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Abstract

Gas flow velocity of a piezo-valve used in the Large Helical Device has been measured in a test chamber

of 3.6 m long. Various gasses of hydrogen, helium, methane, neon, nitrogen and argon are used in the

experiment, In the direct gas puff configuration, where the gas flow directly reaches the target, the Mach

number increases with the mass of the gas molecule and/or the primary pressure of the piezo-valve, The

maximum Mach number of over 1.5 is obtained with the methane, In the normal gas puff configuration,

where the injected gas suffers from reflection and/or absorption by materials, the gas flow velocity

remains at sound velocity, even with the methane.
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1. Introduction

Gas puffing is the most basic technique to control
the plasma density and ulilized from the
beginning of the fusion study. Recently, a
supersonic gas puffing (supersonic molecular
beam injection in [1-4], and supersonic pulsed gas
injection in [5-7]} has been proposed to realize the
high fueling efficiency with a supersonic
high-density cloud of neutrals. Due to the
collective effect of the high-density cloud that
cools the plasma surface of a small area, the
penetration depth is expected to be deeper than
that of the ordinary spread gas puffing. In the Tore
Supra tokamak, for example, a fueling efficiency

of 30 — 50 % was achieved [7]. Also in LHD, a

supersonic gas puff experiment is scheduled in

near future [8]. As a preparatory step, a
piezo-valve has been inserted inside the vacuum
vessel of LHD, while other valves are located on
the port apart from the plasma. The gas flux
puffed from the inserted piezo-valve directly
reaches the plasma surface without suffering
reflection and/or absorption by the materials like
vacuum vessel wall. Therefore we call this a
‘direct gas puff’ (DGP). Although the pas flux
supplied by the inserted piezo-valve is not
necessarily supersonic at this moment, the effect

of geometrical arrangement of gas puffing can be

- investigated.

DGP experiment on LHD has been
successfully carried out in the 6th experimental
campaign (Oct. 2002 - Feb. 2003) [9]. To

compare the result with the future supersonic gas
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Fig. 1. Experimental setup for the gas flow velocity measurement. Two vacuum chambers of 1.8 m

long and 0.344 m inner diameter are connected and used as the test chamber.

puff experiment, it is necessary to investigate the
gas flow velocity of the DGP. It should be noted
that the sound velocity is assumed as the flow
velocity of gas puff flux, in general. The gas flow
velocity has been measured using long (3.6 m)
test chambet. Both of the DGP configuration and
the normal gas puff (NGP) configuration are used
in the experiment. The experimental results are

described in this report.

2. Experimental Setup

The experimental setup is shown in Fig. 1. In the
DGP configuration, the piezo-valve is set on a
side of the test chamber and the pressure gauge is
set on another side (Fig. 1 (a)). Therefore, the gas
flux puffed from the piezo-valve directly reaches
the pressure gauge. The piezo-valve used here is
what temporally removed from LHD. The flow
rate of this piezo-valve has been calibrated as
shown in Fig. 2. The time for full open to full
close (or vice-versa) is less than one millisecond.
The flow rate is directly proportional to the

primary pressure of the piezo-valve, and inversely
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Fig. 2. Flow rate of the piezo-valve for DGP.

Working pas is hydrogen. The absolute

primary pressure is (.2 MPa.

proportional to the square root of the mass of gas
molecule. In the NGP configuration, another
piezo-valve is set vertically on a cross-tube (Fig. 1
(b). This piezo-valve has a similar (slightly
smaller) flow rate as the piezo-valve for DGP. The
gas flow in NGP configuration cannot directly
reach the pressure gauge, as is in the normal gas
puffing on LHD, where the piezo-valves are set

on the manifold under the lower port.




The pressure gauge used here is the MKS
Baratron® capacitance manometer (MODEL#
617A). The measurable pressure range is 0.133 —
1330 Pa, and the time response is less than one

millisecond.

3. Flow Velocity Measurement

The concept of the flow velocity measurement is
explained in Fig. 3. If the sonic gas is spreading in
the test chamber immediately after the injection,
the front of the pressure rise will appear at 1,'= 1
+ L / ¢, where & is the starting time of the gas
puff pulse, L = is 3.85 m is the distance from the

piezo-valve to the pressure gauge and ¢, is the
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Fig. 3. Expected waveform of the pressure

signal.
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Fig. 4. Experimental results of the gas flow velocity measurement with the DGP configuration; (al)
hydrogen, (a2) methane, (a3) nitrogen, (bl) helium, (b2) ncon, and (b3) argon. Shaded region
denotes the time-shified gas puff pulse width (see text). The absolute primary pressure of the
piezo-valve is increased from 0.16 to 0.40 MPa, with an increment of 0.04 MPa. In each pressure,

same experiment is repeated {ive times and shown in the figure is the averaged waveform.



sound velocity. At ¢’ =t + L / ¢, where ¢, is the
end time of the gas puff pulse, the pressure signal
reaches the maximum and then keeps it, as long
as the vacuum pumping is stopped. On the
analogy of this, we define the gas flow velocity,

Vias, @5 below;

(N

Vias =L/ Idelaw

where #4.,, = 1’ — fo = 1,” — 1. In the experiment, it
is difficult to distinguish ¢, due to the poor
resolution of the small pressure signal. Therefore,
in this study, we use the time where the pressure
signal reaches the maximum as f£°, for vy,
estimation,

Experimental results obtained with the
DGP configuration are shown in Fig. 4, where
hydrogen, helium, methane, neon, nitroge_n, and
argon are used as the working gas. Throughout
the experiment, the control voltage and the pulse
width are fixed to 5 V (full open) and 0.02 s,
respectively. The absolute primary pressure of the
piezo-valve is scanned as; 0.16, 0.20, 0.24, 0.28,
and 0.40 MPa, in each cases. The vacuum
pumping of 0.5 m’/s is not stopped. Due to the

large volume of the test chamber, the time

constant for the pressure decrease is ~ 0.7 s and
large enough compared with the time of interest
(see abscissa of Fig. 4). Shaded region in Fig. 4
denotes the time-shified gas puff pulse width,
which is depicted with ¢’;

r'=t+L/c,.

2

In all cases, the pressure signal begins to increase
at the timing similar to, or earlier than the
time-shifted gas puff pulse. Then, it takes about
0.02 s to reach the maximum, which corresponds
to the gas puff pulse width.

From these results, 4., is estimated as in
Fig. 5 (a). It can be seen that #4,,, deereases as the
primary gas pressure increases. Mach number, M
= Vgas / s, versus the primary pressure is shown in
Fig. 5 (b). M increases with the primary gas
pressure. With the light gases such as hydrogen or
helium, M is about 1 even with the high primary
pressure of 0.4 MPa. Large M is obtained with the
heavy gas. This can be more clearly seen in Fig. 5
(c), where M is plotted with respect to the mass
number of the gas molecules, Paying attention to
the rare gas groups of helium, neon and argon, it

can be recognized that M linearly increases with
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Fig. 5. (a) Measured #4,, and (b) the Mach number, M, as a function of the absolute primary pressure
of the piezo-valve. (¢) M versus the mass number of the working gas molecule, where the primary

pressure is 0.27 — (.34 MPa (corresponds to the shaded region in (a) and (b)).



the mass number. The largest M of over 1.5 is
obtained with the methane gas. In the NGP
configuration, on the other hand, supersonic gas
flow is not realized as shown in Fig, 6, even with

the methane gas.

4. Summary

Gas flow velocity of the direct gas puff has been
measured using hydrogen, helium, methane, neon,

nitrogen, and argon. The Mach number increases
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Fig. 6. Experimental results with the NGP
configuration; (a) hydrogen and (b) methane.
Experimental scheme is same as in DGP case

shown in Fig. 4.

with the mass of the gas molecule and/or the
primary pressure of the piezo-valve, A large Mach
number exceeding 1 is obtained with methane,
neon, nitrogen and argon, while it remains ~ 1
with hydrogen and helium. The largest Mach
number of over 1.5 is obtained with the methane
gas. The flow velocity of the normal gas puffing,
where the gas flow does not directly reach the
target (pressure gauge, in this case), is identical to

the sound velocity, even with the methane gas.
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