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A B S T R A C T

We propose an extended Hasegawa–Mima equation describing the evolution of nonlinear drift wave turbulence
in general magnetic configurations. Such HMGM equation can be derived within the kinetic framework of
guiding center motion or from a two-fluid model of an ion-electron plasma by application of a drift wave
turbulence ordering that does not involve conditions on spatial derivatives of magnetic field and plasma
density. The HMGM equation is therefore appropriate to describe the evolution of drift wave turbulence
in strongly inhomogeneous magnetized plasmas, such as magnetospheric and stellarator plasmas, involving
complex magnetic field geometries and non-uniform plasma density distributions. We find conservation laws
(mass, energy, and generalized enstrophy) of the HMGM equation, study its algebraic (Hamiltonian) structure,
and prove a nonlinear stability criterion for steady solutions through the energy-Casimir method. We then
apply these results to describe drift waves and infer the existence of stable toroidal zonal flows with radial
shear in dipole magnetic fields.
1. Introduction

In this study, we propose the following generalization of the stan-
dard Hasegawa–Mima (HM) equation [1,2],

𝜕
𝜕𝑡

[

𝜆𝐴𝑒𝜒 − 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜒
𝐵2

)]

= ∇ ⋅

[

𝐴𝑒

(

𝜎
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

𝐵2
− 1

)

𝒗𝜒𝑬

]

. (1)

Eq. (1) describes the nonlinear evolution of the field 𝜒 (𝒙, 𝑡) = 𝜑 (𝒙, 𝑡) +
𝜎
2 𝒗

2
𝑬 (𝒙, 𝑡), physically representing the energy of a charged particle,

caused by drift wave turbulence in an ion-electron plasma within a
static magnetic field 𝑩 (𝒙) ≠ 𝟎 of arbitrary geometry. Here 𝒙 are
Cartesian coordinates in a region 𝛺 ⊆ R3, 𝑡 is the time variable, 𝐴𝑒 (𝒙)
the leading order electron spatial density, 𝜎 = 𝑚∕𝑍𝑒 a physical constant
with 𝑚 and 𝑍𝑒 ion mass and charge, 𝑍 ∈ N, ∇⟂ = −𝐵−2𝑩 × (𝑩 × ∇),
and the velocity fields 𝒗𝜒𝑬 (𝒙, 𝑡) and 𝒗𝑬 (𝒙, 𝑡) are respectively defined as

𝒗𝜒𝑬 =
𝑩 × ∇𝜒

𝐵2
, 𝒗𝑬 =

𝑩 × ∇𝜑
𝐵2

, (2)

with 𝑬 (𝒙, 𝑡) = −∇𝜑 (𝒙, 𝑡) the electric field associated with the elec-
trostatic potential 𝜑 (𝒙, 𝑡). The plasma is quasineutral and adiabatic,
implying that 𝑛𝑒 = 𝐴𝑒𝑒𝜆𝜑 = 𝑍𝑛𝑖 with 𝑛𝑒 and 𝑛𝑖 the electron and ion
densities, and 𝜆 = 𝑒∕𝑘𝐵𝑇𝑒 a physical constant where 𝑘𝐵𝑇𝑒 denotes the
temperature of the thermalized electron component.

∗ Corresponding author.
E-mail addresses: sato.naoki@nifs.ac.jp (N. Sato), yamada@kurims.kyoto-u.ac.jp (M. Yamada).

In the following, we shall refer to Eq. (1) as Hasegawa–Mima equa-
tion in a general magnetic configuration, abbreviated HMGM equation.
As we will discuss later on, the physical relevance of this equation for
both astrophysical and fusion plasmas stems from its ability to capture
nonlinear plasma regimes in which the effects of field inhomogeneities
on the development of turbulence are not approximated to a given
order, but appear in their entirety. At the same time, the HMGM
equation retains the form of a single partial differential equation with
well-defined algebraic structure and conservation laws. We therefore
suggest that these features make the HMGM equation a simplified but
effective and mathematically well-defined model of turbulence in the
presence of enhanced field inhomogeneities.

When 𝑩 = 𝐵0∇𝑧, log𝐴𝑒 = log𝐴𝑒0 + 𝛽𝑥, 𝐵0, 𝐴𝑒0, 𝛽 ∈ R, 𝛽𝐿 ∼ 𝜖 ≪ 1,
the HMGM Eq. (1) reduces to the standard Hasegawa–Mima (HM)
equation [1,2]

𝜕
𝜕𝑡

(

𝜆𝜑 − 𝜎
𝐵2
0

𝛥(𝑥,𝑦)𝜑

)

= 𝜎
𝐵3
0

[

𝜑, 𝛥(𝑥,𝑦)𝜑
]

(𝑥,𝑦) +
𝛽
𝐵0

𝜑𝑦. (3)

In this notation, [𝑓, 𝑔](𝑥,𝑦) = 𝑓𝑥𝑔𝑦 − 𝑓𝑦𝑔𝑥, 𝛥(𝑥,𝑦) = 𝜕2𝑥 + 𝜕2𝑦 , and lower
indexes denote partial derivatives, for example 𝑓𝑥 = 𝜕𝑓∕𝜕𝑥. The HM
equation (3) is a nonlinear equation describing the turbulent behavior
of electric potential and spatial density in a quasi-neutral plasma,
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made of hot thermalized electrons and cold ions, permeated by a
strong, straight, and homogeneous magnetic field, and evolving over
time scales long compared with the period of cyclotron motion. The
nonlinearity of the HM equation is caused by the convection of the 𝑬×𝑩
velocity associated with the polarization drift. In the presence of an
electron density gradient, solutions of the linearized HM equation are
the characteristic drift waves, whose interaction gives rise to drift wave
turbulence. The HM equation shares the same mathematical structure
with the quasi-geostrophic equation characterizing atmospheric motion
over the surface of rotating planets [3,4] due to the similarity between
the Lorentz force and the Coriolis force, and contains 2-dimensional
incompressible vorticity dynamics as a special case [5]. Despite its
relative simplicity, the HM equation can describe essential features
of 2-dimensional plasma and fluid turbulence [6], including onset of
inverse turbulent cascades of energy [7–10] and self-organization of
large scale structures and zonal flows [11–15]. In toroidally confined
fusion plasmas, a zonal flow typically manifests as a poloidal flow,
while in geophysical fluid dynamics, it primarily exhibits a latitudinal
flow pattern.

One of the key assumptions behind the HM equation is that back-
ground magnetic field and electron spatial density change over spatial
scales 𝐿𝐵 and 𝐿𝐴𝑒

that are large compared to the typical turbulence
avelength across the magnetic field 𝑘−1⟂ , i.e. 𝑘⟂𝐿𝐵 ≫ 1 and 𝑘⟂𝐿𝐴𝑒

≫
1. This hypothesis effectively restricts the applicability of the HM
equation to plasmas with a small density gradient and to magnetic
fields with small curvature or field inhomogeneities (this does not
mean that the HM equation is inconsistent at small wavenumbers,
but simply that it cannot account for field inhomogeneities, which
cannot be neglected when 𝑘⟂𝐿𝐵 ∼ 𝑘⟂𝐿𝐴𝑒

∼ 1). However, experi-
mental observations pertaining to plasmas confined by dipole magnetic
fields [16–18] suggest the existence of drift wave turbulence and
zonal flows in systems where both the electron spatial density and the
magnetic field are characterized by strong gradients over spatial scales
comparable to that of electric field and density fluctuations (these low
frequency fluctuations are often referred to as entropy modes [19]). In
principle, an accurate description of electromagnetic turbulence in such
setting could be obtained with the aid of nonlinear gyrokinetic theory
[20–22]. Nevertheless, it is natural to ask whether the HM equation
can be generalized to allow strong magnetic field and density inhomo-
geneities while maintaining a single governing equation for the electric
potential 𝜑. In [23] this question has been answered positively, and a
generalized Hasegawa–Mima (GHM) equation has been obtained from
a two-fluid model [24] of an ion-electron plasma in the form below:

𝜕
𝜕𝑡

[

𝜆𝐴𝑒𝜑 − 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜑
𝐵2

)]

= ∇ ⋅
[

𝐴𝑒

(

𝜎
𝑩 ⋅ ∇ × 𝒗𝑬

𝐵2
− 1

)

𝒗𝑬
]

. (4)

A two-fluid plasma model represents a physical system where both
the ion and electron components are governed by fluid equations. The
ordering used in [23] to derive the GHM equation (4) only involves
one ordering condition on the spatial derivatives of the magnetic field
and the electron spatial density, effectively extending the range of the
HM equation to general magnetic field geometries. In Section 2 we
will see that this remaining ordering condition on spatial derivatives
of magnetic field and spatial density used to obtain the GHM Eq. (4)
in [23] can be removed at the price of replacing the electrostatic
potential 𝜑 with the reduced charged particle energy 𝜒 = 𝜑 + 𝜎

2 𝒗
2
𝑬

as dynamical variable. The resulting governing equation is the HMGM
Eq. (1), which exhibits the same mathematical structure of the GHM
equation (4).

Some clarification is needed with regard to the naming of the GHM
equation (4). In the plasma physics community, the name ‘generalized
Hasegawa–Mima equation’ has been used to identify generalizations
of the standard Hasegawa–Mima (HM) equation [1,2] that allow a
different electron adiabatic response between drift waves and zonal
flows [25–31]. In the same context, sometimes the names ‘extended
Hasegawa–Mima equation’ or ‘modified Hasegawa–Mima equation’ are
2

w

used as well [32]. However, the word ‘generalization’ in the naming of
the GHM equation (4) does not refer to the electron adiabatic response
(which is the same as that of the standard HM equation), but to the
degree at which the background magnetic field is allowed to depart
from a straight magnetic field. The naming HMGM equation chosen
for Eq. (1) hopefully removes the ambiguity arising from the use of
the word ‘generalized’.

Generalizations of the HM equation including field inhomogeneities
have also been obtained within the framework of gyrokinetic the-
ory [33–36]. Here, the generalized equations follow from the usual
limit of cold ions and adiabatic electrons. In these models the magnetic
field is typically restricted to specific geometries (slab, cylindrical, or
axially symmetric configurations), or its gradient is small over the
characteristic turbulence wavelength 𝑘−1⟂ across the magnetic field,
which is taken to be of the order of the ion gyroradius (the radius of
the circular motion of an ion around a magnetic field) 𝜌, i.e. 𝑘⟂𝜌 ∼ 1.
As a result, such generalized equations contain corrections specific
to a certain magnetic field or corrections up to a given order in the
field inhomogeneities. Furthermore, a detailed analysis of algebraic
structure, conservation laws, and stability properties (which represent
the main task undertaken in this study) of these generalized HM
equations appears not to be available in the literature. In contrast, the
HMGM Eq. (1) can be derived from two-fluid theory (as the original HM
equation) and for any magnetic and density configurations. Therefore,
the range of applicability of the HMGM equation does not depend on
the ion gyroradius 𝜌, and the effect of field inhomogeneities appears in
its entirety in the equation.

Our aim in this paper is to derive the HMGM Eq. (1) and char-
acterize its mathematical properties, including invariants, Hamiltonian
structure [37], and nonlinear stability of steady solutions. Furthermore,
we wish to determine whether zonal flows can form in complex mag-
netic geometries (e.g. a dipole magnetic field), and characterize drift
waves in such configurations. Here, Hamiltonian structure refers to the
representation of the governing equations in Hamiltonian form, which
is characterized by the action of a Poisson bracket on a Hamiltonian
function, while nonlinear stability characterizes dynamical systems that
remain close to a steady state under the effect of small perturbations
(see Section 5 for rigorous definitions).

The present paper is organized as follows. In Section 2 we derive
the HMGM Eq. (1) by considering the evolution of the phase space
distribution function of a magnetized plasma according to the guiding
center equations of motion (the guiding center represents the average
position of a charged particle during its circular motion around a mag-
netic field). This is done by expanding the Euler–Lagrange equations
arising from the Northrop guiding center Lagrangian [38,39] under an
appropriate guiding center drift wave turbulence ordering. In Section 3,
we derive the same HMGM equation from a two-fluid drift wave
turbulence ordering. In Section 4, we discuss the constants of motion of
the HMGM equation. In Section 5, we examine the algebraic structure
of the HMGM equation, and obtain sufficient conditions on magnetic
field 𝑩 and electron spatial density 𝐴𝑒 under which the HMGM equa-
tion defines a noncanonical Hamiltonian system. These results are
consistent with the Hamiltonian structure of the standard HM equation
[40–43]. We also prove a theorem concerning the nonlinear stability of
steady solutions of the HMGM equation by applying the energy-Casimir
method [44–46]. This result generalizes Arnold’s stability criterion for a
2-dimensional fluid flow [47]. In Section 6 we show that toroidal zonal
flows can form in dipole magnetic fields, and characterize the angular
frequency of drift waves in dipole geometry. Concluding remarks are
given in Section 7.

Finally, throughout the text notations like 𝑓 (...) will often be used
here ... is interpreted as a factor rather than an argument.
( )
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Table 1
Guiding center ordering required for the existence of the first adiabatic invariant 𝜇 (see [38]).

Order Dimensionless Fields Distances Rates Velocities

𝜖−1 𝑩,𝑬⟂ 𝜔𝑐
1 𝑬∥ 𝐿 𝒗∕𝐿, 𝒗𝑬∕𝐿, 𝜏−1 𝒗, 𝒗𝑬
𝜖 𝜌∕𝐿,

(

𝜔𝑐𝜏
)−1 𝜌 𝒗∇∕𝐿, 𝒗𝜅∕𝐿, 𝒗pol∕𝐿 𝒗∇ , 𝒗𝜅 , 𝒗pol
d

𝒗

w

F
c
d

𝝆

t
t
o
d
S

l
t
t
T
c
N
f

𝜌

f

𝜎

w
c
c
𝒙

2. Derivation of the HMGM equation within the kinetic framework
of guiding center motion

In this section, we derive the HMGM equation for an ion-electron
plasma obeying the guiding-center equations of motion under an appro-
priate drift wave turbulence ordering. This rather technical derivation
clarifies how the HMGM is related to the guiding-center framework,
and it represents an independent result from the two-fluid theory de-
veloped in Section 3. To make this section self-contained, all definitions
will be given again.

2.1. Guiding center ordering

We consider a guiding-center plasma made of ions and electrons
within a region 𝛺 ⊆ R3 permeated by a static magnetic field 𝑩 (𝒙) ≠ 𝟎
with modulus 𝐵, and where 𝒙 = (𝑥, 𝑦, 𝑧) ∈ R3 are Cartesian coordinates.
Let 𝑬 = −∇𝜑 denote the electric field, with 𝜑 (𝒙, 𝑡) the electric potential
𝑡 is the time variable), 𝑬⟂ the component of 𝑬 perpendicular to 𝑩, and
𝑬∥ the component of 𝑬 parallel to 𝑩. The small ordering parameter
for the guiding-center expansion will be denoted by 𝜖 > 0, the spatial
scale of the system by 𝐿, the time scale of the system by 𝜏, the ion
gyroradius by 𝝆, and the ion cyclotron frequency by 𝜔𝑐 = 𝑍𝑒𝐵∕𝑚 where

∈ N and 𝑍𝑒 and 𝑚 are the ion electric charge and mass respectively.
et 𝑿 = 𝒙 − 𝝆 denote the ion guiding center position, 𝒃 = 𝑩∕𝐵 the

unit vector along 𝑩, 𝜇 = 𝑚
(

𝒗⟂ − 𝒗𝑬
)2 ∕2𝐵 the lowest order magnetic

oment, 𝒗 = 𝒙̇ the charged particle velocity, 𝒗⟂ = 𝒃×(𝒗 × 𝒃) the charged
article velocity perpendicular to 𝑩, and

𝑬 = 𝑬 × 𝑩
𝐵2

, (5)

the 𝑬×𝑩 velocity. Then, the ion guiding center equations of motion ob-
tained from the Northrop phase space guiding center Lagrangian [39]
given in Appendix A of [38] are

𝑚𝑢̇𝒃 = 𝑍𝑒
(

𝑬′ + 𝑿̇ × 𝑩′) , (6a)

̇ = 0, (6b)
̇ = 𝜔𝑐 , (6c)

which can be equivalently written as

𝑿̇ = 𝑢𝑩
′

𝐵′
∥
+ 𝑬′ × 𝒃

𝐵′
∥
, (7a)

̇ = 𝑍𝑒
𝑚

𝑩′ ⋅ 𝑬′

𝐵′
∥

, (7b)

̇ = 0, (7c)

𝜁̇ = 𝜔𝑐 , (7d)

where 𝜁 is the gyrophase and

𝑢 = 𝑿̇ ⋅ 𝒃, (8a)

𝑍𝑒𝜑′ = 𝑍𝑒𝜑 + 𝜇𝐵 + 𝑚
2
𝒗2𝑬 , (8b)

′ = 𝑨 + 𝑚
𝑍𝑒

(

𝑢𝒃 + 𝒗𝑬
)

(8c)

𝑬′ = −∇𝜑′ − 𝜕𝑨′

𝜕𝑡
, (8d)

= ∇ ×𝑨, 𝑩′ = ∇ ×𝑨′, 𝐵′
∥ = 𝑩′ ⋅ 𝒃. (8e)

ere, we observe that 𝑢 represents the component of the guiding center
elocity parallel to 𝑩. Furthermore, notice that the following guiding
3

center drift velocities 𝒗𝑬 (𝑬×𝑩 drift), 𝒗∇ (∇𝐵 drift), and 𝒗𝜅 (curvature
rift) are contained in the right-hand side of (7a) according to

′
𝑬 =

𝒃 × ∇𝜑
𝐵′
∥

, 𝒗′∇ =
𝜇
𝑍𝑒

𝒃 × ∇𝐵
𝐵′
∥

, 𝒗′𝜅 = 𝑚𝑢2

𝑍𝑒𝐵′
∥
∇ × 𝒃, (9)

where the ′ symbol is used to emphasize that the correction 𝐵′
∥ of the

magnetic field 𝐵 caused by the term 𝑚∇×
(

𝑢𝒃 + 𝒗𝑬
)

∕𝑍𝑒 in 𝑩′ is used in
these formulas. Similarly, the polarization drift 𝒗pol is included in (7a)
according to

𝒗′pol =
𝑚
𝑍𝑒

𝒃 × 𝜕𝒗𝑬
𝜕𝑡

𝐵′
∥

+ 𝒗′𝑬 − 𝒗𝑬 + 𝑚
2𝑍𝑒

𝒃 × ∇𝒗2𝑬
𝐵′
∥

. (10)

The physical meaning carried by this expression will become clear later.
Eq. (7a) also includes a further drift term

𝒗′∗ = 𝑚𝑢
𝑍𝑒𝐵′

∥
∇ × 𝒗𝑬 , (11)

hich originates from the effective magnetic field 𝑚
𝑍𝑒∇×𝒗𝑬 associated

with 𝑬×𝑩 motion. The total guiding center velocity can thus be written
as

𝑿̇ = 𝑢 𝑩
𝐵′
∥
+ 𝒗𝑬 + 𝒗′∇ + 𝒗′𝜅 + 𝒗′pol + 𝒗′∗. (12)

or completeness we recall that the gyroradius, which defines the
oordinate transformation 𝑿 = 𝒙 − 𝝆, is an oscillatory (gyrophse
ependent) term given by

= 𝑚
𝑍𝑒

𝒃 ×
(

𝒗 − 𝒗𝑬
)

𝐵
. (13)

This term is removed from the Northrop guiding center phase space La-
grangian density 𝑁𝑔𝑐 by appropriate subtraction of total time deriva-
ives (on this point, see section III.C and appendix A of [38]). Here,
he Northrop guiding center phase space Lagrangian density 𝑁𝑔𝑐 is
btained by expansion of the charged particle phase space Lagrangian
ensity  = 𝑁𝑔𝑐 + 𝑜 (𝜖) according to the guiding center ordering.
ince the Northrop guiding center phase space Lagrangian density
𝑁𝑔𝑐 is independent of 𝝆, it is also independent of the gyrophase 𝜁 ,

eading to conservation of the conjugate momentum 𝜇 by the Noether
heorem. The guiding-center ordering required for the conservation of
he magnetic moment 𝜇 is given in table I of [38], which we report in
able 1. This ordering represents the starting point that we will use to
onstruct a more restrictive ordering leading to the HMGM equation.
ote that the ion gyroradius 𝜌 = |𝝆| appearing in table 1 is different

rom the sound radius

𝑠 =
𝑐𝑠
𝜔𝑐

=
√

𝑘𝐵𝑇𝑒
𝑚

𝑚
𝑍𝑒𝐵

, (14)

where 𝑘𝐵 denotes the Boltzmann constant and 𝑇𝑒 the electron temper-
ature. We conclude by observing that the ordering parameter 𝜖 arises
rom the physical constant

= 𝑚
𝑍𝑒

≪ 1, (15)

hich is small for elementary particles such as ions and electrons. The
onstant 𝜎−1 always multiplies the electromagnetic fields within the
harged particle phase space Lagrangian density  (𝒙, 𝒗, 𝑡) =

(

𝜎−1𝑨 + 𝒗
)

⋅
̇ − 1

2𝒗
2 − 𝜎−1𝜑, which is the reason why 𝑬 and 𝑩 are treated as large

fields in Table 1.
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2.2. Derivation of the HMGM equation from a drift wave turbulence order-
ing within guiding center theory

We start by assuming that the guiding center ordering presented in
Table 3 holds, and gradually impose additional conditions to obtain the
relevant drift wave turbulence ordering. From now on we set 𝜏 = 𝜏𝑑 ,

ith 𝜏𝑑 the drift turbulence time scale. Recall that 𝜏𝑑𝜔𝑐 ∼ 𝜖−1. Let
(𝒑,𝒙, 𝑡) denote the ion distribution function in the canonical phase

pace (𝒑,𝒙) of charged particle dynamics. The distribution function 𝑓
atisfies the Boltzmann equation

𝜕𝑓
𝜕𝑡

= − 𝜕
𝜕𝒑

⋅ (𝒑̇𝑓 ) − 𝜕
𝜕𝒙

⋅ (𝒙̇𝑓 ) +
(

𝑑𝑓
𝑑𝑡

)

c
, (16)

where the last term on the right-hand side describes particle colli-
sions. Introducing the ion spatial density 𝑛 (𝒙, 𝑡) = ∫R3 𝑓 𝑑𝒑, integrat-
ng Eq. (16) with respect to the momentum variables, and assuming
im

|𝒑|→∞ 𝑓 = 0, we obtain the ion continuity equation

𝜕𝑛
𝜕𝑡

= −∇ ⋅ (⟨𝒙̇⟩𝑛) , (17)

where

⟨𝒙̇⟩ = 1
𝑛 ∫R3

𝑓 𝒙̇ 𝑑𝒑 = 1
𝑛 ∫R3

𝑓
(

𝑿̇ + 𝝆̇
)

𝑑𝒑 =
⟨

𝑿̇
⟩

, (18)

s the ensemble averaged ion velocity at a given position 𝒙 = 𝑿 + 𝝆.
otice that in the last passage we used the fact that by hypothesis 𝝆

s a cyclotron phase dependent (oscillatory) term whose time average
dentically vanishes (on this point, see e.g. [38]). Since it will also be as-
umed that the system is fluctuating around some equilibrium state (in
articular, electrons follow a Boltzmann distribution, and the plasma
s quasineutral), we may enforce an ergodic hypothesis by exchanging
ime averages with ensemble averages so that lim𝑇→∞

1
𝑇 ∫ 𝑇

0 𝝆̇ 𝑑𝑡 =
1
𝑛 ∫R3 𝑓 𝝆̇ 𝑑𝒑 = 𝟎, which gives (18). Note that since 𝑿̇ contains all
guiding center drifts (including the polarization drift), and since the
volume element in momentum space 𝑑𝒑 is spanned by the guiding
center variables 𝜇, 𝑢, and 𝜁 , the hypothesis (18) can be physically
interpreted in the sense that, upon averaging with respect to the
cyclotron phase 𝜁 , the oscillatory contribution due to 𝝆̇ vanishes. It is
also important to stress that in Eq. (18) there is no ambiguity related
to the discrepancy between particle and guiding center positions [48]
because the value of the integral only relies on the assumption that
⟨𝝆̇⟩ = 0. In particular, notice that the term on the right-hand side is not
the guiding center velocity but its ensemble average. We also remark
that the collision term in (16) vanishes upon integration in momentum
space because we assume that collisions result in deflections in velocity
space that do not change the local particle number. Now suppose that
the parallel velocity 𝑢 is small (the time scale 𝜏𝑏 of dynamics along 𝑩
is long):

𝑢
𝜏𝑑
𝐿

∼
𝜏𝑑
𝜏𝑏

∼ 𝜖2. (19)

ote that consistency with (7b) requires that the component 𝐸′
∥ of 𝑬′

long 𝑩′ is small, i.e. 𝑩′ ⋅ 𝑬′∕𝐵′
∥𝐸⟂ ∼ 𝜖3. Physically, this means that

the electric field experienced by a charged particle along the magnetic
field is negligible. Although this is a rather stringent condition, it is
analogous to the hypothesis used in the derivation of the standard HM
equation where the parallel ion inertia is neglected [1]. We also observe
that the same condition could be enforced by introducing a parallel
length scale 𝐿∥, and by demanding that 𝐸′

∥∕𝐸⟂ ∼ 𝐿∕𝐿∥ ∼ 𝜖3. Let us now
consider all contributions to the continuity Eq. (17) that are greater
than 𝜖2. From the ordering condition (19) it readily follows that the
only surviving terms in (7a) are those involving the 𝑬×𝑩 drift velocity
and the ∇𝐵 drift. In particular, observing that 𝐵′

∥ = 𝐵 (1 + 𝑜 (𝜖)), we
have

𝑿̇ = 𝒗 + 𝒗′ + 𝒗 + 𝑜
(

𝜖2
)

, (20)
4

𝑬 ∇ pol
where the polarization drift 𝒗pol now has expression

𝒗pol = 𝜎
𝒃 × 𝑑𝒗𝑬

𝑑𝑡
𝐵

,
𝑑𝒗𝑬
𝑑𝑡

=
𝜕𝒗𝑬
𝜕𝑡

+ 𝒗𝑬 ⋅ ∇𝒗𝑬 , (21)

nd where we used the fact that

𝑬 + 𝒗′pol = 𝒗𝑬 − 𝜎
𝒃 ⋅ ∇ × 𝒗𝑬

𝐵
𝒗𝑬 + 𝜎

𝒃 ×
(

𝜕𝒗𝑬
𝜕𝑡 + 1

2∇𝒗
2
𝑬

)

𝐵
+ 𝑜

(

𝜖2
)

= 𝒗𝑬 + 𝒗pol + 𝑜
(

𝜖2
)

. (22)

We see that the polarization drift 𝒗pol is that average particle velocity
resulting from a non-vanishing average acceleration 𝑑𝒗𝑬∕𝑑𝑡 across the

agnetic field.
In the following, we shall also demand the energy 𝜇𝐵 of cyclotron

ynamics to be small, so that 𝒗′∇ becomes a higher order correction.
ore precisely, denoting with ⟨𝜇𝐵⟩ = 𝑛−1 ∫R3 𝑓𝜇𝐵𝑑𝒑 the ensemble

veraged kinetic energy of cyclotron dynamics, and defining an associ-
ted temperature 𝑇𝑐 according to ⟨𝜇𝐵⟩ = 𝑘𝐵𝑇𝑐 with 𝑘𝐵 the Boltzmann
onstant, we demand 𝑇𝑐 to satisfy

𝑘𝐵𝑇𝑐
𝑚
2 𝒗

2
𝑬

∼ 𝜖. (23)

The ordering conditions (19) and (23) can be regarded as the usual drift
wave turbulence ordering requirement of cold ions. The guiding-center
velocity thus becomes

𝑿̇ = 𝒗𝑬 + 𝒗pol + 𝑜
(

𝜖2
)

=
𝒃 × ∇𝜑

𝐵
+ 𝜎

𝒃 × 𝑑𝒗𝑬
𝑑𝑡

𝐵
+ 𝑜

(

𝜖2
)

. (24)

It should be noted that (19) and (23) describe an ion plasma with
temperature anisotropy. Nevertheless, temperature isotropy can be ob-
tained by enforcing the stronger ordering condition 2𝑘𝐵𝑇𝑐∕𝑚𝒗2𝑬 ∼
𝜖4.

To proceed further, it is convenient to introduce the orthogonal
gradient operator

∇⟂ = −𝒃 × (𝒃 × ∇) . (25)

Although the expression (24) is convenient to highlight the usual
guiding center drift contributions separately, 𝑜

(

𝜖2
)

order terms must be
rearranged in 𝒗𝑬+𝒗pol in order for the reduced (drift wave) Hamiltonian
𝜒 = 𝜑+ 𝜎

2 𝒗
2
𝑬 arising from the expansion of the Northrop guiding center

Hamiltonian 𝐻𝑁𝑔𝑐 = 𝜎
2 𝑢

2 + 𝜑 + 𝜇𝐵 + 𝜎
2 𝒗

2
𝑬 = 𝜒 + 𝑜 (𝜖) to be an exact

constant of motion in the case of time-independent electromagnetic
fields. To this end, one can verify that Eq. (24) can be equivalently
written as

𝑿̇ = 𝑿̇𝑑𝑤 + 𝑜
(

𝜖2
)

, 𝑿̇𝑑𝑤 =
𝒃 × ∇

(

𝜑 + 𝜎
2 𝒗

2
𝑬

)

𝐵′′
∥

− 𝜎
∇⟂𝜑𝑡

𝐵2
,

𝐵′′
∥ = 𝐵

(

1 + 𝜎
𝒃 ⋅ ∇ × 𝒗𝑬

𝐵

)

, (26)

ith 𝜒 an exact integral of the first order term 𝑿̇𝑑𝑤 when 𝜑𝑡 = 𝜕𝜑∕𝜕𝑡 =
.

Noting that 𝑿̇𝑑𝑤 is a pure spatial function, the ensemble averaged
on velocity (18) at a given position 𝒙 = 𝑿 + 𝝆 is

𝒙̇⟩ = 1
𝑛 ∫R3

𝑓
(

𝑿̇ + 𝝆̇
)

𝑑𝒑 = 𝑿̇𝑑𝑤 + 𝑜
(

𝜖2
)

. (27)

Next, consider the density 𝑛𝑒 (𝒙, 𝑡) of the electron component. We
assume that 𝑛𝑒 follows a Boltzmann distribution with temperature 𝑇𝑒,
i.e.

𝑛𝑒 = 𝐴𝑒 (𝒙) exp {𝜆𝜑 (𝒙, 𝑡)} , 𝜆 = 𝑒
𝑘𝐵𝑇𝑒

(28)

where 𝐴𝑒 (𝒙) is a spatial function. If we further demand the ion-electron

plasma to be quasi-neutral, we have the following condition:
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Table 2
Drift wave turbulence ordering used for the derivation of the HMGM equation (1) within the guiding-center
framework.

Order Dimensionless Fields Distances Rates Velocities

𝜖−1 𝑩,𝑬⟂ 𝜔𝑐
1 𝐴𝑒 𝐿 𝜏−1𝑑 , 𝒗𝑬∕𝐿 𝒗𝑬
𝜖 𝜆𝜑, 𝜌∕𝐿,

(

𝜔𝑐𝜏𝑑
)−1 , 𝑘𝐵𝑇𝑐∕

𝑚
2
𝒗2𝑬 𝜌 𝒗pol∕𝐿 𝒗pol

𝜖2 𝑚
2
𝒗2𝑬∕𝑘𝐵𝑇𝑒 , 𝜏𝑑∕𝜏𝑏 𝐸′

∥ 𝒗∇∕𝐿, 𝑢∕𝐿, 𝜏−1𝑏 𝒗∇ , 𝑢
𝜖5 𝒗𝜅∕𝐿 𝒗𝜅
Table 3
Drift wave turbulence ordering for the derivation of the HMGM equation (1) from a two-fluid model.

Order Dimensionless Fields Distances Rates Velocities

1 𝑩, 𝐴𝑒 𝐿 𝜔𝑐
𝜖 𝜆𝜑, 𝜔−1

𝑐 𝜕𝑡 𝑬⟂ 𝜏−1𝑑 , 𝒗𝑬∕𝐿 𝒗𝑬
𝜖2 𝜏𝑑∕𝜏𝑏 𝒗pol∕𝐿 𝒗pol
𝜖3 𝐸∥ , 𝑃 𝜏−1𝑏 , 𝑣∥∕𝐿 𝑣∥
R

w
∇
t
∼

i
𝐴

i
∼
o
(
c
c
t
o

𝑍𝑛 (𝒙, 𝑡) = 𝑛𝑒 (𝒙, 𝑡) . (29)

Then, the continuity equation for the ion density reads as

𝑍
[ 𝜕𝑛
𝜕𝑡

+ ∇ ⋅ (⟨𝒙̇⟩𝑛)
]

=
𝜕𝑛𝑒
𝜕𝑡

+ ∇ ⋅
(

𝑿̇𝑑𝑤𝑛𝑒
)

+ 𝑜
(

𝜖2
)

= 0, (30)

where we used Eq. (27). Substituting Eq. (28), Eq. (30) can be rear-
ranged as

𝜆𝐴𝑒
𝜕𝜑
𝜕𝑡

= − 𝜆∇𝜑 ⋅ 𝐴𝑒𝑿̇𝑑𝑤 − ∇ ⋅
(

𝐴𝑒𝑿̇𝑑𝑤
)

+ 𝑜
(

𝜖2
)

=𝜆𝜎𝐴𝑒∇𝜑 ⋅

(

∇⟂𝜑𝑡

𝐵2
+

𝒃 × ∇𝒗2𝑬
2𝐵′′

∥

)

− ∇ ⋅

⎡

⎢

⎢

⎢

⎣

𝐴𝑒

𝒃 × ∇
(

𝜑 + 𝜎
2 𝒗

2
𝑬

)

𝐵′′
∥

⎤

⎥

⎥

⎥

⎦

+ 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜑𝑡

𝐵2

)

+ 𝑜
(

𝜖2
)

.

(31)

ext, we demand the electron component to be hot compared to the
on component, i.e.

𝑚
2 𝒗

2
𝑬

𝑘𝐵𝑇𝑒
∼ 𝜖2. (32)

ince 𝜆 = 𝑒∕𝑘𝐵𝑇𝑒, it follows that 𝜆𝜑 ∼ 𝜖, while the first term on the
ight-hand side of Eq. (31) scales as 𝜖2. Eq. (31) thus reduces to

𝜕
𝜕𝑡

[

𝜆𝐴𝑒𝜑 − 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜑
𝐵2

)]

= −∇ ⋅

⎡

⎢

⎢

⎢

⎣

𝐴𝑒

𝒃 × ∇
(

𝜑 + 𝜎
2 𝒗

2
𝑬

)

𝐵′′
∥

⎤

⎥

⎥

⎥

⎦

+ 𝑜
(

𝜖2
)

.

(33)

We now express Eq. (33) in terms of reduced Northrop guiding
center Hamiltonian 𝜒 = 𝜑 + 𝜎𝒗2𝑬∕2. We have

𝜕
𝜕𝑡

⎧

⎪

⎨

⎪

⎩

𝜆𝐴𝑒

(

𝜑 + 𝜎
2
𝒗2𝑬

)

− 𝜎∇ ⋅

⎡

⎢

⎢

⎢

⎣

𝐴𝑒

∇⟂

(

𝜑 + 𝜎
2 𝒗

2
𝑬

)

𝐵2

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

= −∇ ⋅

⎡

⎢

⎢

⎢

𝐴𝑒

𝒃 × ∇
(

𝜑 + 𝜎
2 𝒗

2
𝑬

)

𝐵′′
∥

⎤

⎥

⎥

⎥

+ 𝑜
(

𝜖2
)

.

(34)
5

⎣ ⎦
ecalling that 𝐵′′
∥ = 𝐵

(

1 + 𝜎 𝒃⋅∇×𝒗𝑬
𝐵

)

we thus arrive at the equation

𝜕
𝜕𝑡

[

𝜆𝐴𝑒𝜒 − 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜒
𝐵2

)]

= −∇ ⋅

(

𝐴𝑒
𝒃 × ∇𝜒
𝐵′′
∥

)

+ 𝑜
(

𝜖2
)

= ∇ ⋅

⎧

⎪

⎨

⎪

⎩

𝐴𝑒

⎡

⎢

⎢

⎢

⎣

𝜎
𝒃 ⋅ ∇ ×

(

𝒃×∇𝜒
𝐵

)

𝐵
− 1

⎤

⎥

⎥

⎥

⎦

𝒃 × ∇𝜒
𝐵

⎫

⎪

⎬

⎪

⎭

+ 𝑜
(

𝜖2
)

.

(35)

Notice that 𝜒 = 𝜑+ 𝑜 (1). Using the expression 𝒗𝜒𝑬 = 𝐵−2𝑩 ×∇𝜒 at first
order Eq. (35) reduces to the following closed equation for the variable
𝜒 ,

𝜕
𝜕𝑡

[

𝜆𝐴𝑒𝜒 − 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜒
𝐵2

)]

= ∇ ⋅

[

𝐴𝑒

(

𝜎
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

𝐵2
− 1

)

𝒗𝜒𝑬

]

, (36)

hich is the HMGM Eq. (1). Here, we observe that in (36) the term
⋅
(

𝐴𝑒𝒗
𝜒
𝑬
)

= ∇𝜒 ⋅∇×
(

𝐴𝑒𝑩∕𝐵2) must scale as ∼ 𝜖 to be consistent with
he other terms in the equation. Hence, either ∇ ×

(

𝐴𝑒𝑩∕𝐵2) scales as
𝜖2, or the effective electric field −∇𝜒 ∼ 𝜖−1 is mostly orthogonal to

the vector field ∇×
(

𝐴𝑒𝑩∕𝐵2) ∼ 𝜖. We stress however that the behavior
of the term ∇ ⋅

(

𝐴𝑒𝒗
𝜒
𝑬
)

is a consequence of the ordering used to obtain
Eq. (36), and not an ordering condition required to arrive at (36). It
should also be emphasized that the smallness of ∇ ⋅

(

𝐴𝑒𝒗𝑬
)

does not
mply that ∇𝐴𝑒 ⋅ 𝒗𝑬 is a small quantity as well. As an example, setting
𝑒 ∝ 𝐵2 and ∇×𝑩 = 𝟎 gives ∇ ⋅

(

𝐴𝑒𝒗𝑬
)

= 0 while ∇𝐴𝑒 ⋅𝒗𝑬 can be large.
The ordering used to derive the HMGM Eq. (36) is summarized

n Table 2. For completeness, we emphasize that 𝐴𝑒 is treated as a
1 term for simplicity, although the present theory is independent

f the magnitude of 𝐴𝑒. Furthermore, observe that the sound radius
14) satisfies 𝜌𝑠∕𝐿 ∼ 1 in the ordering of Table 2. Finally, if we
ompare the two-fluid HMGM ordering of Table 3 with the guiding
enter ordering of Table 2, one first notices that 𝑩 scales as 𝜖0 ∼ 1 in
he two-fluid case, while it is treated as a 𝜖−1 term in the guiding center
rdering. This difference does not change the order of the ratio 𝑣𝑬∕𝑣pol,

and it is therefore not essential (in fact, all dimensionless ratios have
the same order in both orderings; compare the column ‘dimensionless’
in Tables 2 and 3 with the fluid pressure 𝑃 playing the role of the
cyclotron temperature 𝑇𝑐).

3. Two-fluid derivation of the HMGM equation

As anticipated in the introduction, the HMGM Eq. (1) can be ob-
tained by modeling an ion-electron plasma as a two-fluid system. The
derivation follows the same steps of section 2 in [23] up to equation
(2.26) therein. These steps are therefore omitted here, and can be

summarized as the expansion to second order of the ion momentum and
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Table 4
Drift wave turbulence ordering used for the derivation of the GHM equation (4) from a two-fluid model in
[23].

Order Dimensionless Fields Distances Rates Velocities

1 𝑩, 𝐴𝑒 𝐿 𝜔𝑐
𝜖 𝜆𝜑, 𝜔−1

𝑐 𝜕𝑡 𝑬⟂ 𝜏−1𝑑 , 𝒗𝑬∕𝐿 𝒗𝑬
𝜖2 𝜏𝑑∕𝜏𝑏 𝒗pol∕𝐿 𝒗pol
𝜖3 𝜎

|

|

|

|

∇𝒗2𝑬 ⋅ ∇ ×
(

𝐴𝑒
𝑩
𝐵2

)

|

|

|

|

∕𝐴𝑒𝜔𝑐 𝐸∥ , 𝑃 𝜏−1𝑏 , 𝑣∥∕𝐿 𝑣∥
Table 5
Drift wave turbulence ordering used for the derivation of the standard HM equation (3) in a straight
homogeneous magnetic field from a two-fluid model.

Order Dimensionless Fields Distances Rates Velocities

1 𝑩, 𝐴𝑒 𝐿 𝜔𝑐
𝜖 𝜆𝜑, 𝜔−1

𝑐 𝜕𝑡 , 𝐿∇ log𝐵,𝐿∇ log𝐴𝑒 𝑬⟂ 𝜏−1𝑑 , 𝒗𝑬∕𝐿 𝒗𝑬
𝜖2 𝜏𝑑∕𝜏𝑏 𝒗pol∕𝐿 𝒗pol
𝜖3 𝐸∥ , 𝑃 𝜏−1𝑏 , 𝑣∥∕𝐿 𝑣∥
S
t
t

𝑀

U

w
𝑑

𝑽

continuity equations under the two-fluid drift wave turbulence ordering
of Table 3 and the hypothesis of a quasineutral plasma with cold ions
and adiabatic electrons, 𝑛𝑒 = 𝐴𝑒𝑒𝜆𝜑 = 𝑍𝑛𝑖. Here, 𝜖 > 0 denotes a small
rdering parameter, 𝜔𝑐 = 𝑍𝑒𝐵∕𝑚 the ion cyclotron frequency, 𝜏, 𝜏𝑑 , 𝜏𝑏

a reference time scale, the drift wave turbulence time scale, and the
time scale of bounce motion, 𝐿 a characteristic scale length for the
system, 𝑬⟂ the component of 𝑬 perpendicular to 𝑩, 𝑬∥ = 𝑬 − 𝑬⟂,
𝑣∥ the ion fluid velocity parallel to 𝑩, 𝒗pol = 𝜎𝐵−2𝑩 ×

(

𝑑𝒗𝑬∕𝑑𝑡
)

the
polarization drift, and 𝑃 the ion fluid pressure. This expansion leads to
the following equation for the electrostatic potential 𝜑:

𝜕
𝜕𝑡

[

𝜆𝐴𝑒𝜑 − 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜑
𝐵2

)]

= ∇ ⋅

[

𝐴𝑒

(

𝜎
𝑩 ⋅ ∇ × 𝒗𝑬

𝐵2
− 1

)

𝒗𝑬 − 𝜎𝐴𝑒
𝑩 × ∇𝒗2𝑬

2𝐵2

]

+ 𝑜
(

𝜖3
)

. (37)

s discussed in [23], although the second order part of Eq. (37) exactly
reserves the total mass of the system, it does not exactly preserve
nergy. This is because, in general, the expansion of an equation to a
iven order only guarantees conservation laws to hold up to the order of
he expansion (on this point see e.g. pp. 731–732 of [38]), and higher
rder terms are needed to enforce exact conservation laws. In order
o retain 𝜑 as dynamical variable and enforce exact conservation of
nergy, one therefore needs to assume that the last second order term
n the right-hand side of (37), which is responsible for violation of
onservation of energy, is a third order term,
𝜎

𝐴𝑒𝜔𝑐

|

|

|

|

∇𝒗2𝑬 ⋅ ∇ ×
(

𝐴𝑒
𝑩
𝐵2

)

|

|

|

|

∼ 𝜖3. (38)

nforcing (38), one thus arrives at the GHM equation (4) of [23],
hich possesses exact mass and energy invariants. The ordering re-
uired to obtain the GHM equation (4), which includes the ordering
ondition (38), is summarized in Table 4.

The ordering condition (38) effectively restricts the allowed com-
inations of magnetic field 𝑩 and plasma density 𝐴𝑒. This restriction
an be removed at the price of replacing the electrostatic potential 𝜑
ith the reduced charged particle energy 𝜒 = 𝜑 + 𝜎𝒗2𝑬∕2 as dynamical
ariable. Indeed, expressing Eq. (37) in terms of 𝜒 , and using the two-
luid drift wave turbulence ordering of Table 3 without enforcing (38),
ne obtains

𝜕
𝜕𝑡

[

𝜆𝐴𝑒𝜒 − 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜒
𝐵2

)]

= ∇⋅

[

𝐴𝑒

(

𝜎
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

𝐵2
− 1

)

𝒗𝜒𝑬

]

+𝑜
(

𝜖3
)

,

(39)

which is precisely the HMGM Eq. (1) plus higher order corrections.
Since the two-fluid drift wave turbulence ordering of Table 3 used to
obtain the HMGM Eq. (1) does not include conditions on partial deriva-
6

tives of magnetic field 𝑩 and plasma density 𝐴𝑒, there is no restriction
on the geometry of 𝑩 and 𝐴𝑒 in this model equation. Furthermore,
since the HMGM Eq. (1) and the GHM equation (4) share the same
mathematical structure, the HMGM equation is endowed with the same
type of exact invariants of the GHM equation. The invariants of the
HMGM equation will be discussed in the next section.

For completeness, the two-fluid drift wave turbulence ordering
required for the derivation of the standard HM equation (3) is given in
Table 5. Observe that the standard HM ordering of Table 5 is stricter
than the two-fluid GHM ordering of Table 4 and the two-fluid HMGM
ordering of Table 3. In particular, the HM conditions on the spatial
changes in 𝐵 and 𝐴𝑒, 𝐿∇ log𝐵 ∼ 𝐿∇ log𝐴𝑒 ∼ 𝜖 are relaxed through
the condition (38) in the case of the GHM equation (4), and they are
completely removed in the case of the HMGM Eq. (1).

4. Conservation laws

In this section, we show that the derived HMGM Eq. (1) preserves
both mass and energy. Furthermore, we identify a third invariant
associated with the vorticity of the flow in a more general form than the
one obtained in [23], and discuss its relationship with the generalized
enstrophy encountered in the standard HM equation. Quantities are
ordered according to the two-fluid ordering of Section 3.

Since the HMGM Eq. (1) and the GHM equation (4) share the same
mathematical structure, we already know that the invariants of the
HMGM Eq. (1) can be obtained by replacing 𝜑 with 𝜒 in the expressions
of the invariants of the GHM equation (4). It is however useful to recall
the physical origin of these quantities. First observe that the total ion
mass can be written as

𝛺 = 𝑚
𝑍 ∫𝛺

𝐴𝑒𝑒
𝜆𝜑 𝑑𝒙. (40)

ince 𝜆𝜑 ∼ 𝜖, we may expand the exponential in powers of 𝜆𝜑 according
o 𝑒𝜆𝜑 = 1+ 𝜆𝜒 + 𝑜

(

𝜖2
)

and consider the conservation of the first order
erm,

𝛺 = 𝑚
𝑍 ∫𝛺

𝐴𝑒 (1 + 𝜆𝜒) 𝑑𝒙. (41)

sing (1) we have

𝑑𝑀𝛺
𝑑𝑡

= 𝑚
𝑍 ∫𝜕𝛺

𝐴𝑒

[

𝜎
∇⟂𝜒𝑡

𝐵2
−

(

1 − 𝜎
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

𝐵2

)

𝒗𝜒𝑬

]

⋅ 𝒏 𝑑𝑆

= − 𝑚
𝑍 ∫𝜕𝛺

𝐴𝑒𝑽 𝑑𝑤 ⋅ 𝒏 𝑑𝑆, (42)

here 𝒏 denotes the unit outward normal to the bounding surface 𝜕𝛺,
𝑆 the surface element on 𝜕𝛺, and we defined

𝑑𝑤 =

(

1 − 𝜎
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

2

)

𝒗𝜒𝑬 − 𝜎
∇⟂𝜒𝑡

2
. (43)
𝐵 𝐵
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Table 6
Invariants of the HMGM equation (1). In the definition of enstrophy 𝑊𝛺 , the quantity 𝑤 is an arbitrary
function of 𝜆𝜒 − 𝜎𝜔∕𝐴𝑒 with 𝜔 = ∇ ⋅

(

𝐴𝑒𝐵−2∇⟂𝜒
)

. Note that the field condition ∇ ×
(

𝐴𝑒𝑩∕𝐵2) = 𝟎 is a
sufficient (not necessary) condition for the existence of an enstrophy invariant (see discussion in sec. 5 for
details).

Invariant Expression Field conditions Boundary conditions

Mass 𝑀𝛺 ∫𝛺 𝐴𝑒 (1 + 𝜆𝜒) 𝑑𝒙 none 𝐴𝑒𝑽 𝑑𝑤 ⋅ 𝒏 = 0

Energy 𝐻𝛺
1
2
∫𝛺 𝐴𝑒

(

𝜆𝜒2 + 𝜎 |
∇⟂𝜒|

2

𝐵2

)

𝑑𝒙 none 𝐴𝑒𝜒𝑽 𝑑𝑤 ⋅ 𝒏 = 0

Enstrophy 𝑊𝛺 ∫𝛺 𝐴𝑒𝑤𝑑𝒙 ∇ ×
(

𝐴𝑒
𝑩
𝐵2

)

= 𝟎 𝑤𝐴𝑒𝒗
𝜒
𝑬 ⋅ 𝒏 = 0
O

𝑊

∇

T
e
c
c

𝑊

I
s
(
d
f
o
s
e
H
S

5

E
t
E

The boundary integral (42) vanishes under suitable boundary condi-
tions, such as 𝐴𝑒 = 0 on 𝜕𝛺 or 𝑽 𝑑𝑤 ⋅ 𝒏 = 0 on 𝜕𝛺.

Next, observe that the leading order ion Hamiltonian is given by

= 𝑚
2
𝒗2 +𝑍𝑒𝜑 = 𝑍𝑒𝜑 + 𝑚

2
𝒗2𝑬 + 𝑜 (𝜖) . (44)

Therefore, at leading order the total ion energy satisfies

𝛺 = 𝑍𝑒∫𝛺×R3
𝑓
(

𝜑 + 𝜎
2
𝒗2𝑬

)

𝑑𝒑𝑑𝒙 + 𝑜 (𝜖) = 𝑒∫𝛺
𝐴𝑒𝑒

𝜆𝜑
(

𝜑 + 𝜎
2
𝒗2𝑬

)

𝑑𝒙

+ 𝑜 (𝜖) . (45)

ividing this expression by 𝑘𝐵𝑇𝑒 we obtain
𝛺
𝑘𝐵𝑇𝑒

= ∫𝛺
𝐴𝑒

(

1 + 𝜆𝜑 + 1
2
𝜆2𝜑2

)(

𝜆𝜑 + 𝜎
2
𝜆𝒗2𝑬

)

𝑑𝒙 + 𝑜
(

𝜖4
)

= ∫𝛺
𝐴𝑒

(

𝜆𝜑 + 𝜆2𝜑2 + 𝜎
2
𝜆𝒗2𝑬

)

𝑑𝒙 + 𝑜
(

𝜖4
)

. (46)

t follows that
𝛺
𝑘𝐵𝑇𝑒

− 𝑍
𝑚
𝛺 = 1

2 ∫𝛺
𝐴𝑒

(

𝜆2𝜑2 + 𝜆𝜎𝒗2𝑬 − 2
)

𝑑𝒙 + 𝑜
(

𝜖3
)

= 1
2 ∫𝛺

𝐴𝑒

(

𝜆2𝜒2 + 𝜆𝜎𝒗𝜒2𝑬 − 2
)

𝑑𝒙 + 𝑜
(

𝜖3
)

. (47)

ince 𝐴𝑒 is a spatial function, we thus expect the HMGM energy

𝛺 = 1
2 ∫𝛺

𝐴𝑒

(

𝜆𝜒2 + 𝜎
|

|

∇⟂𝜒||
2

𝐵2

)

𝑑𝒙, (48)

o be a constant of motion. From Eq. (1), one can verify that

𝑑𝐻𝛺
𝑑𝑡

=∫𝛺
𝜒 𝜕
𝜕𝑡

[

𝜆𝐴𝑒𝜒 − 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜒
𝐵2

)]

𝑑𝒙 + 𝜎 ∫𝜕𝛺
𝐴𝑒𝜒

∇⟂𝜒𝑡

𝐵2
⋅ 𝒏 𝑑𝑆

=∫𝜕𝛺
𝐴𝑒𝜒

[

𝜎
∇⟂𝜒𝑡

𝐵2
−

(

1 − 𝜎
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

𝐵2

)

𝒗𝜒𝑬

]

⋅ 𝒏 𝑑𝑆

= − ∫𝜕𝛺
𝐴𝑒𝜒𝑽 𝑑𝑤 ⋅ 𝒏 𝑑𝑆.

(49)

gain, this boundary integral vanishes under suitable boundary con-
itions, such as 𝐴𝑒 = 0 on 𝜕𝛺, 𝜒 = 0 on 𝜕𝛺, or 𝑽 𝑑𝑤 ⋅ 𝒏 = 0 on
𝛺.

An additional invariant, associated with the vorticity ∇× 𝒗𝜒𝑬 , exists
hen the magnetic field and the electron spatial density satisfy the

ondition ∇ ×
(

𝐴𝑒𝑩∕𝐵2) = 𝟎. To see this, define the quantity

= ∇ ⋅
(

𝐴𝑒
∇⟂𝜒
𝐵2

)

= 𝐴𝑒
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

𝐵2
+ ∇𝜒 ⋅

𝑩
𝐵2

×
[

∇ ×
(

𝐴𝑒
𝑩
𝐵2

)]

. (50)

Next, observe that whenever
𝑩
𝐵2

×
[

∇ ×
(

𝐴𝑒
𝑩
𝐵2

)]

= 𝟎, (51)

hich implies that 𝐴𝑒𝑩∕𝐵2 is a Beltrami field, the following identity
olds

= ∇ ⋅
(

𝐴𝑒
∇⟂𝜒
𝐵2

)

= 𝐴𝑒
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

𝐵2
. (52)

he derived HMGM Eq. (1) can thus be written in the form

𝜕 [

𝜆𝐴𝑒𝜒 − 𝜎𝜔
]

= −∇ ⋅
[(

1 − 𝜎 𝜔
)

𝐴𝑒𝒗
𝜒
]

. (53)
7

𝜕𝑡 𝐴𝑒
𝑬

n the other hand, functionals of the form

𝛺 = ∫𝛺
𝐴𝑒𝑤

(

𝜆𝜒 − 𝜎 𝜔
𝐴𝑒

)

𝑑𝒙, (54)

where 𝑤
(

𝜆𝜒 − 𝜎𝜔∕𝐴𝑒
)

is any function of 𝜆𝜒 − 𝜎𝜔∕𝐴𝑒, satisfy

𝑑𝑊𝛺
𝑑𝑡

= ∫𝛺
𝑤′ 𝜕

𝜕𝑡
(

𝜆𝐴𝑒𝜒 − 𝜎𝜔
)

𝑑𝒙

= −∫𝛺
𝑤′

[

∇
(

𝜆𝜒 − 𝜎 𝜔
𝐴𝑒

)

⋅ 𝐴𝑒𝒗
𝜒
𝑬 +

(

1 − 𝜎 𝜔
𝐴𝑒

)

∇ ⋅
(

𝐴𝑒𝒗
𝜒
𝑬
)

]

𝑑𝒙, (55)

with 𝑤′ = 𝑑𝑤∕𝑑
(

𝜆𝜒 − 𝜎𝜔∕𝐴𝑒
)

. Now observe that

⋅
(

𝐴𝑒𝒗
𝜒
𝑬
)

= ∇𝜒 ⋅ ∇ ×
(

𝐴𝑒
𝑩
𝐵2

)

. (56)

Hence, if we further demand that

∇ ×
(

𝐴𝑒
𝑩
𝐵2

)

= 𝟎, (57)

which is a special case of (51), we find that
𝑑𝑊𝛺
𝑑𝑡

= −∫𝜕𝛺
𝑤𝐴𝑒𝒗

𝜒
𝑬 ⋅ 𝒏 𝑑𝑆. (58)

This boundary integral vanishes whenever 𝑤𝐴𝑒𝒗
𝜒
𝑬 ⋅ 𝒏 = 0 on 𝜕𝛺.

he quantity 𝑊𝛺 can be identified with the generalized enstrophy
ncountered in the standard Hasegawa–Mima equation if the boundary
ondition above is satisfied through 𝐴𝑒, i.e. 𝐴𝑒 = 0 on 𝜕𝛺. Indeed,
hoosing 𝑤 =

(

𝜆𝜒 − 𝜎𝜔∕𝐴𝑒
)2 and integrating by parts gives

𝛺 = 2𝜆𝐻𝛺 + 𝜎 ∫𝛺

{

𝜆𝐴𝑒

|

|

∇⟂𝜒||
2

𝐵2
+ 𝜎𝐴−1

𝑒

[

∇ ⋅
(

𝐴𝑒
∇⟂𝜒
𝐵2

)]2
}

𝑑𝒙. (59)

n the following, we shall refer to 𝑊𝛺 as generalized enstrophy, or
imply enstrophy. It is worth observing that the condition (57) implies
Poincaré lemma) that the magnetic field locally defines the normal
irection of a surface 𝐶 = constant, i.e. 𝑩 ∥ ∇𝐶 for some appropriate
unction 𝐶 and sufficiently small neighborhood 𝑈 ⊆ 𝛺. The invariants
f the HMGM equation are summarized in Table 6. Finally, we empha-
ize that Eq. (57) is only a sufficient condition for the existence of an
nstrophy invariant. This is because (57) is a sufficient condition for the
MGM equation to define a Hamiltonian system. See the discussion in
ection 5 for more details.

. Algebraic structure and nonlinear stability

In this section, we discuss the algebraic structure of the HMGM
q. (1), and the resulting nonlinear stability properties of steady solu-
ions. In particular, we are concerned with the conditions under which
q. (1) can be written in the form
𝜕𝜂
𝜕𝑡

=
{

𝜂,𝐻𝛺
}

, (60)

where 𝜂 = 𝜆𝐴𝑒𝜒 − 𝜎𝜔 and {⋅, ⋅} denotes a Poisson bracket [37] acting
on functionals of 𝜂.

Conservation of energy 𝐻𝛺 suggests that the HMGM Eq. (1) has
an antisymmetric bracket structure. An antisymmetric bracket (also
called an almost Poisson bracket [49]) shares the same properties of
a Poisson bracket, except that it does not satisfy the Jacobi identity
that characterizes the Poisson algebra of Hamiltonian systems. This
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antisymmetric bracket structure will be sufficient to carry out the
nonlinear stability analysis of Section 5.3. The purpose of Section 5.1 is
to show that for general 𝑩 and 𝐴𝑒 the HMGM equation is endowed with
such antisymmetric bracket structure, although the fulfillment of the
Jacobi identity is not guaranteed. In practice, this means that in general
the HMGM equation does not define a Hamiltonian system. Sufficient
conditions on 𝑩 and 𝐴𝑒 for the HMGM to possess a Poisson bracket and
thus to define a Hamiltonian system will be obtained in Section 5.2.

The reason why the validity of the Jacobi identity depends on
the geometry of the magnetic field and the plasma density can be
found in the underlying properties of 𝑬 × 𝑩 drift dynamics, i.e. the
three-dimensional dynamical system defined by

𝑿̇ = 𝒗𝑬 =
𝑩 × ∇𝜑

𝐵2
. (61)

It is well established [50–52] that the equations of motion (61) define
a Hamiltonian system only when the magnetic field has a vanishing
helicity density,

𝑩 ⋅ ∇ × 𝑩 = 0, (62)

lthough the potential energy 𝑍𝑒𝜑, which represents the energy of the
ystem, is a constant of motion for any 𝑩 because 𝑿̇ ⋅ ∇𝜑 = 0. Indeed,
he condition (62) is nothing but the Jacobi identity for the Poisson
perator 𝐵−2𝑩×. On the other hand, the average velocity of a charged
article in the present setting is represented by the sum of 𝑬×𝑩 velocity
nd polarization drift, 𝒗 = 𝒗𝑬+𝒗pol (on this point, see section 2 or [23]).
ince the HMGM Eq. (1) arises as the continuity equation for plasma
ensity under the velocity 𝒗 above, and since the polarization drift 𝒗pol
s a higher-order contribution compared to the 𝑬 × 𝑩 velocity 𝒗𝑬 , it
ollows that the HMGM equation can only be Hamiltonian if the 𝑬 ×𝑩
quation of motion (61) is itself a Hamiltonian system.

The Frobenius theorem [53] of differential geometry informs us
hat the vanishing of the magnetic helicity density expressed by (62) is
quivalent to the integrability condition for the magnetic field 𝑩. When
62) holds, local functions 𝜆 and 𝐶 can be found such that 𝑩 = 𝜆∇𝐶,
mplying that 𝑩 defines the normal of the surface 𝐶 = constant. In
ection 4.2, we demonstrate that the HMGM Eq. (1) transitions to a
amiltonian system whenever ∇ ×

(

𝐴𝑒𝑩∕𝐵2) = 𝟎. This condition is
recisely the integrability condition (62), with 𝜆 = 𝐵2∕𝐴𝑒 serving as the
ntegration factor. This result establishes the mathematical soundness
f the HMGM equation and clarifies that its Hamiltonian nature is
ontingent upon the integrability of the magnetic field.

We also stress that while (62) is a necessary condition for the exis-
ence of a Hamiltonian structure, ∇×

(

𝐴𝑒𝑩∕𝐵2) = 𝟎 is only a sufficient
ondition. Indeed, the integrability condition (62) locally amounts to
×

(

𝜇𝐴𝑒𝑩∕𝐵2) = 𝟎 for some 𝜇 (𝒙). In general, the corresponding
oisson bracket will include 𝜇, and an associated Casimir (enstrophy)
nvariant will arise as a result of the restriction of the dynamics to
he planes 𝐶 = constant. Nevertheless, this case is not pursued here
o simplify the exposition. As an example, the standard HM equation
ith non-constant density log𝐴𝑒 = log𝐴𝑒0 + 𝛽𝑥, 𝛽𝐿 ≪ 1, and straight
agnetic field 𝑩 = 𝐵0∇𝑧, gives ∇×

(

𝐴𝑒𝑩∕𝐵2) = −𝛽𝐴𝑒𝐵−1
0 ∇𝑦 as well as

⋅
(

𝐴𝑒𝒗𝑬
)

= −𝛽𝐴𝑒𝐵−1
0 𝜕𝜑∕𝜕𝑦 and 𝜇 ∝ 𝐴−1

𝑒 . The corresponding Poisson
racket and Casimir invariant can be found in [41].

In principle, Hamiltonian reductions of the two-fluid equations
overning the ion-electron plasma could yield a 1-field HMGM equa-
ion with a Hamiltonian structure in three spatial dimensions for any
agnetic field. However, this simplification would overlook crucial

ontributions stemming from the compressibility of the 𝑬 × 𝑩 flow
𝑒𝒗𝑬 , namely the term ∇⋅

(

𝐴𝑒𝒗𝑬
)

= ∇𝜑⋅∇×
(

𝐴𝑒𝑩∕𝐵2), which precludes,
n general, the existence of an invariant (Liouville) measure for the
ystem (61). Another approach to restoring the Hamiltonian structure
n the case of a non-integrable magnetic field involves reintroducing the
arallel velocity 𝑣∥ (detailed mathematical explanations of this Hamil-
onian extension can be found in [54]). However, this method would
ecessitate an increase in the system’s phase space to 4 dimensions and
8

nvalidate the cold ions assumption. i
It should also be emphasized that the HMGM Eq. (1) represents
case of non-Hamiltonian reduction [55], as often occurs with non-

olonomically constrained mechanical systems [56,57], of which 𝑬 ×
dynamics (61), which is at the basis of important transport and

urbulent phenomena, is a key plasma physics example. The Nosé–
oover thermostat in molecular dynamics [58], the Chaplygin sleigh

n rigid body dynamics [59,60], the Heisenberg system [60], and the
andau–Lifshitz equation describing magnetization evolution in ferro-
agnets [50,61] are just a few examples spanning various disciplines.
hese mechanical systems often exhibit intriguing dynamics associated
ith the violation of Lioville’s theorem and the non-Hamiltonian struc-

ure of the phase space. We thus expect the HMGM Eq. (1) to display
uch non-Hamiltonian effects when the magnetic field is not integrable.

.1. Antisymmetric bracket structure

First, define the second order linear partial differential operator 
ccording to

𝜒 = 𝜂 = 𝜆𝐴𝑒𝜒 − 𝜎𝜔 = 𝜆𝐴𝑒𝜒 − 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜒
𝐵2

)

. (63)

In the following, we shall assume the inverse operator −1 mapping
to 𝜒 ∈ X to be well defined by appropriate choice of the space of

olutions X. Next, consider the bracket

𝐹 ,𝐺} = ∫𝛺
𝐴𝑒

(

1 − 𝜎
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

𝐵2

)

∇
(

𝛿𝐹
𝛿𝜂

)

⋅
𝑩
𝐵2

× ∇
(

𝛿𝐺
𝛿𝜂

)

𝑑𝒙, (64)

acting on functionals 𝐹 ,𝐺 ∈ X∗, where X∗ denotes the dual space of X.
ssuming variations 𝛿𝜒 and the electron spatial density 𝐴𝑒 to vanish

on the boundary, and noting that
𝛿𝐻𝛺
𝛿𝜂

= ∫𝛺
𝛿𝐻𝛺

𝛿𝜒 (𝒙′, 𝑡)
𝛿

𝛿𝜂 (𝒙, 𝑡)
−1𝜂

(

𝒙′, 𝑡
)

𝑑𝒙′ = −1 𝛿𝐻𝛺
𝛿𝜒

= 𝜒, (65)

where 𝐻𝛺 is the energy given in (48), one can verify that the HMGM
Eq. (1) can be written in the form (60) through the bracket (64).

It is also clear that the bracket (64) possesses an antisymmetric
bracket structure. Indeed, the bracket (64) is bilinear and alternating
(and thus antisymmetric), and it also satisfies the Leibniz rule. In
formulae,

{𝑎𝐹 + 𝑏𝐺,𝐻} = 𝑎 {𝐹 ,𝐻} + 𝑏 {𝐺,𝐻} ,

{𝐻, 𝑎𝐹 + 𝑏𝐺} = 𝑎 {𝐻,𝐹 } + 𝑏 {𝐻,𝐺} , (66a)

{𝐹 , 𝐹 } = 0, (66b)

{𝐹 ,𝐺} = −{𝐺, 𝐹 } , (66c)

{𝐹𝐺,𝐻} = 𝐹 {𝐺,𝐻} + {𝐹 ,𝐻}𝐺, (66d)

for all 𝑎, 𝑏 ∈ R and 𝐹 ,𝐺,𝐻 ∈ X∗. If one could futher show that the
acobi identity holds,

𝐹 , {𝐺,𝐻}} + {𝐺, {𝐻,𝐹 }} + {𝐻, {𝐹 ,𝐺}} = 0. (67)

he bracket (64) would also qualify as a Poisson bracket. Unfortunately,
t turns out that this bracket does not satisfy the Jacobi identity for
rbitrary 𝑩 and 𝐴𝑒. To see this, it is useful to introduce the following
otation for the Jacobi identity,

𝐹 , {𝐺,𝐻}}+ ↻= 0, (68)

here ↻ represents summation of even permutations. Furthermore,
e shall denote functional derivatives as 𝐹𝜂 = 𝛿𝐹∕𝛿𝜂, and define the
uantity

= 𝐴𝑒

(

1 − 𝜎
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

𝐵2

)

𝑩
𝐵2

. (69)

Notice that 𝜷 = 𝜷 [𝜂] is a functional of 𝜂. Omitting the range of
ntegration, the Jacobi identity for the bracket (64) now reads
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{𝐹 , {𝐺,𝐻}}+ ↻= ∫ ∇𝐹𝜂 ⋅ 𝜷 × ∇ 𝛿
𝛿𝜂

(

∫ ∇𝐺𝜂 ⋅ 𝜷 × ∇𝐻𝜂 𝑑𝒙
)

𝑑𝒙+ ↻ .

(70)

erms involving second order functional derivatives of 𝐹 , 𝐺, and 𝐻
anish (on this point see e.g. [62]). For example, the term

∇
(

𝐺𝜂𝜂𝛿𝜂
)

⋅ 𝜷 × ∇𝐻𝜂 𝑑𝒙 = −∫ 𝛿𝜂𝐺𝜂𝜂∇𝐻𝜂 ⋅ ∇ × 𝜷 𝑑𝒙, (71)

ives rise to the following contribution to the Jacobi identity,

∫ ∇𝐹𝜂 ⋅𝜷×∇
(

𝐺𝜂𝜂∇𝐻𝜂 ⋅ ∇ × 𝜷
)

𝑑𝒙 = −∫ 𝐺𝜂𝜂∇𝐻𝜂 ⋅∇×𝜷∇𝐹𝜂 ⋅∇×𝜷 𝑑𝒙,

(72)

here we used the hypothesis that the electron density vanishes on the
oundary, 𝐴𝑒 = 0 on 𝜕𝛺, so that 𝜷 = 𝟎 on 𝜕𝛺 and boundary terms
valuate to zero. On the other hand, the following term occurring in
he permutation {𝐻, {𝐹 ,𝐺}},

∇𝐹𝜂 ⋅ 𝜷 × ∇
(

𝐺𝜂𝜂𝛿𝜂
)

𝑑𝒙 = ∫ 𝛿𝜂𝐺𝜂𝜂∇𝐹𝜂 ⋅ ∇ × 𝜷 𝑑𝒙, (73)

ontributes to the Jacobi identity with

∇𝐻𝜂 ⋅𝜷×∇
(

𝐺𝜂𝜂∇𝐹𝜂 ⋅ ∇ × 𝜷
)

𝑑𝒙 = ∫ 𝐺𝜂𝜂∇𝐻𝜂 ⋅∇×𝜷∇𝐹𝜂 ⋅∇×𝜷 𝑑𝒙, (74)

hich cancels with (72). It follows that the only surviving terms in
he Jacobi identity are those involving functional derivatives of 𝜷. In
articular, we must evaluate the integral

∇𝐺𝜂 ⋅ 𝛿𝜷 × ∇𝐻𝜂 𝑑𝒙. (75)

o this end, it is useful to define the quantities

= 1 − 𝜎
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

𝐵2
, 𝜃 = −𝜎∇𝐺𝜂 ⋅

𝑩
𝐵2

× ∇𝐻𝜂 , (76)

o that

∇𝐺𝜂 ⋅ 𝛿𝜷 × ∇𝐻𝜂 𝑑𝒙 =∫ 𝐴𝑒𝜃
𝑩
𝐵2

⋅ ∇ ×
(

𝑩 × ∇𝛿𝜒
𝐵2

)

𝑑𝒙

=∫
𝑩 × ∇𝛿𝜒

𝐵2
⋅ ∇ ×

(

𝐴𝑒𝜃
𝑩
𝐵2

)

𝑑𝒙

=∫ ∇−1𝛿𝜂 ⋅ ∇ ×
(

𝐴𝑒𝜃
𝑩
𝐵2

)

× 𝑩
𝐵2

𝑑𝒙

=∫ 𝛿𝜂−1∇ ⋅
{ 𝑩
𝐵2

×
[

∇ ×
(

𝜃𝐴𝑒
𝑩
𝐵2

)]}

𝑑𝒙

(77)

nd the Jacobi identity can be written as

𝐹 , {𝐺,𝐻}}+ ↻=∫ 𝐴𝑒𝜁∇𝐹𝜂 ⋅
𝑩
𝐵2

× ∇−1∇

⋅
{ 𝑩
𝐵2

×
[

∇ ×
(

𝜃𝐴𝑒
𝑩
𝐵2

)]}

𝑑𝒙+ ↻

=∫ −1∇ ⋅
{ 𝑩
𝐵2

×
[

∇ ×
(

𝜃𝐴𝑒
𝑩
𝐵2

)]}

∇𝐹𝜂

⋅ ∇ ×
(

𝜁𝐴𝑒
𝑩
𝐵2

)

𝑑𝒙+ ↻ .

(78)

ince the value of the parameters 𝜎 and 𝜆 is not specified, terms
roportional to different powers of 𝜎 must cancel separately. The Jacobi
dentity above contains terms scaling as 𝜎−1, terms scaling as 𝜎2−1,
nd terms scaling as 𝜎3−1. From the first group of terms, we obtain
he condition

−1∇ ⋅
{ 𝑩
𝐵2

×
[

∇ ×
(

𝜃𝐴𝑒
𝑩
𝐵2

)]}

∇𝐹𝜂 ⋅ ∇ ×
(

𝐴𝑒
𝑩
𝐵2

)

𝑑𝒙+ ↻

= ∫

{

−1∇ ⋅
{ 𝑩
𝐵2

×
[

∇ ×
(

𝜃𝐴𝑒
𝑩
𝐵2

)]}

∇𝐹𝜂+ ↻
}

⋅ ∇ ×
(

𝐴𝑒
𝑩
𝐵2

)

𝑑𝒙 = 0.

(79)

We therefore see that a sufficient condition for this quantity to vanish
is that the magnetic field 𝑩 and the spatial density 𝐴𝑒 satisfy

∇ ×
(

𝐴 𝑩 )

= 𝟎. (80)
9

𝑒 𝐵2
ow observe that when (80) holds, the surviving terms in the Jacobi
dentity (78) are

𝐹 , {𝐺,𝐻}}+ ↻=∫ −1∇ ⋅
(

𝐴𝑒
∇⟂𝜃
𝐵2

)

∇𝐹𝜂 ⋅ ∇𝜁 × 𝐴𝑒
𝑩
𝐵2

𝑑𝒙+ ↻

= 1
𝜎 ∫

[

−𝜃 + 𝜆−1 (𝐴𝑒𝜃
)]

∇𝐹𝜂 ⋅ ∇𝜁 × 𝐴𝑒
𝑩
𝐵2

𝑑𝒙+ ↻ .

(81)

On the other hand, the condition (80) implies that there exists some
local function 𝐶 such that 𝐴𝑒𝑩∕𝐵2 = ∇𝐶 (Poincaré lemma). The first
term within the integrand involving −𝜃 can therefore be locally written
as
𝐴−1
𝑒 ∇𝐺𝜂 ⋅ ∇𝐶 × ∇𝐻𝜂∇𝐹𝜂 ⋅ ∇𝜁 × ∇𝐶+ ↻= 𝐴−1

𝑒
[ 𝜕𝐺𝜂

𝜕𝑥

(

𝜕𝐶
𝜕𝑦

𝜕𝐻𝜂

𝜕𝑧
− 𝜕𝐶

𝜕𝑧
𝜕𝐻𝜂

𝜕𝑦

)

+
𝜕𝐺𝜂

𝜕𝑦

(

𝜕𝐶
𝜕𝑧

𝜕𝐻𝜂

𝜕𝑥
− 𝜕𝐶

𝜕𝑥
𝜕𝐻𝜂

𝜕𝑧

)

+
𝜕𝐺𝜂

𝜕𝑧

(

𝜕𝐶
𝜕𝑥

𝜕𝐻𝜂

𝜕𝑦
− 𝜕𝐶

𝜕𝑦
𝜕𝐻𝜂

𝜕𝑥

)]

[ 𝜕𝐹𝜂

𝜕𝑥

(

𝜕𝜁
𝜕𝑦

𝜕𝐶
𝜕𝑧

−
𝜕𝜁
𝜕𝑧

𝜕𝐶
𝜕𝑦

)

+
𝜕𝐹𝜂

𝜕𝑦

(

𝜕𝜁
𝜕𝑧

𝜕𝐶
𝜕𝑥

−
𝜕𝜁
𝜕𝑥

𝜕𝐶
𝜕𝑧

)

+
𝜕𝐹𝜂

𝜕𝑧

(

𝜕𝜁
𝜕𝑥

𝜕𝐶
𝜕𝑦

−
𝜕𝜁
𝜕𝑦

𝜕𝐶
𝜕𝑥

)]

+ ↻= 0.

(82)

Unfortunately, the term in (81) containing −1 (𝐴𝑒𝜃
)

appears to rep-
resent an obstruction to the Jacobi identity that cannot be trivially
removed. This fact suggests that in order to fulfill the Jacobi identity
when condition (80) holds, the bracket (64) itself must be modified.
This modification is discussed below.

5.2. Poisson bracket structure

The aim of this subsection is to show that when the magnetic field
𝑩 and the plasma density 𝐴𝑒 satisfy the integrability condition (80), the
ollowing alternative bracket is a Poisson bracket,

𝐹 ,𝐺}′ = ∫𝛺
𝜂∇

(

𝛿𝐹
𝛿𝜂

)

⋅
𝑩
𝐵2

× ∇
(

𝛿𝐺
𝛿𝜂

)

𝑑𝒙. (83)

bserve that the bracket (83) satisfies the antisymmetric bracket ax-
oms (66) by the same arguments used for the bracket (64). In addition,
f (80) holds, the GHM equation (1) can be written in the equivalent
orm
𝜕𝜂
𝜕𝑡

=
{

𝜂,𝐻𝛺
}′ . (84)

Furthermore, by repeating the same steps as above the Jacobi identity
for the new bracket (83) can be evaluated to be

{

𝐹 , {𝐺,𝐻}′
}′ + ↻= ∫ 𝐴𝑒∇

(

𝜂
𝐴𝑒

)

⋅
𝑩
𝐵2

× ∇𝐹𝜂 ∇𝐺𝜂 ⋅
𝑩
𝐵2

× ∇𝐻𝜂 𝑑𝒙+ ↻= 0,

(85)

hich vanishes by the same calculation used in Eq. (82). We have
hus shown that the antisymmetric bracket (83) is a Poisson bracket
henever Eq. (80) holds. It should not be surprising that (80) is exactly

he same condition for the conservation of generalized enstrophy 𝑊𝛺
see Table 4). Indeed, the functional 𝑊𝛺 is a Casimir invariant of the
oisson bracket (83),

𝑑𝑊𝛺
𝑑𝑡

=
{

𝑊𝛺 ,𝐻𝛺
}′

=∫
𝜂
𝐴𝑒

∇𝑤′ ⋅ 𝐴𝑒
𝑩
𝐵2

× ∇
𝛿𝐻𝛺
𝛿𝜂

𝑑𝒙

=∫𝜕𝛺
𝐴𝑒

[

∫
𝜂
𝐴𝑒

𝑤′′𝑑
(

𝜂
𝐴𝑒

)]

𝑩
𝐵2

× ∇
𝛿𝐻𝛺
𝛿𝜂

⋅ 𝒏 𝑑𝑆 = 0 ∀𝐻𝛺 .

(86)
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In the last passage, we used the boundary condition 𝐴𝑒 = 0 on 𝜕𝛺. We
stress again that, however, the bracket (83) cannot be used to generate
the HMGM system (1) when the condition (80) does not hold. We also
remark that the mass 𝑀𝛺 encountered in Eq. (41) is a Casimir invariant
of both brackets, i.e.
𝑑𝑀𝛺
𝑑𝑡

=
{

𝑀𝛺 ,𝐻𝛺
}

=
{

𝑀𝛺 ,𝐻𝛺
}′ = 0 ∀𝐻𝛺 . (87)

In this calculations we used the fact that the boundary condition 𝐴𝑒 = 0
on 𝜕𝛺 implies that

𝛿𝑀𝛺 = ∫𝛺

[

𝜆𝐴𝑒𝛿𝜒 − ∇ ⋅
(

𝐴𝑒
∇⟂𝛿𝜒
𝐵2

)]

𝑑𝒙 = ∫𝛺
𝛿𝜂 𝑑𝒙. (88)

It is worth observing that the condition (80) implies that the mag-
etic field satisfies the Frobenius integrability condition 𝑩 ⋅ ∇ × 𝑩 = 0
ecause 𝑩 = 𝐴−1

𝑒 𝐵2∇𝐶 locally. Furthermore, it also implies that the
×𝑩 velocity 𝒗𝜒𝑬 multiplied by the spatial density 𝐴𝑒 is divergence free,
⋅
(

𝐴𝑒𝒗
𝜒
𝑬
)

= ∇𝜒 ⋅∇×
(

𝐴𝑒𝐵−2𝑩
)

= 0. Notice also that (80) can always be
atisfied for a vacuum field 𝑩 = ∇𝐶 by setting 𝐴𝑒 ∝ 𝐵2. Finally, when
𝑒 is a constant the HMGM Eq. (1) defines a noncanonical Hamiltonian

ystem provided that the magnetic field 𝑩 satisfies

⋅ 𝑩 = 0, ∇ ×
( 𝑩
𝐵2

)

= 𝟎. (89)

ontrivial examples of such configurations in different geometries can
e found in [23].

.3. Nonlinear stability criterion for steady solutions

The aim of this subsection is to elucidate the nonlinear stability
roperties of steady solutions of the HMGM Eq. (1) with the aid of the
nergy-Casimir method [44–47].

First, notice that steady solutions 𝜒0 (𝒙) of the HMGM Eq. (1)
an be characterized in terms of critical points of the energy-Casimir
unctional

𝛺 = 𝐻𝛺 + 𝛾𝑀𝛺 + 𝜈𝑊𝛺 , (90)

here 𝛾, 𝜈 are spatial constants, and 𝜈 is taken to be zero for configura-
ions violating the Poisson bracket condition (80). Here, a critical point
0 of a functional H𝛺 [𝜂] is a point of the domain of H𝛺 where its first
ariation with respect to the variable 𝜂 identically vanishes, 𝛿H𝛺

[

𝜂0
]

=
. Indeed, when 𝛿H𝛺 = 0, from (60) one sees that 𝜂𝑡 = 𝜕𝜂∕𝜕𝑡 = 0.
et 𝜒 (𝒙, 𝑡) denote a solution of the HMGM Eq. (1). A critical point 𝜒0 is
onlinearly stable provided that for every 𝜖 > 0 there exists a norm ‖⋅‖1
n the space of solutions X and a 𝛿 > 0 such that ‖

‖

𝜒 (𝒙, 0) − 𝜒0 (𝒙)‖‖1 < 𝛿
mplies

𝜒 (𝒙, 𝑡) − 𝜒0 (𝒙)‖‖2 < 𝜖 ∀𝑡 ≥ 0, (91)

here ‖⋅‖2 is a further norm on the state space X. Notice that the
onlinear stability described by (91) only ensures that the solution 𝜒
emains close to the critical point in the norm ‖⋅‖2.

heorem 1 (Nonlinear Stability of Steady Solutions of the HMGM Equa-
ion). Let 𝜒0 (𝒙) ∈ 𝐶2 (𝛺) denote a critical point of the energy-Casimir
unctional H𝛺. If the condition ∇ ×

(

𝐴𝑒𝑩∕𝐵2) = 𝟎 of Eq. (80) holds,
ssume that the function 𝑤

(

𝜂∕𝐴𝑒
)

appearing within the integrand of the
asimir invariant 𝑊𝛺 is twice differentiable in its argument, and that it
atisfies

< 𝑐𝑚 ≤ 𝜈𝑤′′ = 𝜈 𝑑2𝑤

𝑑
(

𝜂∕𝐴𝑒
)2

≤ 𝑐𝑀 < ∞, (92)

with 𝑐𝑚 and 𝑐𝑀 real constants. If ∇ ×
(

𝐴𝑒𝑩∕𝐵2) ≠ 𝟎 set 𝜈 = 0. Further
ssume that 𝑩, 𝐴𝑒 ∈ 𝐶2 (𝛺̄

)

, that their minima satisfy 𝐵𝑚, 𝐴𝑒𝑚 > 0, and
that the HMGM Eq. (1) admits a solution 𝜒 (𝒙, 𝑡) ∈ 𝐶2 (𝛺 × [0, 𝑡)) for all
𝑡 ≥ 0 such that 𝛿𝜒 = 𝜒 −𝜒 = 0 and 𝐴 = 0 on the boundary 𝜕𝛺. Then, the
10

0 𝑒
critical point 𝜒0 is nonlinearly stable: there exists a positive real constant C
such that

‖

‖

𝜒 (𝑡) − 𝜒0
‖

‖

2
⟂ ≤ C ‖

‖

𝜒 (0) − 𝜒0
‖

‖

2
⟂ ∀𝑡 ≥ 0, (93)

with

‖𝜒‖2⟂ =

⎧

⎪

⎨

⎪

⎩

‖𝜒‖2𝐿2(𝛺) + ‖

‖

∇⟂𝜒‖‖
2
𝐿2(𝛺) + ‖𝜒‖2𝐿2(𝛺) , if ∇ ×

(

𝐴𝑒
𝑩
𝐵2

)

= 𝟎,

‖𝜒‖2𝐿2(𝛺) + ‖

‖

∇⟂𝜒‖‖
2
𝐿2(𝛺) if ∇ ×

(

𝐴𝑒
𝑩
𝐵2

)

≠ 𝟎,

(94)

here 𝐿2 (𝛺) denotes the standard 𝐿2 norm in 𝛺 and we used the abbrevi-
ted notation 𝜒 (𝑡) = 𝜒 (𝒙, 𝑡).

roof. We start by observing that key to the proof is the conservation
f H𝛺. Indeed, the energy-Casimir method consists in finding norms
⋅‖1 and ‖⋅‖2 on X so that the following chain of inequalities holds:

‖

‖

𝜒 (0) − 𝜒0
‖

‖

2
1 ≥

|

|

|

H𝛺
[

𝜒 (0)
]

− H𝛺
[

𝜒0
]

|

|

|

= |

|

|

H𝛺
[

𝜒 (𝑡)
]

− H𝛺
[

𝜒0
]

|

|

|

≥ ′
‖

‖

𝜒 (𝑡) − 𝜒0
‖

‖

2
2 , (95)

here ,′ are positive real constants. To derive these inequalities for
he case 𝜈 ≠ 0 (corresponding to ∇ ×

(

𝐴𝑒𝑩∕𝐵2) = 𝟎) we rely on a
tandard result: setting 𝜂 = 𝜒 , 𝜂0 = 𝜒0, and 𝛿𝜂 = 𝜂 − 𝜂0, Taylor’s
heorem asserts that
(

𝜂
𝐴𝑒

)

= 𝑤
(

𝜂0
𝐴𝑒

)

+𝑤′
(

𝜂0
𝐴𝑒

)

𝛿𝜂
𝐴𝑒

+𝑤′′
(

𝜂̃
𝐴𝑒

)

𝛿𝜂2

2𝐴2
𝑒
, (96)

with 𝜂̃ between 𝜂0 and 𝜂 and 𝑤′ = 𝑑𝑤∕𝑑
(

𝜂∕𝐴𝑒
)

. Since 𝐴𝑒 ∈ 𝐶2 (𝛺̄
)

nd 𝐴𝑒 ≥ 𝐴𝑒𝑚 > 0, 𝐴𝑒 attains a positive maximum 𝐴𝑒𝑀 < ∞ in 𝛺̄.
sing 0 < 𝑐𝑚 ≤ 𝜈𝑤′′ ≤ 𝑐𝑀 < ∞ and 0 < 𝐴𝑒𝑚 ≤ 𝐴𝑒 ≤ 𝐴𝑒𝑀 < ∞ we thus
btain

𝑐𝑚
2𝐴𝑒𝑀

‖𝛿𝜂‖2
𝐿2(𝛺)

≤ ∫𝛺
𝜈𝛿𝜂2

2𝐴𝑒
𝑤′′

(

𝜂̃
𝐴𝑒

)

𝑑𝒙 ≤
𝑐𝑀
2𝐴𝑒𝑚

‖𝛿𝜂‖2
𝐿2(𝛺)

. (97)

Now observe that

H𝛺
[

𝜒 (𝑡)
]

−H𝛺
[

𝜒0
]

=

∫𝛺
𝐴𝑒

{

𝜆
2
(

2𝜒0𝛿𝜒 + 𝛿𝜒2) + 𝜎
2∇⟂𝛿𝜒 ⋅ ∇⟂𝜒0 + |

|

∇⟂𝛿𝜒||
2

2𝐵2
+ 𝛾𝜆𝛿𝜒

}

𝑑𝒙

+ 𝜈 ∫𝛺
𝐴𝑒

[

𝑤′
(

𝜂0
𝐴𝑒

)

𝛿𝜂
𝐴𝑒

+𝑤′′
(

𝜂̃
𝐴𝑒

)

𝛿𝜂2

2𝐴2
𝑒

]

𝑑𝒙

=∫𝛺
𝐴𝑒

{

𝜆
2
(

2𝜒0𝛿𝜒 + 𝛿𝜒2) − 𝜎
𝐴𝑒

𝛿𝜒∇ ⋅
(

𝐴𝑒
∇⟂𝜒0

𝐵2

)

+ 𝜎
|

|

∇⟂𝛿𝜒||
2

2𝐵2
+ 𝛾𝜆𝛿𝜒

}

𝑑𝒙

+ 𝜈 ∫𝛺
𝐴𝑒

[

𝑤′
(

𝜂0
𝐴𝑒

)

𝛿𝜂
𝐴𝑒

+𝑤′′
(

𝜂̃
𝐴𝑒

)

𝛿𝜂2

2𝐴2
𝑒

]

𝑑𝒙.

(98)

However, by hypothesis 𝜒0 solves the critical equation for H𝛺

𝜆𝐴𝑒
(

𝜒0 + 𝛾
)

− 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜒0

𝐵2

)

+ 𝜈𝑤′ = 
(

𝜒0 + 𝛾 + 𝜈𝑤′) = 0. (99)

Hence, the difference (98) reduces to

H𝛺
[

𝜒 (𝑡)
]

−H𝛺
[

𝜒0
]

=∫𝛺
𝐴𝑒

{

𝜆
2
𝛿𝜒2 + 𝜎

|

|

∇⟂𝛿𝜒||
2

2𝐵2
+

𝜈𝛿𝜂2

2𝐴2
𝑒
𝑤′′

(

𝜂̃
𝐴𝑒

)

}

𝑑𝒙.

(100)
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Using (97), it readily follows that

1
2

(

𝜆𝐴𝑒𝑚 ‖𝛿𝜒‖2
𝐿2(𝛺)

+
𝜎𝐴𝑒𝑚

𝐵2
𝑀

‖

‖

∇⟂𝛿𝜒‖‖
2
𝐿2(𝛺) +

𝑐𝑚
𝐴𝑒𝑀

‖𝛿𝜒‖2
𝐿2(𝛺)

)

≤ H𝛺
[

𝜒 (𝑡)
]

− H𝛺
[

𝜒0
]

= H𝛺
[

𝜒 (0)
]

− H𝛺
[

𝜒0
]

≤ 1
2

(

𝜆𝐴𝑒𝑀
‖

‖

𝛿𝜒0
‖

‖

2
𝐿2(𝛺) +

𝜎𝐴𝑒𝑀

𝐵2
𝑚

‖

‖

∇⟂𝛿𝜒0
‖

‖

2
𝐿2(𝛺)

+
𝑐𝑀
𝐴𝑒𝑚

‖

‖

𝛿𝜒0
‖

‖

2
𝐿2(𝛺)

)

,

(101)

here 𝛿𝜒0 = 𝜒 (0) − 𝜒0 and 𝐵𝑀 < ∞ is the maximum of 𝐵. We have
hus shown that

𝜒 (𝑡) − 𝜒0
‖

‖

2
⟂ ≤ C ‖

‖

𝜒 (0) − 𝜒0
‖

‖

2
⟂ ∀𝑡 ≥ 0, (102)

or some positive real constant C. The case 𝜈 = 0 (corresponding to
×
(

𝐴𝑒𝑩∕𝐵2) ≠ 𝟎) follows in a similar fashion and the theorem is
roven. □

The following remarks are useful.

emark 1. Theorem 1 generalizes Arnold’s result concerning the
tability of a two dimensional ideal fluid flow [47]. Indeed, Arnold’s
ase can be recovered by setting 𝑩 = ∇𝑧, 𝐴𝑒 = 𝜎 = 1, and 𝜆 = 0. In this
etting we have

= −𝛥(𝑥,𝑦)𝜒, (103)

o that the critical point Eq. (99) reduces to

0 + 𝜈𝑤′ (−𝛥(𝑥,𝑦)𝜒0
)

= 0. (104)

ence, using Arnold’s notation,

𝑤′′ =
∇𝜒0

∇𝛥(𝑥,𝑦)𝜒0
= −

∇𝜒0
∇𝜂0

. (105)

Remark 2. According to Theorem 1 steady states of the HMGM
Eq. (1) corresponding to 𝜈 = 0 are nonlinearly stable, provided that
the hypothesis of Theorem 1 pertaining to regularity and boundary
conditions hold true. Notice also that 𝜈 = 0 when the magnetic field
𝑩 and the electron spatial density 𝐴𝑒 do not satisfy the condition (80)
nd the generalized enstrophy 𝑊𝛺 is not a constant of motion.

6. Zonal flows and drift waves in dipole magnetic fields

As outlined in the introduction, one of the motivations behind the
development of HMGM Eq. (1) is the understanding of drift wave turbu-
lence in complex magnetic geometries, such as that of a magnetospheric
plasma. The purpose of this section is to show that the theory developed
in this paper points to the existence of stable toroidal zonal flows with
radial velocity shear within dipole magnetic fields, and to characterize
drift waves in dipole geometry. To see this, we first observe that a
dipole magnetic field is a vacuum field outside the central region
containing the electric current generating it. Furthermore, it is axially
symmetric. We may therefore write

𝑩 = ∇𝜁 (𝑟, 𝑧) = ∇𝛹 (𝑟, 𝑧) × ∇𝜙, (106)

where (𝑟, 𝜙, 𝑧) denote cylindrical coordinates, 𝜁 (𝑟, 𝑧) the magnetic po-
tential, and 𝛹 (𝑟, 𝑧) the flux function. It is convenient to work with mag-
netic coordinates (𝜁, 𝛹, 𝜙). The Jacobian determinant of this coordinate
change is

∇𝜁 ⋅ ∇𝛹 × ∇𝜙 = 𝐵2. (107)

Then, it follows that

𝒗𝜒 =
𝜒𝛹 ∇𝜁 × ∇𝛹 −

𝜒𝜙 ∇𝜙 × ∇𝜁, (108a)
11

𝑬 𝐵2 𝐵2 w
𝐴𝑒
𝑩 ⋅ ∇ × 𝒗𝜒𝑬

𝐵2
=
𝐴𝑒

𝐵2
∇ ⋅ ∇⟂𝜒, (108b)

here, as usual, lower indexes denote partial derivatives, e.g. 𝜒𝛹 =
𝜒∕𝜕𝛹 . Hence, the HMGM Eq. (1) can be written as

𝜕
𝜕𝑡

[

𝜆𝐴𝑒𝜒 − 𝜎∇ ⋅
(

𝐴𝑒
∇⟂𝜒
𝐵2

)]

= 𝐵2
[

𝜒,
𝐴𝑒

𝐵2

(

𝜎
𝛥⟂𝜒
𝐵2

− 1
)]

(𝛹,𝜙)
, (109)

where we introduced the linear differential operators 𝛥⟂ = ∇ ⋅ ∇⟂ and
𝑓, 𝑔](𝛹,𝜙) = 𝑓𝛹𝑔𝜙 − 𝑓𝜙𝑔𝛹 . Notice that this equation is two-dimensional,
.e. it can be considered as a closed system within a surface given by
level set of 𝜁 , with the function 𝜁 effectively behaving as an external
arameter. It follows that steady solutions 𝜒0 of Eq. (109) satisfy
𝐴𝑒

𝐵2

(

𝜎
𝛥⟂𝜒0

𝐵2
− 1

)

= 𝑓
(

𝜒0, 𝜁
)

, (110)

with 𝑓
(

𝜒0, 𝜁
)

some function of 𝜒0 and 𝜁 . We have shown that steady
solutions with given values of mass and generalized enstrophy can be
equivalently characterized in terms of critical points of the energy-
Casimir function, which, according to Eq. (99), are given by


(

𝜒0 + 𝛾 + 𝜈𝑤′) = 0, (111)

where 𝛾, 𝜈 are spatial constants and 𝑤′ = 𝑑𝑤∕𝑑
(

𝜂∕𝐴𝑒
)

. In this context,
steady zonal flow solution is described by the condition 𝜒0𝜙 = 0,

implying a toroidal flow 𝒗𝜒𝑬 = 𝜒0𝛹 𝜕𝜙 where 𝜕𝜙 = 𝐵−2∇𝜁 × ∇𝛹 denotes
the tangent vector in the 𝜙 direction. Evidently, Eqs. (110) and (111)
admit such configurations provided that 𝐴𝑒 is axially symmetric (since
the dipole magnetic field 𝑩 is axially symmetric). Observe that in this
case on the equatorial plane 𝑧 = 0 the toroidal 𝑬×𝑩 velocity has radial
shear since 𝒗𝜒𝑬 (𝑟, 𝑧 = 0) = 𝜒0𝛹 (𝑟, 𝑧 = 0) 𝜕𝜙. The stability properties of
these zonal flow solutions can be deduced from Theorem 1 of Section 6.
In particular, they will depend on the specific value of the generalized
vorticity 𝑊𝛺 in the case in which the density 𝐴𝑒 satisfies (80), i.e. 𝐴𝑒 ∝
𝐵2 (configurations of this type are predicted by equilibrium statistical
mechanics because the invariant (Liouville) measure associated with
𝑬 × 𝑩 dynamics in a vacuum field is 𝐵2 𝑑𝒙 [52]). Otherwise 𝜈 = 0,
and zonal flows are expected to be nonlinearly stable. It should be
emphasized that the characteristic spatial scale of 𝜒0 is related to that
of magnetic field 𝑩 and electron spatial density 𝐴𝑒, while the zonal
nature of the solution stems from the axial symmetry of these fields.
Nevertheless, exception made for the case in which 𝐴𝑒 satisfies (80),
the generalized enstrophy 𝑊𝛺 is not necessarily a constant, and inverse
energy cascade toward small wave numbers is not available in the
usual form. The turbulent mechanism by which zonal flow solutions
can be formed in general magnetic fields therefore requires a separate
discussion. A crucial role should be played by boundary conditions
for 𝜒0, especially when 𝜈 = 0 and there is no constraint arising
from generalized enstrophy, since trivial boundary conditions, such as
Dirichlet boundary conditions, result in trivial steady states 𝜒0 + 𝛾 = 0.

We conclude this section by describing the drift wave in a dipole
magnetic field. Assume that the electron spatial density 𝐴𝑒 = 𝐴𝑒 (𝜁, 𝛹 )
is axially symmetric. Let

𝜒𝑑 = 𝜉 (𝜁, 𝛹 ) exp {−i (𝓁𝜙 + 𝜔𝑡)} (112)

represent the drift wave with 𝓁 ∈ Z, 𝜉 (𝜁, 𝛹 ) a real function of 𝜁 and 𝛹 ,
and 𝜔 ∈ R. Linearizing Eq. (109) with respect to 𝜒𝑑 we thus obtain the
following equation for 𝜉,

1
𝐴𝑒

∇ ⋅
(

𝐴𝑒
∇⟂𝜉
𝐵2

)

+ 𝜉
[

𝓁
𝜎𝜔

𝜕
𝜕𝛹

log
(

𝐴𝑒

𝐵2

)

− 𝓁2

𝑟2𝐵2
− 𝜆

𝜎

]

= 0. (113)

Conversely, the angular frequency 𝜔 can be expressed as

𝜔 =
𝓁 𝜕

𝜕𝛹 log
(

𝐴𝑒
𝐵2

)

𝜎𝓁2
𝑟2𝐵2 + 𝜆 − 𝜎

𝐴𝑒𝜉
∇ ⋅

(

𝐴𝑒
∇⟂𝜉
𝐵2

) . (114)

n order to estimate the magnitude of 𝜔, consider the simplified case in
hich 𝓁 is small and log

(

𝐴 ∕𝐵2) is a weak function of 𝛹 , and consider
𝑒
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𝜒

its Taylor expansion around 𝛹0. Then, we may set 𝜉 = 𝜉 (𝜁 ) to find

𝜔 ≈
𝓁𝛽𝛹0

𝜆
= 𝓁𝛽𝛹0

𝑇𝑒 [𝑒𝑉 ] , 𝛽𝛹0
=
[

𝜕
𝜕𝛹

log
(

𝐴𝑒

𝐵2

)]

𝛹=𝛹0

. (115)

ere, 𝑇𝑒 [𝑒𝑉 ] = 𝜆−1 is the electron temperature expressed in electron-
olt. Notice that the term log𝐴𝑒 is the one responsible for the usual
rift wave in the HM equation. Remarkably, even in the presence of a
onstant electron spatial density 𝐴𝑒, an inhomogeneous magnetic field
an sustain a geometric drift wave through the spatial dependence of
. For a dipole magnetic field 𝐵 ∼ 1 𝑇 in a trap with size 𝐿 ∼ 1𝑚,

a roughly constant electron spatial density 𝐴𝑒, 𝓁 = 1, and an electron
temperature of 1 keV, one obtains 𝜔 ≈ 103 Hz.

These results regarding zonal flows and drift waves in dipole geom-
etry align well with experimental observations. Indeed, toroidal plasma
flows have been observed in magnetic dipole traps [18], and low-
frequency turbulent fluctuations have been measured experimentally in
both the RT-1 and LDX experiments [17,19,63,64]. For instance, [17]
reports the observation of electrostatic, density, and magnetic fluctua-
tions with characteristic frequencies of ∼ 1 kHz, which are consistent
with the values obtained from the dispersion relation (114). These low-
frequency fluctuations are believed to be responsible for the inward
(toward the center of the dipole field) diffusion of charged particles,
which is associated with violation of the third adiabatic invariant.

Measuring low-frequency magnetic fluctuations in a dipole mag-
netic field experiment like the RT-1 device [65,66] could provide
further insights into the applicability of the present theory. In this set-
ting, magnetic fluctuations 𝛿𝐵 are several orders of magnitude smaller
than the background magnetic field (𝛿𝐵 ∼ 10−5 T versus 𝐵 ∼ 10−2 T to
1 T). Therefore, electrostatic and magnetic fluctuations can be modeled
separately using the HMGM Eq. (1) and an induction equation. By
measuring the correlation between electrostatic and magnetic fluctu-
ations and comparing the theoretical predictions for the fluctuations
frequency in the two models, one could gain a clearer understanding
of drift wave turbulence in strongly inhomogeneous configurations.

Due to the HMGM equation’s versatility in handling inhomogeneous
magnetic fields and densities and its relative simplicity (it is a 1-field
equation in three spatial dimensions), we envision its application to
studying drift wave turbulence and self-organizing phenomena in phys-
ical systems involving complex magnetic geometries and heterogeneous
plasma distributions. Examples include magnetospheric plasmas and
radiation belts, which are often characterized by hot electrons and cold
ions [67] and low-frequency fluctuations associated with the violation
of the third adiabatic invariant [68], or stellarators [69], which exhibit
inherently three-dimensional magnetic configurations that are expected
to significantly affect turbulence and transport properties.

It is now useful to make some considerations on the effects brought
by the spatial dependence of the last term in the denominator of the
dispersion relation (114), the quantity  = 𝜎∇⋅

(

𝐴𝑒𝐵−2∇⟂𝜉
)

∕𝐴𝑒𝜉. First,
we observe that it comprises the real functions 𝜉, 𝐴𝑒, and 𝐵, as well as
the real constant 𝜎. Hence, this term cannot be imaginary, implying
that there are no instability or dissipation mechanisms associated with
it. Considering the parallelism between the nonlinear stability criterion
proved in theorem 1 and the equivalent result for the original HM
equation [44], these facts suggest that the stability physics of the
HMGM Eq. (1) is essentially analogous to that of the HM equation once
field inhomogeneities are appropriately taken into account. However,
the spatial dependence of  introduces distortions in wave propagation
that result in attenuation or enhancement of the drift wave depending
on the spatial position. To see this, consider a regime in which the term
𝓁2∕𝑟2𝐵2 appearing in Eq. (113) is small compared with the other terms
within the square bracket. This occurs when, for example, 𝓁 is small, 𝑟𝐵
is sufficiently large, or 𝜎 is small. Further assume that the ratio 𝐴𝑒∕𝐵2

is a weak function of the magnetic flux 𝛹 ,

𝐴𝑒 ∼ 1 + 𝛽
(

𝛹 − 𝛹
)

, (116)
12

𝐵2 𝛹0 0
with 𝛽𝛹0
≪ 1 and 𝛹0 real constants. As previously mentioned, configu-

ations with 𝐴𝑒 ≈ 𝐵2 are expected from the equilibrium statistical me-
hanics of ensembles of charged particles whose dynamics is dominated
y 𝑬 × 𝑩 motion [52]. Choosing 𝜔 to satisfy

=
𝓁𝛽𝛹0

𝜆
, (117)

Eq. (113) reduces to

𝜕2𝜉
𝜕𝛹 2

+
(

𝛽𝛹0
+ 𝛥𝛹

|∇𝛹 |

2

)

𝜕𝜉
𝜕𝛹

= 0, (118)

where we used the orthogonality of the coordinate system (𝜁, 𝛹, 𝜙) and
the identity 𝐵2 = |∇𝜁 |2. Now consider the case 𝛽𝛹0

< 0 (the cases
𝛹0

= 0 and 𝛽𝛹0
> 0 can be solved in a similar manner). Let us examine

he behavior of the solution at 𝑧 = 0 and in proximity of 𝑟 = 0. Since
he flux function has expression 𝛹 = 𝑀𝑟2∕

(

𝑟2 + 𝑧2
)3∕2 in cylindrical

coordinates, with 𝑀 the magnetic moment of the dipole field, one can
verify that the ratio 𝛥𝛹∕ |∇𝛹 |

2 ∼ 𝑟 is small in proximity of 𝑟 = 0, and
therefore negligible in (118). It readily follows that 𝜉 = 𝜉0 exp

(

−𝛽𝛹0
𝛹
)

or some 𝜉0 ∈ R and the complete drift wave takes the form

𝑑 = 𝜉0 exp
⎛

⎜

⎜

⎝

|

|

|

𝛽𝛹0
|

|

|

𝑀

𝑟

⎞

⎟

⎟

⎠

exp
{

−i𝓁
(

𝜙 +
𝛽𝛹0

𝜆
𝑡
)}

, (119)

in this region. The amplitude of the drift wave (119) becomes smaller
at large radii, while it grows exponentially for smaller values of 𝑟 (this
divergence is caused by the divergence of the point dipole field at the
origin, and would disappear for a non-divergent flux function 𝛹 ). This
example clearly shows that the inhomogeneity of the magnetic field
may result in attenuation or enhancement of drift waves depending
on the spatial position. In principle, such behavior could be applied to
concentrate/trap the bulk of wave and turbulence activity by tailoring
the field inhomogeneity (in the present setting, changing the magnetic
moment 𝑀 affects the distribution of drift waves in proximity of the
center (𝑟, 𝑧) = (0, 0) of the dipole field).

Finally, we observe that the standard dispersion relation for the drift
wave in a straight homogeneous magnetic field can be recovered by
setting 𝑩 = 𝐵0∇𝑧, 𝜉 = exp

{

i𝑘𝑥𝑥
}

, 𝓁 = −𝑘𝑦𝐿, log𝐴𝑒 = log𝐴𝑒0 + 𝛽𝑥,
𝜁 = 𝐵0𝑧, 𝛹 = 𝐵0𝐿𝑥, and 𝜙 = 𝑦∕𝐿 with 𝐵0, 𝜔, 𝑘𝑥, 𝑘𝑦, 𝐴𝑒0, 𝛽 ∈ R and
𝐿𝛽 ∼ 𝜖 ≪ 1 in Eq. (109). In this case, we have

𝜔 = −
𝑘𝑦𝛽

𝜆𝐵0 + 𝜎
𝑘2𝑥+𝑘2𝑦
𝐵0

. (120)

7. Concluding remarks

The Hasegawa–Mima equation in general magnetic configuration
(HMGM Eq. (1)) is a single nonlinear equation describing the evolution
of electrostatic turbulence in inhomogeneous plasmas immersed in a
static magnetic field with arbitrary geometry. The HMGM equation
serves as a generalization of the standard Hasegawa–Mima (HM) equa-
tion for drift wave turbulence in a straight homogeneous magnetic field,
and it can be applied as a simple toy model of turbulence in ion-electron
plasmas characterized by strong inhomogeneities of both the magnetic
field 𝑩 and the electron spatial density 𝐴𝑒. In particular, the equation
can account for turbulence occurring over spatial scales comparable
to the characteristic spatial scales of the background magnetic field,
and it can be used to model electrostatic turbulence in systems with
irregular geometries, such as the dipole magnetic field of a planetary
magnetosphere or the confining magnetic field of a stellarator.

In this study, we first derived the HMGM equation from a drift
wave turbulence ordering within the kinetic framework of guiding
center motion and from a two-fluid plasma model with cold ions
and adiabatic electrons, and examined the invariants of the HMGM
equation. We then studied the algebraic properties of the equation,
and found conditions under which the HMGM equation possesses a
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noncanonical Hamiltonian structure: the antisymmetric bracket (83)
becomes a Poisson bracket whenever the magnetic field 𝑩 and the elec-
tron spatial density 𝐴𝑒 fulfill the integrability condition (80). This same
condition is required for the conservation of generalized enstrophy 𝑊𝛺,
which is a Casimir invariant of the Poisson bracket (83). Using the alge-
braic structure of the HMGM equation, we applied the energy-Casimir
method to obtain a nonlinear stability criterion for steady solutions of
the HMGM equation (Theorem 1). This result implies that sufficiently
regular solutions of the HMGM equation, whose initial conditions are
sufficiently close to critical points of the energy-Casimir function (90)
characterized either by 𝜈 = 0 or (92), remain close to these critical
points at all later times. In addition, we showed that radially sheared
stable toroidal zonal flows may be created in dipole magnetic fields,
and characterized the angular frequency of magnetospheric drift waves,
which explicitly depends on the magnetic field geometry.

Amidst the novel effects induced by field inhomogeneities in the
HMGM equation, we anticipate enhanced transport linked to magnetic
helicity to play a pivotal role. While 𝑬×𝑩 and polarization drifts main-
tain orthogonality to the magnetic field, non-vanishing helicity density
(𝑩⋅∇×𝑩 ≠ 0) implies (Frobenius theorem [53]) that 𝑩 fails to define the
normal of a two-dimensional surface. Consequently, charged particle
orbits effectively span three spatial dimensions, implying amplified
ergodicity and phase space mixing. We therefore foresee drift wave
turbulence in magnetic fields exhibiting non-vanishing helicity density,
such as Beltrami fields [70,71], commonly observed in astrophysical
and laboratory plasmas, to exhibit anomalous characteristics arising
from the breakdown of enstrophy conservation associated with the loss
of Hamiltonian structure and the subsequent absence of inverse energy
cascades that underpin zonal flow formation.

Finally, we remark that for practical purposes (e.g. numerical im-
plementation), the solution 𝜒 of the HMGM equation can be used to
approximate 𝜑 ≈ 𝜒 since both 𝜒 and 𝜑 = 𝜒 + 𝑜

(

𝜖2
)

scale as 𝑜 (𝜖) in the
two-fluid ordering of Table 3.
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