decays to the ground state. That is why the X-ray or electron spectra
observed in the interactions includes a large number of unresolved line groups and
it takes a lot of time to identify or simulate these spectra using the accurate methods
mentioned above. The present approach considerably facilitates this problem
reducing the number of possible states and, as the 1/Z-expansion method, which the



present theoretical approach is based on, is especially useful for multicharged ions
with a number of electrons N much smaller than the nuclear charge of ions, has
been found to give the generally good results for the identification of the
experimental spectra and for the simulation of the deexcitation process of the
"hollow atom".

It has been also shown by comparison with other theoretical data that this
method gives good results even for almost neutral atomic system which is usually
difficult to treat theoretically [38].

All results obtained by the present theoretical method allow us to conclude
that the method is very useful for study the atomic processes involved the large
number of atomic and ionic states in a wide region of nuclear charge Z.

4.Theoretical approach

As mentioned above, the "hollow atom" decays finally to the ground state via
various electronic transitions (including satellite transitions) between states in the
particle and the surface. Calculation of atomic characteristics of the satellite
radiative transitions is one of the subjects of the present work. The detailed
description of the theoretical method is given in Chapter II. Here we shall describe
briefly the main idea of the theoretical approach.

In view of applications of this theoretical method to multicharged ions we
shall proceed with the perturbation theory using the nuclear charge Z of projectile
as a parameter. The electronic interactions between electrons and relativistic effects
which are taken into account in the frame of Breit operator are included as
perturbations. To describe atomic orbitals, the H-like wave functions are used.
Therefore, all atomic characteristics can be given by a series of 1/Z powers. For
the energy we have a series of powers of Z and ¢Z:

E=Y 3 Ey(oz)Z>,

i=0 k2=0
(1.4.1)

where o is the fine structure constant and E;,_are the expansion coefficients of the

i-th order of the non-relativistic (k=0) and relativistic (k/2>1) energy. Here we
shall confine ourselves to the first order of perturbation theory by 1/Z.

In order to improve accuracies of calculation, the screening parameter ©
which depends on the electronic states of ions is introduced both for relativistic and
non-relativistic parts of energy. The effective charge for projectile with an electron
in the (n/) state is represented as
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Z(n=7Z-06(nl),
(1.4.2)

where o(nl) is determined from the variational principle.
To reduce a vast number of possible states for complex, many-electron system Q

(Q=lsk12sk22pk335k4... , where k; is the electron occupation number), all the

atomic characteristics have to be averaged over the orbital and spin quantum
numbers.

This method allows us to express the desired atomic properties in analytical
forms as a function of the electron numbers in various shells of the ion. It can be
applied practically to any atomic system with arbitrary number of electrons.

—11 -



II. Theoretical method
1. Z-expansion method

The non-relativistic Schroedinger equation for the atom with the nuclear
charge Z can be written in the form (atomic units are used):

(IL.1.1)

The first term of this equation describes the kinetic and potential energy of each
electron (A, is the operator of kinetic energy of the i-th electron) and the second

term describes the inter-electron interaction. The summation is performed over the
total number of electrons in the atom. The wave function \ being the solution of
the Eq.(II.1.1) describes the stationary state with the definite value of non-
relativistic energy EN [29]. To illustrate the designation used in the Eq.(II.1.1) we
present the following picture (Fig. I1.1.1) :

Ci
I
Ly
Z "
¢ ¢
Fg. IL.1.1

The perturbation theory with using a hydrogenic basis set [30], known to be
the most systematic and straightforward theory for highly charged ions, is used.
The inter-electron interaction 1/r; and the relativistic energy are treated as a

perturbation. To extract 1/Z-dependence the varables r, and r; are replaced by
r;/Z and 1;/Z respectively. After such a replacement (and division by Z2),
Eq.(II.1.1) resuits in the following :

(11.1.2)



Based on the perturbation theory with 1/Z we can express the eigen-function and
eigen-energy in the form of series of expansion in 1/Z :

I|I=l]l()+%\]l1 +;w2+ ey
(I1.1.3)

EN=72E+ 1 EN+ L EN 4 ),
Z 72
(11.1.4)

where y, and EN are the hydrogenic wave function and non-relativistic
hydrogenic energy, and E;N (i>1) represents the non-relativistic energy of the i-th
order in Z-expansion. V, (i=1) is the i-th order of wave function.

The relativistic energy is taken into account in the frame of Breit operator
[31] and, as it was already mentioned, plays a part of the perturbation. The Breit
operator allows us to calculate the corrections to the non-relativistic energy up to
relative order (0iZ)? . The (0Z)? corrections give the energy to the same order of
accuracy as the Pauli approximation for hydrogenic atoms. The Breit operator
includes the following terms:

1. one-particle operators
Hi) =- % p*

mm=%mz§m,
# — ﬁ LS__
Hyr) =2 zLS,

2. two-particle operators

Hy(ri2) = o2 1 p1p2 + r2(rpyp2
2 In2 1152 d
2
Hy=- a3_ (ri2xXp1)(s1 + 2s2),

I12
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Hy(r1p) = -02 © 8°(r12 ),

2
Hs(r12) =- % o T 818:8%(ry2 ),

2
Hy = O |g;85 - 3 (sirio)(sario)),
T2 12

(IL.1.5)

where o is the fine structure constant, r, is the radii-vector, p is the momentum

operator, s is the spin operator, 33(r) is the three dimensional Dirac delta-function,
and L and S are the orbital and spin momenta, respectively. The physical
significance of the various terms in Eq.(I1.1.5) is as follows :

H, is the relativistic correction due to the "variation of mass with velocity

(which does not depend on electron spin).
H, corresponds to the classical relativistic correction to the interaction
between electrons. This correction is due to the retardation of the electromagnetic

field produced by an electron.
H;. is the interaction between the spin magnetic moment and the orbital

magnetic moment of the electrons (spin-orbit coupling).
H, and H. represent the interaction between the spin magnetic dipole

moments of the two electrons.
H,, H,. and H, are the contact terms.

The relativistic part of energy can be presented also in terms of 1/Z expansion:

ER = o27* E§+%E§+%E§+...).

Z

(11.1.6)

Here E;R (i>0) represents the relativistic energy of the i-th order and E.R equals to

(IL.1.7)
where 8(1,0) is the delta function, [ is the orbital momentum of the electron, and n
is the principal quantum number.
Then the total energy of atom is given as the sum of non-relativistic and
relativistic energies:
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E =EN + EX.
(I1.1.8)
2. Screening parameter

In the zeroth approximation all electrons move in the Coulomb field of the
nucleus, with the interelectron interaction being absent. We note that the nuclear
charge Z is a good approximation for the innermost shell, i.e., the K-shell
electrons, independent of the number of electrons in the other shells. On the other
hand if one approximates the effective field by the Coulomb field in which the
outer electron moves, the corresponding effective charge must be close to that in
the spectroscopic notation Z, = (Z-N,-1), where N, is the total number of electrons,

but is not necessarily close to the nuclear charge. For understanding the optimal
charge and correspondingly the non-relativistic screening parameter (oN) we
rewrite Eq. (I1.1.4) in the form

EN = ENZ-oN).
L2.1)

By comparing Egs.(11.1.4) and (IL.2.1) we can determine the screening parameter
oN:

ENZ2 + ENZ + EY + .= E}Z2 - 2E)ZoN + EN(oVY,

(11.2.2)

if we neglect the third, fourth and higher order contributions in Eq.(IL.1.4) and
assume Z>>0N. Now we can rewrite Eq.(I1.1.4) in the form:

EN = ENZ-o™) + e(o™),
(11.2.3)
where

e =EY - Ef(o™’.
(11.2.4)
In the actual computation of E,N for all states, numerical difficulties are
encountered [20] . If e(oN) is a small part of E,N, a large amount of the second

order is already accounted for by the lower orders of perturbation theory. In other

- 15—



words, the introduction of the screening parameter actually enables us to reach
appreciable accuracy without computation of more elaborate terms of the second
order of the perturbation theory. The comparison of E,N and e(co¥) for different
states given in [32] shows that £(c™) reaches 40-50% of E,N .

The screening parameter can be introduced also for the relativistic energy
and is expressed as follows:

ok = EL
3E§
(IL.2.5)

3. Non-relativistic part of energy: Averaging over LS

Generally we can represent each configuration of any atomic system in the
following form :

1sk2sk2ppkagskazpkszghe
(IL.3.1)

Averaging over the total angular momentum of the atomic system (LS) is equivalent
to averaging all the sets of one-electron quantum numbers (n,j,m,m,), where n and j

are the principal and orbital quantum numbers, and m and m, are the projections

of the orbital and spin momenta {33].
For simplicity we shall first consider the two-electron systems. For this case
the energy in the first-order perturbation theory is

LI bl | M ] L L e j j k jl j’ k j J' L
EN(ajn’j, L$)=No2j+ D2+ DY [Re(njn’i ;anj)( X i S
K ooohooo/ljjk

e JP RV
Ri(njn’j ;Iljnj)(J . ){J J }(-I)S],
000/1tjJjk
(11.3.2)

where we use the common designation for 3j and 6] Wigner's coefficients. The first
term of the sum in Eq.(I1.3.2) describes the Coulomb energy of two electron
interaction. The second term defines the so-called exchange part of the interaction
energy and has not any clear physical interpretation because there is no analog of
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the exchange energy in the classical electrodynamics. The presence of the two terms
in the expression for the energy of the two electron interaction is caused by the fact
that the Schroedinger equation does not contain the spins. The spins are taken into
account by requirement for the wave function to be antisymmetric. The exchange
part of the electrostatic interaction has the purely quantum character. The radial
mtegral Ry ( nj;n,j,; n,j,n,i,;) can be expressed as [29]

Ri(nyj1ngjz:n4janziz)=

k
f r%drlf r%dr2 ij](rl)anjz(IZ) }E"f Rn4j4(r2)Rn3j3(rl)s
s
0 [0
(11.3.3)

where an(r) is the hydrogenic radial function, and rl“< and rk+1> are the smaller
and the larger values of the absolute values of r, and r, . The normalization constant
N, in Eq.(I.3.2) is equal to 1 for nonequivalent electrons (nj#n'j") and

2(2j+1)/4j+1 for equivalent electrons (nj=n'j’). For equivalent electrons we can
rewrite Eq.(I1.3.2) in the form

- . . JidkPliiL
EN(njnj,LS)=No(2j+1’%, Rk(njn;;mnﬁ(J ! ){J ! }[(—1)L+(-1)S].

k 0/1j Jk

(I1.3.4)
Averaging over LS is equivalent to calculating
. > Y @eL+D2S+1) EX(njn'j',LS)
El(njnj) = LS .
Loy 2 2 (2L+1)(28+1)
L §

(I1.3.5)

After averaging over LS we obtain for E,N(njn'j") and E,™(njnj) the following

expressions :

iitkV. o
EY(mjn'}") = Fo(nj.nj") - I—Z( )Gk(nj,nJ )
2%x100 0

(IL3.6)
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] WY .
ENnjnj) = Foni,nj) - X @(J J . ) Fi(nj,0j),

k 4+ 1o o
(11.3.7)
where we use the usual designation [29]
Fi(nj,n'}")=Rk(njn’j";n’j'nj),
Gi(nj,n'j")=Ri(njn’j";njn’j").
(I1.3.8)

In averaging over LS for a many-electron system it is sufficient to consider
states associated with electrons in two configurations, i.e., (nj)*(n'j")¥. The energy
in the first order perturbation theory after averaging over LS can be expressed in
terms of E,N(njnj), E;¥(n'j'n’j’) and E;N(njn'j") as follows :

L k' - [0 A4 ¥ LY |
njnj) +<E BY@yng) + KEN(min}).

(11.3.9)

BN ) 1= < B

The first two terms in Eq.(I.3.9) describe the interaction of the electrons
belonging to the same subshell and the third term the interaction between the
electrons of different subshells.

We can represent each configuration Q of a multi-electron atomic system
with N subshells in the form

Q=1ski2sk2pks3ski3pks3dhedskrdpks . niiki. o™,
(11.3.10)

where k; is the number of electrons in the i-th subshell n;j;. Using Eq.(11.3.9) we
obtain the energy of the configuration Q :

EN _LN (- Neo= s { X Npo s o s
1(Q)= 2 ;1 ki(ki-1) Ej (nljlnl.]l)'i'z E kikm E7(nyjiltmjm)-

m=2 i<m

(IL.3.11)

The energy of such a system in the zero-th order of perturbation theory is given as
the sum of the hydrogenic energies of all electrons of the system :

k;

ni2

M=z

EYQ =-1
0(Q) 5

Il
p_

(I11.3.12)
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Introducing the screening parameter o™ in accordance with Eq.(I1.2.1) we can
express the total non-relativistic energy of the system with the configuration Q in
the form

ENQ=EN(Q)IZ - o,
(IL.3.13)
where

oo BNQ
2E)(Q)

The same type of the screening procedure can be applied for the calculation
of nj;-n,j, transition energies, namely,

ENQI-EN[(nijn) napQI=Z2EY (nrjp)- EN(noi2)] + Z{ENIQI-EN (myjin) "ngjQl)
= [EY@ijn)-EY(minlZ - oY,

(IL.3.14)
where

oN = - EII\I[Q]};EI;I[(HIJQI—IHZ]ZQ] , E{I;T (n])=—% )
2 [Eg (n1)1)-Eo(nzj2)] 2n

4. Relativistic part of energy: Averaging over LS

For intermediate Z atomic system, the relativistic effects can be accounted
for by adding additional terms resulting from the reduction of the Dirac equation
and the Breit interaction [32] to the non-relativistic Hamiltonian. Since we are
interested in the LS averaged energies, only those terms of the Breit operator which
cause the energy shifts are incorporated here. These operators can be written as

Hy(r) = - %2 p*,

Ha(r) = 0‘—22  Z 8%(r),
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Hy(ryp) = -02 1t 8(ryy),

2
Ho(rp) = -9 L |ppy+ r12(1'12131)132)>
2 T2 152

2
Hs(r2) = - %a T 51528°(r12).

(11.4.1)
By using these operators we can calculate the relativistic correction.

The calculation of the relativistic part of the energy is more difficult than
that of the non-relativistic part. This is connected with the absence of the equation
analogous to Schroedinger equation. However, it is possible to write the expression
for the relativistic energy using the S-matrix [34] and obtain a perturbation theory
expansion in the same way as for the non-relativistic part of the energy. Therefore,
we can represent the relativistic part of energy in the form

ER=2(E§Z*+ERZ3+ERZ24+ER Z+...).

(11.4.2)
Similar to the non-relativistic part of energy we consider here only the first two
terms: Egf and E;R . The zero-th order of one-particle operators will contribute to
the zero-th order of the relativistic energy, and the first order of one-particle
operators and the zero-th order of two-particle operators to the first order of the
relativistic energy.

First we will consider the one-particle Breit operators.
1. One-particle Breit operators :

Hy(r) = - %2 p*, Ha(r) = 323 r Z 8(r).

It is possible to separate the angular and radial parts of the Vi . .. matrix element

with i=] and 4'.

nju’j’

Vijay=8(m,m")8(ms,m's)M ! (nj,n'j'),
(I1.4.3)

Vajj=0(m,m")(ms,m')3(m,0)M* (nj, ),
(I1.4.4)
where



o

Lni 0= 41 g6 2 1
M (nj,n’j)= - 0?Z 3 8G,i" ]0 r2dr (T - n—z) o= - _}an(f)an (),
(I1.4.5)
M*(@jnj)= o2Z* ;_ 8(3:0)8G',0) Rpj(0)R,5(0)
(11.4.6)

and an(r) is the radial hydrogenic function.
We can describe the matrix element for many-electron system by taking into
account the inter-electron interaction potential [35] :

V1 V2

anjmzjz;n4j4n3j3=] drl[ erZ Z ¢n1_}1(r1 V1)¢n232(1'2,V2)¢n4j4(1'2,\f'2)¢n333(1'1,Vl)

11.4.7)
where q)nj(r,v) is the wave function and v is the spin variable.

The zero-th order relativistic energy for the the n-electron system can be written as

ERH)= X BZ Vi Chs_g.Ch5... 5.0

1...Pn

(11.4.8)
where B.=njmm_ and i in the case under consideration is equal to 1 and 4'. The

angular part of the CBl . -coefficients consists of products of 3j Wigner
coefficients which couple states with two angular (j,m) and spin (1/2,m ) momenta
of electrons in total angular (L,,M;,} and spin (S,,M3,,) momenta of the two-

electron system. In the second step we add momenta of the third electron to the
intermediate states LM,SM>. We obtain Cg;_p, for the n-electron system:

s

Ch,.p.=

g: KZ AB1BK12)AK 12B5K3).. A(Kln-lﬁnK)CJmm Jnnnjn(L12S12L12512 .LS),
12 1n-1

(11.4.9)

where K=LMSM3 and A(K,K,K;) is equal to the product of 3j Wigner
coefficients:

L L L
AKKoK3)=(-1)H12Ms /0T 1 7) ( b }K
M, M, Mg
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(,I)S‘_SZ+M§ (2s3+1)( Sl SZ S3 )
M M5 M3
(11.4.10)

The coefficients C] 1. jonajn (L2819, L7 158155, LS) providé the antisymmetry of

the coefficients CLSBI pa FOT 2 specific case of equivalent electrons, i.e., at

n1j1=n2j2="'=nnjn the coefficients C]l[ll_]l ]nﬂn_] (LIZSIZ?L"IZSHIZ’“"LS) are the

parentage coefficients.
Eq. (I1.4.8) represents the contribution of the zero-th order relativistic
energy. Then, the first order correction is given as [35] :

EX(H)= - >, CH..Chrbaps..X

(n -2)' 131 Bo BBz

1 VB VBiBriBk + 1 VBk ViB:Babi

Ei+Eg,-Ep,-Ep, Ex+Eg,-Eg,-Eg,

(11.4.11)
with the summation over the index k which involves all the quantum number
njmim,.

After evaluation of the summation over angular and spin states we can
express the zero-th (Eq.(I1.4.8)) and the first (Eq.(II.4.11)) order contribution in
radial form. The zero-th order contribution is equal to the sum of the one-electron

contributions, where q(nj) is the number of electrons in each shell belonging to sets
of f shells:

E§(H)= X q(nj) [M'(nj,nj) + M*(nj,nj)].

njef

(1.4.12)

The first order contribution depends on the quantum numbers for each
electron and also on the intermediate quantom numbers: nyj;0,j5(L,S,,)n3j5...LS.

In this basic set we obtain the diagonal elements of the H; and H,. operators :

ER(H) = )IDIDIDI I IPIC Veiis {J‘ o Lz }

2(11‘2)! Ju 2 v jo I Lz Siz Jrjr 1

N+ 1R+ D(2j 1+ 1D(2j2+1) Ei(nyjingjoingjonyji)x

—n_



T.E2X XY T CuujrimiL12S12L12512,-.L8) X

13 jo Lis S13 Ling Sipa

Cjrnijijrnzjaisnsis.. janaialL-128 12, L12812....,LS),

(IL.4.13)
where
Ei(nijmajzngansjs)= X : (’ ; j3)(l 2 j“}x
’ n EptEnEnEns\0 0 0/10 0 0
M(nj1,n1j1) Ri(njinojz;najsnajs).
(I1.4.14)

The sum over n includes the summation over discrete states and the integration over
continuous states :

(11.4.15)

2. Two-particle Breit operators.
We consider now the contributions of the two-particle operators. These
operators can be written as follows, as already given before :

Hy(r12) = -0 1 8(ry2 ),

Hy(rp) = -2 L 4, F2TpoP2)
2¥12) 5 T12 PiP2 1

2
Hs(ri2) =- g— o 7 s;520(r12 ).

For these operators we can use the formula obtained before for 1/r;, operator [35]:

Va j1n2j2;najansjz—

f dry ] dl‘zvzl: VZ_E Omiit (C1,V 1) Pnin(12:V2) Hi(X1V132V2) §ng(12,V2)0njs(T1,V ).
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(I1.4.16)

In the zero-th approximation the contribution of each of the three operators is equal
to

E(l)z(}li)= - ) (n1-2)!3123 ﬁ%z . anj1112j2;n4j4n3j3clgﬁ--BnC[BllS'BZ'BS---Bn‘

(I1.4.17)

After summation over all the quantum numbers we obtain the same expression as
for the first order contribution of the one-particle Breit operators (Eq.(11.4.13)) by
only changing the expression for Ei[(nlj1112]’:,‘;112‘j2.nI Jy). Here we give
expressions for the E!; (n,jinyj,:n, j, 0 j; ) with i=4",5',2:

E7 (ayjinojznsjansjs)= - (21+1)( I JBX J2 Ja )T(ﬂl.lln212§n4j4ﬂ3_]3),
000AD 0O
(I1.4.18)
L L i sV I 32 da
E7 (nyjimjoinajansjs)= 2(2z+1>( I X 2] }x
000AQ OO
SEE
T(n1j102j2;n4jansjs)(-1) 1512 % % I .
g,
5 5 Su

(IL.4.19)
where

T(ﬂijlﬂzjz;ﬂd4ﬂ3j3)=] r7dr [ r%dIZij](rl)Rng}'z(r2)Rn4j4(r2)Rn1i3(rl)-
0 o (I1.4.20)

As the expression for Ezl (Dyj{Nyisiny,j 4013]3) is very cumbersome to write [20],
we give here only the radial integral to illustrate the contribution of orbit-orbit
operator:

rh
1.{-5—1

Kiy(njjinzja;ngjansjs)= [ rfdr, f r3dr0(r;-12) —2 Ry, (r)Rpyj,(r) dﬁ%;Rn&(rZ)Rnsjs(fl)-
1] o

(11.4.21)
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To obtain the first order of relativistic energy ER, (Eq.(11.4.2)) we combine

the first order for one-particle operators and the zero-th order for two-particle
operators. For a common case we can rewrite Eq.(I1.4.13) in the form :

i) = L_TITET Y T (1) {Jl 2 Liz

2(11-2)' Ju j2 Jv o jr I Lz Sy Jr J2 !

N2+ DQRjr+ 12514+ 1)2jr+1) ER(nyjinzj;najenyji)x

Z ZZZ .2 2 Cimij.. j,,n,ﬂ,,(LnSuleSlz ., LS) X

E Jo Lis S13  Lip1 Sina

Ciinijiiznaigjsnis.. janaga(e125 12 L125812.....,LS),

(11.4.22)
where
ER(nj1n2j;n09201919=El (01j1aj2;n092m11)+Ef (ngjingja;nadonyjr)
+ Ef (n1jimojo;nojonyji)+E7 (nijimaojasnzgonyji )+ EF(njinsja;nadonyji).-

(11.4.23)

To average the relativistic energy over LS we have to consider its zero-th and
first order terms (Eqs. (I1.4.12) and (11.4.22)). The zero-th order of relativistic
energy which is the zero-th order for the one-particle operators H; and H, is

independent of LS . After substitution of Egs.(1.4.5) and (I1.4.6) to Eq.(11.4.12)
we obtain the zero-th order of relativistic part of energy for the configuration Q
(Eq.11.3.10) :

N
E§(Q)= ; KEG (ngji),

(11.4.24)
where

(11.4.25)

The angular part of E;R is the same as that for the non-relativistic first order
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energy. In this case we can use all formulas obtained for the 1/r;, operator by

changing only the radial part.

EfQ-1 fi Kk 1) E¥ngimin+ S T kikn EX(agitmim),

m=2 i<m

(11.4.26)
where

E(nij5,nii)=E& (ngingissnggmigi) (- W i+ 1D(2j5+1) - %}; EX(ngmnginijing;),
(11.4.27)

EX(niji,n)=C 4+ DES (njmijizngingy) - 2’” E ER(nijingisngmg),
(I1.4.28)

ElR(nijinjjj;n-}jinjjj) is determined from Eq.(I1.4.23).
The zero-th and the first order relativistic energies for the configuration Q
can be represented in the form of screening formula :

ER(Q)= aZZER(Q){z ¥ (Q)}

3E§(Q)
(11.4.29)
Then, the relativistic part of Q-(n;j;)'n,j,Q transition energy is :
EX[QI-ER[(n4j1) '02j2Q1 = 02Z[EF (n1j1)-ESmoin)Z - ok},
(I1.4.30)
where
ok — . EXIQI-ER[(nijn) 'nyjpQl
3 [E§(n1j1)-Ef ()]
(I1.4.31)

5. X-ray transition energy averaged over LS

The total X-ray transition energy can be expressed as a sum of non-
relativistic and relativistic transition energies. Combining Eqs.(I1.3.14) and
(11.4.30) W e : obtain ‘ the Q-
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(n1j1y 1n2j2Q tr

E[Q-(n1j1) 'n2j2Q] = [EX (n1j1)-E (maj))(Z - NPro ZIER (1) ER (i) Z - oRF
(II.5.1)
where

o = - ENMQI-EN(@j1) 'ngjpQ
2 [Ed(n1j1)-E (n2j2)]

ERQI-Er [(mj1) 'ngi2Q] |
3 [E§(muj1)-Eo (n2j2)]

oR = -

:E:ON(II-I)= - 1 H
J 2I112

ERn"i=-L—~Z—-—3——5'i,O},
Smiom - 25 (520~ 2--8,0)

and the configuration Q is given by Eq.(I1.3.10).
It is important to note that these formulas can be used for calcuiation of the
transition energies for any atomic system.

6. Autoionization widths of levels averaged over L and S

In the present section we will obtain the expression for the autoionization
widths of levels averaged over the total momentum L and S. To derive the formula
for the autoionization width for the multielectron system we will proceed first with
the two-electron (n,j;0,j,;LS) system. The autoionization level width for the two-

electron system where one of the electrons goes to continuum k and the other to
n, - is given by [34]

TnyjmgipLS)= <% X

k nijrj

<ﬂ1j In2j2LSHI'j 1'kj2'LS> |2
12

(11.6.1)

where n; and j; are the principal and orbital quantum numbers of an electron and k
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is the wave vector of an electron in continuum. The Coulomb matrix element in
Eq.(I1.6.1) can be expressed as

<n1j1n2j2LS 112 nj 1vkj2-LS>=«/ i1+ D2j+ D)2 r+ D2jr+1)x

v 101 22 L sfi1 i L
X (-1Frn o ’“2'[[ ?1 fz }Pl(ﬂlllﬂzlz;k.lz'lll'_ll')+(‘I)L S{?l j'z }Pz(nmnzlz;nm-ka-)}
! a1 vz 1
(11.6.2)
where
Pi(nijingjz;Kiznaj1)==Gii ) G2iz)Rinjinojz:kjong ).
(11.6.3)

(j; 4¢) and (fj5j,) in Eq.(J1.6.3) are the 3j symbols and Ry(n;jnyjp3kjp my i) is
the Coulomb radial integral with one continuous parameter given by

Ry(nyjinzja:kjrngj 1')=[ drr;? f drorz?Ui(r1,r2) Rayj ()R g (12) R, (r2) Ry, (1)
0 ]

Uy(r1,12)=0(r;-17)

1‘2"
I+

i
r
+ O(r-r])—1—

where U[ r;,I,) is the operator of the electrostatic interaction, ©( r;-1,) is the theta
function. To get the averaged autoionization width I'(n,jynyj,:LS) we consider the

function A(nj nyj,:kj,n; 17} determined as follows :

2
)y (2L+1)(2S+1)| <n]j1n2j2LSI1 nl-jlvkjg-LS>l
A(nyjingjzikjznpjr)=2E LS 12 .

k 2 (2L+1)(28+1)
LS
(11.6.4)
Then, evidently, the averaged width for the configuration NyjyNyjy I8
MngimjzLS) = Y Angjimojakjonjp).
nyjrpr
(I1.6.5)
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Using the expression for the matrix element (Eq.(11.6.2)) and the sum rules for the
6j-symbols [29]

¥ (2L+1){j1 2 L }{h I2 L}: 1
L Jo g 1 Nz jr 1 21+1)

and
j1i2 L }={j1 jv l'}
jriz ') iz jz 1
we obtain the following expressions for the autoionization width of two-electron

system averaged over the orbital and spin quantum numbers :
Two typical cases are considered here :

Z (_1)L+l+l'(2L+1){jl j2 L}
L

Jjo qr 1

1. n;j;#n,j, (nonequivalent electrons)

A@imaizkizniin=2E Qi+ D2+ Dx T[22 jinggaskjznain)+
k w241

LI (1 jimajasnyikiz)-(-1)

1z I
21+1

o }Pl(nljIﬂ2j2§kj2'ﬂl‘j1')Pl'(nljlnli2§ﬂliil'kj2‘)],
LRar i
(11.6.6)

2. nyj,=n,j, (equivalent electrons)

e e . 211+1 . . ! e e g .
AGginskizmgd=4® G o5 11054 1)x 3 2[2EDp 20y n,j,5kiam 1)
k (45,+1) mw 20+1

31 Jor 1 e e

- (-DM{J_ } }Pl(nﬂlnﬂl;kJZ'nl'_ll')Pl‘(nLllnljl;kJZ'Ill'Jl')]-
g 1

(11.6.7)

Here we take into account that the statistical weight of configuration n,j;n,j,LS is
2(2j;+1)2(23,+1) for nonequivalent electrons and (2j,+1)(4j;+1) for equivalent
electrons. The numerical values of A(n;j;nyjy:kj,ng4j;.) and A(ngjingj ki, ny ;o)
for two-electron system with configuration up to 4d4d are given in Table I1.6.1.
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Formulae (11.6.6) and (I1.6.7) can be considerably simplified in some
important cases when the final state contains a 1s-electron :

an 1;r&nzj2 :

A(ijimajaikjr19)=2E (2jz+1)(ijaiz)>| —L—R; (mjinzjzikjr 1)+
k (2j1+1)

7 (r+j2)
1R 2nijinojn;1skin) - (-1) R;, (njiimajzkir18)R:.(nijimojr; 1skis) |,
Gy @uimaslskiz) - o SEe e Ry(mimaiakiz Ry (uiimg i2) ]
(IL6.8)
yJ1=Nyiy
Alngjimjikip1s)=4% —C*D 449020 R 2mjingjiskizts).
k (4:+1)(2j;+1)
(1L6.9)

The expressions (I1.6.6-9) give the autoionization rates of the two-electron system
averaged over the orbital and spin quantum numbers. To generalize this problem to
multi-electron system we have to consider two cases : two electrons which change
their states in autoionization process belong to one group or to two different groups
of equivalent electrons. One of these electrons goes to continuum and the other
changes its state in the atom. Therefore, to calculate the autoionization width in
general multi-electron systems we have to consider variations of states of the
following configurations :

(01 )P (m2j2)P(n3j3)>

(11.6.10)
and
(n1j )™ (m2j2).
In the first case we consider the transition of the type
(01 1)P (m2j2)P(ma3)™ — (i)' (mf2)* ' (ngfa)™ 'kl
(I1.6.11)

and in the second case of the type

(n1j1)P (n3i3)" = (@ij)P (nsjs)P* k.
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(11.6.12)
The probabilities of the autoionization decay are given as follows :

1. case where three subshells are involved in autoionization decay:

A[(Hlj P (Dj2)P2(n3j3)P-(nyj 1 )P (n2j2)P*  (nsf 3)p3+1kl]=

- — P32 nijnsiz:kinsgs),
Plpz( 2(2].3_'_1)}1\( Jinzjz:kinsgs)

(11.6.13)
2. case where two subshelis are involved in autoionization decay:
A[(nﬂ1)Pl<nzjz>m-(nu1>P"2(nz;2)m”kl}=1pl(pl—1)( }A(nmnm,klnm)
2 2(2 jot+1)
(11.6.14)

where A(n,j;n,j,;kingj;) and A(njyn,yj :kingj,) are determined by Eqs.(11.6.6)

and (11.6.7).

Formulae (11.6.13) and (I1.6.14) should not be changed if we would add new
groups of equivalent electrons to the configurations (11.6.10) because the operator
1/1,, changes the state of no more than two electrons. To determine the widths of

autoionization states it is necessary to sum up A over all the finite states, i.e., over
all rearrangements of the indices (i,g,m) as well as over indices of the emitted
electron [ and to combine both formulae (I1.6.13) and (I1.6.14). Finally we find the
following autoionization width:

T{(n1j1)P ()P (nim)P) =

N
> A[(niji)*’l(ngjg)*’g(nmjm)f’m-(niii)P"‘(ngjgwg“(nnam)Pm+‘kl}xa(EmEnm-Em-Engn

i,2.m

N
> Al @GP a0 2(Ounim)P* KIS (Eye+Eny-2En),

(11.6.15)
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where E; = k%2 is the kinetic energy of the emitted electron and E»EpandE

are the one- particle non-relativistic energies of the bound electrons all of which
are equal to -1/2n?. In Eq.(I1.6.15) we have written out in an explicit form the
Kronecker's symbol for energies of the initial and final states. This restricts the
surnmation over m. From the energy conservation

%k2+Enm=Eni+Eng,

E.. +EIlg - E_ must be positive, i.e., the quantum number n_ must be smaller than

the quantum numbers n; and n.

For the illustration of the above formulae we present the autoionization width
I' for typical configurations in 1s2sP!2pP?nj system :

I'(1s2sP12pPnj)=

élTpl (p1-1)A(2s2s;ksl s)%pl P2A(2s2p;kpls) +
%plA(anj;kjls)%pg(pz—l){A(2p2p;ks13)+A(2p2p;kdls)} +

PAACPIKG-D19)+ARpnjk(+1)1s))
(I1.6.16)
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Table I1.6.1. Mean values of square of the matrix element, eV*.

Electronic Electronic
configuration | A(njn,),:n,J,kj,) | configuration | A(njn,j,n,j;kj,)
1n,j10yj,0;3, Ky 1,j10p)50; 1 Kjy
202010k0 0.1353742E+00 313110k0 0.4334630E-03
202110k1 0.4007047E-01 313110k2 (0.4349244E-02
203010k0 0.1713699E-01 313120k0 0.2123355E-04
203110k1 0.1142916E-01 313120k2 0.5108035E-02
203210k2 0.1137283E-02 313121k1 0.184614CE+00
2040100 0.6%909104E-02 313210k1 0.1086592E-04
204110k1 0.4757865E-02 313210k3 0.5422759E-03
204210k2 0.5989454E-03 313220k1 0.1143075E-02
204310k3 (0.1194274E-04 313220k3 0.1131785E-01
212110k0 (.6836230E-02 313221k0 0.1210498E-01
212110k2 0.8197643E-01 313221k2 0.1037155E+00
213010k1 0.8239322E-02 314010k1 0.8885289E-03
213110k0 0.1486025E-02 314020k1 0.1428472E-01
213110k2 0.1567209E-01 314021k0 0.2188851E-01
213210k1 0.7047191E-04 314110k0 0.1443133E-03
213210k3 0.3228880E-02 314110k2 0.1416621E-02
214010k1 0.3103617E-02 314120k0 0.6745998E-05
214110k0 0.6061064E-03 314120k2 0.1432632E-02
214110k2 0.6114865E-02 314121k1 0.4736068E-01
214210k1 0.3767503E-04 314210k1 0.5814587E-05
214210k3 0.1652319E-02 314210k3 0.2829510E-03
214310k2 0.5225128E-06 314220k1 0.4781162E-03
214310k4 0.1174001E-03 314220k3 0.2744082E-02
303010k0 0.8452666E-02 314221k0 0.2888935E-02
303020k0 0.1298267E+00 314221k2 0.3639755E-01
303110k1 0.2358414E-02 314310k2 0.1252982E-06
303120k1 0.6606562E-01 314310k4 0.1626205E-04
303121k0 0.5445527E-01 3143202 0.6460321E-03
303210Kk2 0.2050333E-03 314320k4 0.3973397E-02
303220k2 0.68681359E-01 314321k1 0.3657072E-4
303221k1 0.4613040E-03 3143213 0.5279547E-(2
304010k0 0.1690209E-02 323210k0 0.1240500E-06
304020k0 0.2077584E-01 323210k2 0.7386578E-06
304110k1 0.9830592E-03 323210k4 0.6972003E-04
304120k1 0.2628151E-01 323220k0 0.1620228E-02
304121k0 0.1181018E-01 323220k2 0.1755390E-02
304210k2 0.1078268E-03 323220k4 0.3823095E-01
304220k2 0.2571912E-01 323221kl 0.2194059E-01
304221k1 0.1997177E-03 323221k3 0.2729374E+00
304310k3 0.1828313E-05 3240102 0.7440466E-04
304320k3 0.6673792E-02 324020k2 0.1540260E-01
304321k2 0.2190811E-02 324021kl 0.6974708E-04

* 0.4007047E-01 means 0.4007047%10!
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Table I1.6.1. Continuation.

Electronic Electronic
configuration A(n,j,nyj,:n. i, kj,) | configuration A(n,jn55,:0,§Kjs)
1 0g)o0y 1 Kjy 4400,y 3, Ky

324110k1 0.3754825E-05 414220k3 {.8050460E-03
324110k3 0.1905760E-03 414221k0 0.1307118E-02
324120k1 0.5813416E-03 414221k2 0.8895547E-02
324120k3 0.3637278E-02 414310k2  0.5166560E-07
324121k0 0.5698759E-02 414310k4 0.5378402E-05
324121k2 {.2648852E-01 414320k2 0.1680534E-03
324210k0 0.4822074E-07 414320k4 0.8878215E-03
324210k2 0.3536460E-06 414321k1 0.7659674E-G5
3242104 0.2978746E-04 414321k3 0.8463108E-03
3242200 0.4238389E-03 424210k0 0.2275004E-07
3242202 0.6644706E-03 424210k2 0.2074035E-06
324220k4 0.5917673E-02 424210k4 0.1586524E-04
324221k1 0.6858957E-G2 424220k0 0.9707705E-04
324221k3 0.6470531E-01 424220k2 0.2333356E-03
324310k1 0.9251373E-08 424220k4 0.1628462E-02
324310k3 0.5794120E-07 424221k1 0.2120880E-02
324310k5 0.1907893E-05 424221k3  0.1892440E-0i
324320k1 0.3653635E-04 424310k 1 (.4922826E-08
324320K3 0.6792153E-03 424310k3 0.2857428E-07
324320k5 0.6621568E-02 424310k5 0.8355666E-06
324321k0 0.7684954E-04 424320k 1 0.2494282E-04
324321k2 0.6576700E-03 424320k3 0.1856463E-03
324321k4  0.2744000E-01 424320k5 0.7730885E-03
404010k0 0.1348413E-02 424321k0 0.3888767E-04
404020k0 0.1157387E-01 424321k2 0.8244574E-04
404110k1 0.3704147E-03 424321k4 0.4126228E-02
404120k 1 0.5707020E-02 434310k0 0.5620801E-10
404121k0  0.4734870E-02 434310k2  0.2670124E-09
404210k2 0.3906301E-04 434310k4 0.2919349E-08
4042202 0.5396224E-02 434310k6 0.3461214E-07
404221k1 0.5404846E-04 434320k0 0.1471619E-07
404310k3 0.6386833E-06 434320k2 0.1425021E-04
404320k3 0.1035849E-02 434320k4 0.1344863E-03
404321k2 0.8229092E-03 434320k6 0.5235595E-03
414110k0 0.6874160E-04 434321k1 0.4720087E-05
414110k2 0.6646596E-03 434321k3 0.8137828E-05
414120k0 0.92660958E-05 434321k5 0.1500449E-02
414120k2 0.5859216E-03

414121kl 0.1606276E-01

414210k1 0.2006968E-05

414210k3 0.1000668E-03

414220k1 0.1777911E-03




7. LS-averaging of radiative transition probability:
First order of Z-expansion method for dipole matrix element

In the present section we derive the analytical formulae for the radiative
transition probability averaged over the L and S quantum numbers with regard to
the first order of the perturbation theory by 1/Z-parameter for the dipole matrix
element and present the results of calculation. The dipole matrix element is
considered in the non-relativistic approach.

We shall start with the general formulae for the radiative transition
probability, W, of the two-electron system in the LS-coupling scheme :

Wi(nyjingj2LS-n1jinyj2L'S)=

2 [E(n1j;n2j2LS)-E(n1jinzizL'S)IP[P(njnajsLS-nyjnajaL'S)]?
(2L+1)(2S+1)L(]‘]1 2i2L.S)-E(n1j1n2joL'S) I [P(n1j1ngjoLS-n1jin2j2L'S)I7,

dL.7.1)

where nj; is the electronic configuration of the i-th electron, L and S are the total
angular and spin momenta, E(nj;nj,LS) is the energy of the LS state and P is the

dipole matrix element. Averaging of (I11.7.1) over LS and L' can be done through
the following procedure :

T Y (QL+1)2S+1)W(ngjngjsLS-n1jinz2L'S)
W(n1inoio-01jinyiy ) == L3
(ijangiz-mijinzjz) 3 2L+D)(2S+1)
LS

»

(11.7.2)

and performed separately for the transition energy and the dipole matrix element.
As averaging of the energy has been already done in the previous sections, here we
will treat only the dipole matrix element. After averaging the energy we have the
following radiative transition probability :
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W(nijingjr-ngjinyjr)=
%;(E(nmnziz)-ﬁ(mjlnz-jzr)ﬁ g: LZS [P(r1jingjoL.S-ngjingi2L'S)]?

(I1.7.3)

where g=4(2j,+1)(2j,+1) is the statistical weight.
We can represent the dipole matrix element as a series of 1/Z powers and,
taking into account the 1/Z-dependence of its zero-th order, we can write:

ZP(n;)1n2)2LS-n1jingjyL'S)=

P“”(nmnzszS-n]jInzjz-L'S)-%P(“(mjlnzist-mjlnz-jz-L'S),

(11.7.4)
where P(® s the i-th order of dipole matrix element.
To average the square of dipole matrix element with regard to the first order we
have to consider the expression:

Z? %: % P(n,j1n2j,LS-n1jin2joL'S)’=
%‘, % [{PO(n1jin2§oLS-n1j1n2jrL'S) } o+
%P(O)(n]jlngngS-n]jmgjg-L'S)P(l)(n]j1n2j2LS—n1j;n2vj2-L'S)],

(I1.7.5)
where

[LL'l\

N RL+1D)QL'+1)(28+1)/3
\}'2' 2 I [

PO(n,j1n0joLS-n1j1n2j2L'S)=Q(n2j. 02z )(- 1)

(I1.7.6)
and
PD(nyjingjolS-nijingjrL'S)=
T(nijingjoLlingjonji L) +T(njin2go L nojon ji L)+

DS T (ngjony, Lingdon L)+ T (0, 1022 L' n31ngjo L) [+
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(-1 97 S T(n31n0joLingjine g LY+ T (0o L nojon 1 L) 1+
(-1 T (ngon1j1 Lingj o L)+ T(ojan i g ngja L]

(IL.7.7)
with the following notations:
IR’ ‘ 3] {j j' ]- . e
Q(nj,n'jH=v2i+1)(2j +1)( (nj,n'y),
000
(11.7.8)
T(nyjnzjaLinyjonsjil)=
X ¥ tr(nijmajasnagany)(- IO D2,
1T
~/(2L+1)(2L‘+1)(2S+1)/3{ Pl } LL'1 }
ir N § g2
(11.7.9)
where
tr(n1j N2z n2jonidi)=
"?;‘ E +E2HI—EII, E R(nlnij)R(ninzjz;nyjrnijidx
n ny~ ny~nge
“/(2j1+1)(2j2+1)(2j1'+1)(2j2'+1)><K Pacd X Pl Xlz j2 1 )
000ANODOOCADOOO
(I1.7.10)

R(n,j;-n,1,) and Rn;jin,j,in,,0,J,) are the dipole and Coulomb radial integrals,
respectively, and the last multiplier in Eq.(I1.7.10) is the product of the Wigner's

3-j symbols. The summation over n in Eq.(II.7.10) means the summation over
discrete states and the integration over continuum; E and E_, are the non-
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relativistic one-particle energies equal to -1/2n2.
The summation over LS in Eq.(I.7.5) can be made for both (P©)Z and
POPM terms. The final results for two terms in Eq.(IL.7.5) are as follows :

% é [(Pnyj1ngjol.S-nyjimadaL'S)P=
] LL' 1}

\ CL+DEL+DES+1)/3=—8  [Q(mjzn2i)],
22 n

C L
%: gs" [Q(ngj2,n292)] 32D

(11.7.11)
and

X P(O)(ﬂljmzizLS-nlj1ﬂz'j2'L'S)P(D(HIj1n2j2LS-H1j1n2‘j2'L'S)=%Q(n2jz,llz'jz')2(-1)j2+j2'+1 x
L' LS

{ 24 (211+1) (tjz-o(bj iV Qje+ D +t,0G291:j1j2)/ (2jo+ 1) ) +

—%; GO Griasgzd D+ Giizsizin)) -
zz: (tjz-z(iz} 1332 Qi+ D+, 20135230/ (2j2+1)) -

- jr I 1 2 I 0
)ID) (-UHJIHHJ_2 . ltll‘(lljz;Jljz')+{J_2 ‘ }tll'(]IJZ';JIJZ)} }
Lot 11J21! hj 1

(11.7.12)
Combining Egs. (I1.7.3), (11.7.5), (11.7.11) and (11.7.12) we can write the final

expression of the radiative transition probability averaged over LS for two-
electron system in the form :

W(nijingjr-nijngja)=

—2 1 (B(nyjinoin)-E(ngiimyin)]? i .‘.2[1.;.;5 J1nzjo-nyjinody
3t D) ZZ[E( dingi2)-E(mjinzj20]"[Qm2j2.022)1 7 (nyjingjo-nijinggz)| ,

IL7.13)
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where S(n,j;n,j,-0;j Nyd,) 1s given by

S(ngjinajz-nijinziz)= — L ————
2(2j1+1)Q(nyj2,n2727)

{ 2 2+D) ((t0Gain i)V @iz + D+ (tkii 1)V i+ D) +
%; D g Gjazzin+tn Giizsiain) -

; ({lj Lo MaiGai 155230/ Qiz+ DH B2 G sizn/ (2j2+1)) -

- > 11 .. 2 1T ..
)ID (-1)'“"’#1“]'2 _ }tzr(J 1]2;JU2')+! '12 . \tll‘(]]JZ';Jle)} } :
b Jijo 1 liviz 1

(11.7.14)

In two equivalent electron system the denominator in the first multiplier in
Eq.(11.7.14) should be replaced to 2(2j,+1/2)Q(n,]5.0545).

To generalize this result for many-electron system we will consider the
following transition (nj)*+!(n'j)¥"1® - (j)k(n'j")*® , where @ is the electronic
configuration ( for convenience we change the designation Q which has been used
in the previous sections) and in the present case is
‘Dz1Sk125k22Pk33Sk43pk53dk643k74pks4dk94fkm and nj and n'j' belonging to any
subshell of this configuration. The generalization gives the following result :

W) @) @) () @)=
L4 (@) " @) @)-E(() () @)1 [Q@i.n )

ZZ
k' 1 k l:l-l~2—N ki-S '.i 'S '-i i- '-i "'jl
2(2j,+1)( 2(2j+1)) 25( (ng;,n'j))S(njinj-ngin'j) | ,

(I1.7.15)

where the summation is performed over all the subshells, i.e., over all the groups
of electrons with different quantum numbers n and j.
The analytical expressions obtained can be used for the caiculation of X-ray
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emission rates for different atoms .
The main part of the calculation is to calculate the value of S(n,j 05,

n,j,0,j,) which is given by Eq.(11.7.14). Here we present some details of this

calculation. As mentioned above, the sum in Eq.(I.7.10) means the sum over both
the discrete spectrum and the integration over the continuous spectrum. The
following Coulomb and dipole radial integrals in Eq.(I1.7.10) with all discrete
parameters and with one continuous parameter have been treated analytically :

Ry(nijimgj2;nzjon 1'j1')=f drir; 2] dror2?U r1,02)R 0, (TR, (12)Rigp (12) Ry (T1),

Ry(kjinzjosnogrngjy)= f drlrlzf dror2?U(r1,12)Ri (1) Rayi (12) Ry (12) Ry, (11,

where
U(r1,52)=0(1

i+ 1-21+
R{nij1.n2)2)= f dr ranljl(r)rRHZjZ(r)a
i

R(kjl,nzjz)=[ dr rszjl(r)arﬂ-z(r).
0

The radial functions of the discrete and continuous states are [31]:

21’)

Rqj(r)= (24))! }1/2 . 'f’n( )’F( -n+j+1,2j+2,
n

(21+1)T {(H-J 1!

w2 [CG+1+1/ik) i ke :
Rk(r)—/\/ik ity ) €™ FCik, 2§42, 21ks),



where O is the theta-function, F is the confluence hypergeometric function and I is
the gamma-function. The radial function of continuous spectrum is normalized in
the k-scale.

The sum over the discrete spectrum in Eq.(I[.7.10) has been calculated for
the quantum numbers n=1-50 and asymptotical evaluation of the Coulomb integrals
proportional to 1/n has been used to take into account the contribution of the rest
part of the spectrum. The integral over continuum has been calculated numericaily
by the extended Simpson's rule with the step h=0.05 and k=0.01-5. The relative
uncertainties of the present calculation of the sum in Eq.(I.7.10) are estimated to
be of the order of 10

The numerical values of  S(nj;n,j,-n;j;0,4,) given by Eq.(IL.7.14) for

different transitions are presented in Table I1.7.1.
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Table I1.7.1. Numerical values of S(nj;n,j,-1,j;05]5)

Electronic Electronic
configuration | S(n,j;n,j,-1;j;0545) configuration S(nj 055,04 0yj50)
0,402, 0430505141111,

10211010 0.154775 10311020 -0.044360

20212010 -0.161135
20312020 -0.087249

21212110 -0.151501
21312120 0.157203

30213G10 -0.029340
30313020 -0.123708

31213110 -0.056669
31313120 -0.051133

32213210 -0.051318
32313220 -0.008191

40214010 -0.011483
40314020 -0.045120

41214110 -0.016213
41314120 -0.055522

42214210 -0.015795
42314220 -0.011704

43214310 -0.005128
43314320 -0.034314

10211020 0.823184
10311030 0.899480

20212020 0.265608
20312030 0.558128

21212120 0.076032
21312130 0.571122

30213020 0.201151
30313030 0.247069

31213120 -0.099027
31313130 0.172067

32213220 -0.830387
32313230 -0.041756

40214020 0.465830
40314030 0.200510

41214120 0.073440
41314130 0.117172

42214220 -0.724366
42314230 -0.226866

43214320 -1.058331
43314330 -0.792079

10301021 2.456648
10321021 -0.762947

20302021 0.959442
) 20322021 -(.004509

21302121 1.571283
21322121 -0.047090

30303021 0.222180
30323021 0.111903

31303121 0.249491
7 31323121 0.043286

32303221 0.008348
32323221 -0.109460

40304021 -0.043408
40324021 0.035411

41304121 0.039322
41324121 0.000447

42304221 0.055137
42324221 -0.037954

43304321 0.006379
43324321 0.029505

10311010 0.365955
10321031 -1.023694

20312010 -0.241941
20322031 -0.795314

21312110 -0.048184
21322131 -0.833575

30313010 -0.218407
30323031 -0.301699

31313110 -0.186980
31323131 -0.250255

32313210 -0.233723
32323231 -0.055310

40314010 -(.049825
40324031 -0.279541

41314110 -0.141400
41324131 -0.144495

42314210 -.101365
42324231 0.191111

43314310 -0.131533
43324331 0.809640

10311020 -0.044860 040

20312020 -0.087249 1 1021 2216724
20402021 0.708640
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Table 11.7.1. Continuation

Electronic Electronic
configuration | S(n,j;8,),-0,jy0d,) | configuration | S(nyjNyjr-04j Ny,
04000 ) 1050, 410705131 )2
21402121 0.920852 40414030 -0.079183
30403021 0.540886 41414130 0.034799
31403121 0.231688 42414230 0.006766
32403221 0.430041 43414330 0.005338
40404021 -0.024957 10411032 -1.777307
41404121 0.061388 20412032 -2.549926
42404221 -0.031404 21412132 -2.888766
43404321 -0.068051 30413032 -1.082949
10401031 2.339532 31413132 -1.300756
20402031 1.531662 32413232 -2.268968
21402131 1.705634 40414032 -0.406483
30403031 0.677181 41414132 -0.545066
31403131 0.695820 42414232 -0.366843
32403231 0.963797 43414332 0.082881
40404031 0.293417 10411040 0.926948
41404131 0.321338 20412040 0.698754
42404231 0.188459 21412140 0.727444
43404331 -0.132277 30413040 0.442760
10411010 0.508325 31413140 0.435212
20412010 -0.231610 32413240 0.423642
21412110 -0.074805 40414040 0.233068
30413010 -0.382246 41414140 0.191593
31413110 -0.153852 42414240 0.101066
32413210 -0.404749 43414340 -0.105374
40414010 -0.264919 10421021 -0.932565
41414110 -0.220250 20422021 -0.611744
42414210 -0.202157 21422121 -0.889690
43414310 -0.352215 30423021 -0.068872
10411020 0.309046 31423121 -0.134451
20412020 0.255476 32423221 -0.245648
21412120 0.098552 40424021 0.111572
30413020 -0.106088 41424121 0.083019
31413120 0.098903 42424221 0.001069
32413220 0.065481 43424321 0.062469
40414020 -0.148267 10421031 -0.696506
41414120 -0.094902 20422031 -0.077912
42414220 -0.040375 21422131 -0.102992
43414320 -0.122624 30423031 0.077158
10411030 -0.047119 31423131 0.063497
20412030 -0.062888 32423231 0.143341
21412130 0.061419 40424031 0.097656
30413030 -0.044126 41424131 0.102670
31413130 -0.074366 42424231 -0.025404
32413230 0.018507 43424331 -0.195047
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Table I1.7.1. Continnation.

Electronic Electronic
configuration | S(n;j;nyj,-njinyj,) | configuration | S(n,j,n,j,-n,jnyj,)
0,J102J2M )10 IS ULIAUTIL 1)
10421041 -1.015977 32433232 0.104547
20422041 -0.886908 40434032 -0.104312
21422141 -0.919824 41434132 -0.020097
30423041 -0.552912 42434232 0.110587
31423141 -0.563651 43434332 0.411925
32423241 -0.566942 10431042 1.002636
40424041 -0.258772 20432042 1.067460
41424141 -0.236651 21432142 1.055556
42424241 -0.151023 30433042 0.747195
43424341 0.057177 31433142 0.765509
10431032 0.988523 32433242 0.814757
20432032 0.578020 40434042 0.333849
21432132 0.642961 41434142 0.306280
30433032 0.076139 42434242 0.234213
31433132 0.064929 43434342 0.043724




III. Summaries

The purpose of the present work was to develop and suggest the theoretical
method and create numerical codes for the calculation of the atomic characteristics
(such as radiative transition energy, radiative transition probabilities and
autoionizing rates) of the highly ionized atoms with an arbitrary number of
electrons and in any electronic configuration (including highly excited Rydberg
states). These requirements have arisen in order to apply the theoretical method to
study the formation-deexcitation processes in "hollow atoms” which are formed via
neutralization under the interactions of highly charged ions with a metallic surface.
The mechanisms of formation and deexcitation of such a highly excited state of
atom have been described in Chapter 1.

The satellite transitions and Auger cascades play an important role in the
deexcitation of such a "hollow atom" and the calculation of the atomic
characteristics of these processes was one of the main subjects of the present work.
In view of applications to highly charged ions the theoretical method has been based
on the perturbation theory using the nuclear charge Z of the ion as a parameter and
the inter electron interaction and relativistic correction as perturbations (the so-
called Z-expansion method). The perturbation theory gives all atomic
characteristics expressed as a series of expansion in 1/Z. The screening parameter
has been introduced in order to improve the accuracy of the calcuiation. To
facilitate the calculation and reduce a vast number of possible states for many-
electron systems all the atomic characteristics have been averaged over the total
orbital and spin quantum numbers and found to be expressed in analytical forms as
a function of the electron numbers in various shells of the ion. The derivation of
the analytical formulae and the description of the theoretical approach are given in
the Chapter 11

The present method has the following advantages :

1. An important advantage of this method is that expansion coefficients for energy
including relativistic corrections are the same for all ions belonging to a given
isoelectronic sequence. Moreover, all radial integrals in perturbation theory
formulas are the same for all atoms and ions. This feature of the theoretical method
is very important in calculation of the energies and radiative probabilities of the
satellite transitions.

2. The introduction of the screening parameter described in Chapter II allows us to
take into account a part of the second order correction of the non-relativistic as
well as relativistic energy and to obtain appreciable accuracy without the necessity
to compute more elaborate terms of the second and higher orders perturbation
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theory.
3. The expansion coefficients for the energy E can be extrapolated on the principal
quantum number n, i.e., if we have the coefficient for n=n,, then the following

formula is used for n>n,:
- ng\®
E(n) = E(ng) (22} .

This extrapolation allows us to calculate the atomic characteristics of the ions in
highly excited states.

4. The averaging over LS reduces the vast number of possible states of many-
electron system and allows us to express the atomic characteristics as a function of
number of electrons in different shells of the ion. Therefore, this theoretical
method can be applied practically to any atomic system with arbitrary number of
electrons.

5. The numerical codes for the calculation of the atomic characteristics which have
been created on the base of the present theoretical approach need considerably less
time in comparison with other methods well known.

The theoretical method suggested has been applied for the study of
deexcitation processes and identification of the observed X-ray spectrum resulted
from the interaction of highly charged Xe4 (q=44-48) [13,32] and Ar%* (g=17) ions
[36,37] with metallic surfaces (Cu and Ag, respectively). It was found that the
present method of calculation gives generally good results (a comparison was made
with results obtained by other methods) and allows to describe the main features of
the X-ray spectrum and determine the possible states of ions which contribute to the
observed spectrum lines. The accuracy of the calculations can be improved by
increasing the number of the screening parameters, i.e., by introducing the
screening parameter for each subshell of the ion (the states with the same principal
and orbital quantum numbers n and j). This method has been also applied to
calculate the K, X-ray emission rates for atoms with Z=10-36 [38] in order to

study the contribution of the first order of the dipole matrix elements to the
radiative transition probability. The comparison with other theoretical data shows
that the present method can be also applied for the calculation of the atomic
characteristics of nearly neutral atoms.

The results of various applications of the suggested theoretical approach
allow us to conclude that this method can be very useful for calculation of the
atomic characteristics of the multi-electron highly charged ions including ions in
highly excited states. The present approach can be also useful for study and
simulation of the neutralization-deexcitation processes which take place during the
interaction of the highly charged ions with a surface.
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