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§1. Introduction and summary

In the presence of inhomogeneities in density the longitudinal
plasma waves and the electromagnetic waves are coupled and there
results in the possible excitation of electromagnetic radiation from
Plasma osclllations. Since the work by Field” many authors treated
these problems. Also in a homogeneous plasma the density fluctuations
of statistical nature exist and the transformation of plasma waves into
the electromagnetic waves due to gradient coupling will be possible
when the plasma waves are excited by such a mechanism as beam—injection
and propagate in a homogeneous plasma. This possibility was first
pointed out by Ginzburg and Zhelezniakov-z)

In this paper we shall be concerned with the latter processes.

We shall consider a model that a progressive plasma wave 1is switched on
in the homogeneous main plasma where collisions are to be neglected
and no external magnetic field is impressed. It is further assumed that
the electrons and the ions are nearly at thermal equilibrium and the
mean energy of Coulomb interaction between the nearby electrons 1is
small compared with the thermal energy. The energy of the inoid.ent
plasma wave will be converted partly into the electromagnetic field

by scatterings on the density fluctuations of the medium as 1t goes
through the medium. By density fluctuations we mean the vam'ations-

of the electron and ion densities which take place stochastically in
space and time, (thermal fluctuations) as will as harmonically.

The statistical ensemble means of their frequency Fourier transforms
»ma,y be divided into two parts; rather a broad spectrum around w= 0

and a sharp peak at the plasma frequency w So the radiation

D’
processes are Adilvided into two processes. The radiation due to the
density fluctustion having broad spectrum arouwnd w = (0 has the

frequency v nearly equal to that of the incident plasma wave & ,
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,,:s?trwp. While the frequency of the radiation in the second process
is v=w+Q=<2 wp where @ is the mean frequency of the plasma
oscillations in the main plasma .

The set of the Boltzmann—Vlasov equations and the Maxwell
equations is used. For the incldent plasma wave it is taken a simple

plane wave of the form.

M)

U exp [i(i?*.@t))

x| bl

o)

The basic equations for this and for the main plasma are given in §2.
Taking the Landau damping out of £ ,» the scattering of &€, on the
density fluctuations within a localized region of the main plasma is
treated as a stationary problem in §3. This procedure was first used
by Tidman and Weisss) in their work on the similar problems in
non—uniform plasma. Under the Born approximation the equations for
the scattered fields having both the longitudinal mode and the
transverse mode are written down. In §4 a far distance solution of
the scattered fields 1s obtained using a Fourier transform over space
and time and some further approximations. In §5 and §6 the radiation
intensities are expressed in terms of the statistical ensemble means
of mass or charge fluctuations for which we refer to the calculations
by Salpeter.“

In details the contributions of mass fliuctuation and of thermal
charge fluctuation for the radiation with the frequency v = are
examined separately. We define the mass fluctuation as aM =
(M/(le+m))dNi+ m,/ (M+m)) AN® and the charge fluctuation as
AN® = Z AN* — 4N®, where dAN® and AN' are the electron and the ion
fluctuations in density, respectively, m and —e are the mass and the
charge of an electron, and M and Ze are those of an ion. The
radiation intensity per wnit time per unit volume due to the mass

fluctuation is found to be for Z=1,

_2...




4
M, 1 wn AN
IV =g () T

n,C oh

where n, is the mean numier density of the electrons, Vo is their

YJ

root mean sguare veloCcity, JPI = /K the phase velocity of the
incident plasma wave, and (€ U/‘2) is 1ts energy density in the MKS
mit system (€ = the permittivity in the vacuwum). While the contribu-—
tion of the thermal charge fluctuation is shown to be negligible
campared with above. The anguler distribution is of the type of

a dipole radiation and the width of the frsquency spectrum 1ls due to
the Doppler effect of the lon thermal motions.

The radiation intensity of the second process is calculated for

Qv =a+2) = ( Psx )Y (eu?)y .

For Q° the harmonic fluctuation of charge, i.s., the medium plasma
oscillations is responsible. The radiation has the angular distribution
such as of a quadrupole radiation and the width of the frequency
spectrum will be determined by the Landau damping factor of the medium
plasma oscillations.
Our results are to be compared with the corresponding results
given previously ly Ginzburg and Zhelezilakov in the heurilstic Way.z)
The fact that thelr value of QM(v:’.Q) is exactly in agreement
with ours, which confirms thelr plausible use of the elementary theory
of scattering by dielectrics to this problem. On the other hand they

estimated the corresponding QS (v ~w+ Q) as

©(G-2) = ) I g2

As campared with ours their value 1s To be reduced about Dy the

factor of (._Vph/c)2= (2/cK)? The discrepancy indicates that the
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elementary theory of scattering by dielectrics used by Ginzburg and
Znelezniakov is of restricted appllicability.

Finally in §7, our results are compared with other works on
non—uniform model. As for Q,M(u:s?) Conen derived the similar result
by the continuum theory of radiation and waves in a continuous
loss—free electron fluid.S) Also the suitable version of the Tidman
and Weiss thecry leads substantially the same conclusion, in which
they assumed the non—uniform static background of ions and dealed
only with quantities about electrons. It seems rather of gquestion
that the electron fluid model by these authors give the almost correct
values of QM, for which the mass fluctuation or the ion fluctuation
is mainly responsiile. The reason is that the explicit or imypllicit
assumption of static non—uniform background underlying these approaches
ascertalins the coincidence among the respective values.

It is apparent that the models of the static non—uniform ion
distributions cannot excite such radiation of higher harmonics as
deduced from our model.

Recently Dawson and Obanmup) treated the same process from a
different pnint of view. They calculated the ac conductivity for
frequencies embracing the plasma frequency and found the same

QM(UZ:Q) by using the Kirchhoff's law.

§2. Basic equations

We shall assume the set of the Boltzmarm-Vliasov equations and
the Maxwell equations valid for the present problems. Let the
electron and the ion distribution functions be €. ¥, t) and

—_

(%, ¥, t), and the electric and magnetic fields E and B , then

<';E +W)fe—%(ﬁ+¥x§)vvfe=0 (1-a)
> - Z —_— —_— —_ —> ]
(—6—%— +VV)f'L+—Me(E +v x B) Vi ft = (1—=a")
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VE =—f @ -r%av (1-p)
1 B—E = - ey 3 -
=y - - -
R xB-pue [V(Z £)av (1-¢)
V’xﬁ=—%—l€ and VB =0 (1-a)

The MKS units system is used and € and g are the permittivity and
e permeablility in the vacuum, respectively.
For a given volume V containing N electrons and (N/Z) ions,

the Debye length D and the plasma frequency W, are defined as

D = (6/my* o, @)

2 I
wy, = (n,e”/m eyt , 3)
where n, = NV is the mean number density of electrons and O is

the temperature in units of the Boltzmarm constant.

A. The Main Plasma

By 8F1e’i (?, 7 t) we denote the electron and the ion distribution
functions to describe the thermal fluctuations; the stochastic varia—
tions of charges 0O pe'i(?, t) and of currents 5\?8’1(?, t).

Then

30° =-e fOF AV and 87° = -efVOF a7 (4-2)

Bpi

I

Ze [o F1i i¥ and &7t = Ze J'?SFE av. (4-a')

It is nataural to postulate the chage conservation in thermal fluctua—
tions

] i Te, ] ;
— §.0%F + div oI®t =0 . ®)
9t

further, we assume

0 —oo e,i
—+ VvV =0 . 6
(5% ) OF, (6)
For the total distributions of the electrons and the ions we write
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fe’l —_ foesl + F1e,l +5F1e9l , M

where T, and foi are the Maxwellian distributions with the

normalization [ (V) dv =n  amd ffoi ()dv = n,/Z and Ff’i the
perturbed distribution related to the electron ilasma oscillations or
to the ion oscillations. The distrioution functions and the elecﬁriC'

—
field €, satisfy the fcllowing linearized equatlons

0 . — —> e _ e — — e _ _
(v DFT-- E V17 =0, (8-2)
e FVOF -8 V=0, (8-a")
aivE, == (28, -F2)a¥ +—f(Z6F -7 %) av , (8-b)
and 1 o€ . .
?—5'{;1— = —pe [T @ZF -FC)av-pue [T(ZEF -0F")av. (8-0)

B. Incident Plasma Wave

It is only sufficient to consider the perturbed electron
N '. . -
distribution Foe(?, U, t) and the associated electric field e (r, t)

and to write,

0 - ~ s > ) .

(= + vV)FOV—fI(—;]—EO v, £ =0, (9-a)
aiv £, = ——E—J‘ PO av , (9-5)
1 0% - .

— ato = po [V ¥ av (9-c)
Cc

U exp (i (KT - Q1)) . 19

When the Landau damping is out of consideration, the dispersion

formula is given by

2?2 = wD2 + K2 VT2 and VTZ =3 6/m (1




§3. Interaction as a stationary Problem

Without loss of generallity we may take the Landau damping out of
the incident plasma wave. Thus we are free from initial value problem
and can treat the interaction of the incident wave with a locallzed
region of the main plasma as a stationary problem (see Fig.1). We
shall make the Born approximation and Wri te the distrioputions and

the fields in the interaction as

e,1

ftotal

— G’e’l+<F1e’l +5—F1eyl)+ Foeyl +foe>1

— > —-—

Eioter = E+ &1+ &y

The scattered fields E include both the transverse part and the
longitudinal part. G° and G' are thier source functions. Ang we

< - hnl oy
may assum G << Fl, Fl, Fo and E<<Cy, ED .

P i PR et

Fig. 1

e,1

Substituting fllp; and By into (T-a~d) and with use of (6),

(8=a~c) and (9—-a~c), under the above approximations, we find

(%—-»’%V)Ge ~SEV e -SEL T, (FEHORD-SE T, BY=0 (12-a)

(2 +7%)a +‘?—N—I‘“i BT, 1)+ 22 8 T, 407 1) =0 (12-a")
aiv E = = [ (26'-6%)av, (12-b)

(- -—‘32—2)}43=ﬂeﬁ— [F(261-0%)a7 +— 7 [(261-a%)a¥ (12—¢)
cc 9t 0T €
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The terms such as (v xB) (_afoe'l/a;}‘) are dropped due to the isotropy

2 —
of T 08:1 V) in the velocity space. Also such terms expressing the

. . : = v e =v e 1 el
non-linear self—interactions as &, v, Fy and £,V (F +6F‘1 ’=) are
out of our treatment and omitted.

We define

c _ i_me
F1 —ZF1 F1

M= (M Q) ) B+ /Mm) PO 0

F1G corresponds to the harmonically oscillatory part of charge
fluctuation in the main plasma, and F1M to that of the mass fluctuation.
Thé similar expressions are given for 5F1e'i and G . Taking accowunt

of m/M< 1, we rewrite (12-a) to (12—-c) as

2
8t

(

+
<l
<
Q
Q
+
=] [(D
=1

= e —
aiv E=~é—f G°av ,

(14-p)
_1 ok ol 0 Taav+S TV atav (14
O2 6t2) —lle%fVG dV+—é' av C)

Note that FOC=—F08 because of Foi = 0.

§4. Transformed equations and far—distance solutions of the scattered

fields.

We shall define a Fourier transform over space and time of

a function f(?, t)

oo teo ——>
(T, 1) =J dwj aK £, wet (KT~
—o0 -0

~+o0
T (K, W) = (277)2Lm ar £(7, v)e HKTTwT)

(5
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So far as no confusion possibly arises, we use only the subscript
w Tfor the transformed function.
Appling the Fourier transform to (14-a~c) and by some

mnipulations we obtain

a7 Ty C+(mz /M)

(-2 K
(w=K7 )2 N
. [ F+oFS-ar M or Ze,
__ sikr-wt) (1 au = k&
me (277) J (w—=XkV)
+ J«;ﬁf' -———-———-——D (E'a)J , 09
(w=ic )2
2 2 [ & T8+ (mzWmrt - o
(x2+ 5 -5 =2 |av @ ) =)k xE,,
c et meJ (w=-kv )2
ke W 7| 4T ao g ik r-w)
m (2m)

—0oa

'[Jdv{ 1 1 i )}{ PxE, )k 50}
w—-kVv W Kv

— FC - — (KX \f)-x(
e
—kV w—KV

(16"

The general inversions of (16) and (%') are difficult and we are
forced to meke some further approximations; to consider only tThe

N . —_ —> -_—) — —> 2 2 B
contribution of k for E (r, t) such that (kxv)° <«<w* and to assume
F1M+8FM isotropic in the velocity space. We expand (16) and (16')
in power of (kv)/w and retain terms to the order of (x- V)Z/UJ )

and. use (8-b, ¢), (9-b, ¢) and such relations as

| Jd?Jdt g (kr=wt) T8y o (Ft)

=1}

Pinally we find the differentisl equations for
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o - 62 -7 = 0 —>— —
P \7-{«-+w‘p2—vT2v VE(r, t)= — Vs (r, ©) 9

a2 9t
—6~T7’><{92 tw -V} EE, o) = 2 UxE(T ¢ )
Py W D C r, U)_at x3(r, ©) 13
— e L — > > ol /—é ,’.;» ,? - > - e— -:;
§ = 2{&,(V-EN+E,(V-E D} HE DELHE, NIE,

r r

Ze = b o> M o M j

-= & j dv (F, +a31} )) a9

—
where sz is the mean—-square velocity given n (1), and E and the

source function £ are composed of the longitudinal snd the transverse

v

parts,

-
E =T, +Ep and

Let us define

j T,V
.+oo (20)
= -1Vt
ETCT’ t) =J> ET,V@ 2 avy ’
-0
with
_._>>i< ;>
ET,U = Ly
. @l
ST,}J ST, -y
From (18) we have
2
F LR 13 ‘
(v +E'E)Jinr’y=“‘c—2 Soy 22)
with
2
w
012 = o2/ (1-—2) .
yt.

As well known the far—distance solution of the radiation field 1is
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The Poynting flux f for the radiation 1is, keeping in mind that the

time dependency of field quantities is like e +YT,

- —> X . I - —> - —>
2(r, t) = 20 E(r, t)xB (r, t) @4
And we obtain
+oo +o0
T 2
(n.3)at =——J av — |n><ET'yl , (25)

where T is chosen sufficiently long compared with the interaction
time which is the linear dimension of local cells of density fluctuation

divided by the phase velocity of the incident plasma wave, being of

the order of or less than wpﬂ.

—
The radiation intensity in the solid angle dS per unit time the
very quantity we seek 1s given by

d:§ e 1 — -1 40T 2
=———| dv — |nx| e S ,&@0art|°. )
16muc™T 6] v )




§5. Effects of the mass fluctuation and the thermal charge fluctuation.

We shall take F1c in (13) corresponding to the harmonically
oscillatory part of charge fluctuation out of consideration.
We subtract the contribution of F1C from § in (19) and §1 to be

substituted in 1t is gilven by setting Ff =0 in (8-b, c) as
e = e C
div g, = —a——J’BF1 av . (8~-b")
Let us define
aWiE, vy = ANJE, v+ (R 0
dnghE, ©) =Jcﬁ; FUE Vo) 0
AN, 1) =Jd§7 6F1M’C(?, v, t)

Since these have the time scales much different from the interaction

time < wp_—1 » thelr freguency Fourisr transforms have no resonant
peak at wp. The ion organized motions corrssponding to ANpM change
so slowly during the period wp—1 that

4o +oo ,

-—> 1 — —] TC'H—CU
AN (%, w) =—— | dF | at o TETTTON) Mz
I~ —o0
1 [ —> '~"—I? ) 3
= | af ¢ S Tan M(?)>Jdt et ]
(2m)° b

= <A () > 8(w)

o

where o0 (w) is the Dirac ¢ —function.

On the other hand ANTM and ANTO vary stochastically in space

and time, much faster than w We can smooth out them and get the

iY
approximate relations lixke above

M,C 7

AN (X 0y = < dnthC () >0 (w) &




It should e noted that tne same expressions are deduced from the
very different reasons

We may replace the time average above
the statistical ensemble mean

Therefore cne obtain from (8-~b') and 29
—_ —> e
£ w)y=57 l—gé(w)\AN S>> . 30
Supbstituting this and (10) with (Z)~(®) into (19), we find
2 (T <+K) T K
— i(k cr—i(a — —>
S=—YEJ dKJ dw el( +K) T l("+“Q)tUo(w){IKANTC(k)>-Z%<ANM(k)>} 8
where

<AW" (i0)> = <dn] (k)>+\ANT(£)>

and

1 _ - —> —>
F(X, K) =-—2——-(2K2+K-K)k+
k2K

—7—(21<2+E-E) g .
K

From the inversion of (20) and (31) one obtain

\%

with

~—(2n)5jdk6(K+K n' )5(u—9){F<4NT (k)>— <AN (K))}

—
i
Ad

VvV —
) 1
c'

and 6(4) = 0 (4y) 6(Ly) 0(Ly)
Thus

ET,y in (B) will be

. Y
— la_r CU2 g TR - - = =
E, , =-— D g 2XxB) o3 | 6¥ s(K+E-n") (v - Q)
T, v Ay CZDO K

2__ 2
AEETED e 2> - B>}

®9
The radiation intensity I(§) dg in (%) 1is calculated as




— () 2
I®)ds = 81?40 db()p) (eU%Jdu&u—Q) [4 K4K |A\I (k)] +72 Mw (k)] }

where 0 1s the angle between the wave vector of the incident wave

— —_—
K and n and use 1is made of the identity

[ ay 62(v—.Q) - 2 av o(v—0) .

T
J 2z )
As yv=0x~ wp it is approximated that l-ﬁ’ | <<K and
L2 2.2 R _TN2 22 2 7 72
4~k%)" _ HE-nH) X} _ 4@ K
k4 K-n4 B K4

c - Mo,
Now we can separate the contributions of .fiNT and ANT for

I(§) 2,8
1) =1°6) + PME) ,

— w V. v - ( A — — 2
1°(8)ae = —1——-??(——?—)2( LY (e UP)(sir? § cos’ 0 d8) | av 6 (v-2)(2me< ANy (k=K) >
2r® ne® 07 WV

(34-2a)
1 %4 M 2 2 2 M 2
M——) 4~.) e T = g - N 6 r__>~.-) ~.
I(8S)ds= € (e U9 (sin® 0 as) | dv 6(v—02)(2m)°Z AN (k=K)>
204m)° n,e” T
(34-b)
wnere Von = Q/K is the plase veloclty of tie incident wave and
‘ that of the radiation is taken as
wpz 4
C‘<y)=o(1_7) = C <VDB/VT)' (25}
Finally the radiation intensity per unit time and unit volume 1is
given by
a(v) =+ | 1@ a5
() = 5 )as, &)
Qv = 4 “p 213 (e 19 (dub‘(u-—.Q) [izr—‘f/d\rcc}’~§>\f (37-2)
nc T J s




4
QMv) = 1’ e 3(V (e U )Jdva(u Q>[<2 2 E=E)> ). (37-0)

The quantities in the bracket are nothing but the statistical
ensemble average of density fluctuations and thelr expressions for

the cases of interest have been derived by Salpeter-4)

To use the
values by Salpeter it needs a caution that for <£!NTC>2 the
subtraction of the part due to the plasma oscillations from the
corresponding coefficlent to the whole charge fluctuation is necessary-

The calculations are worked out in the Appendix.

With use of (A—-7) ard (A—8) we can evaluate QC and QM as,
4
V. V,
Q ~(———n005>(0><———v‘> (e U% , (38-a)

1
Z(Z+1)"

4
QM = ! 7 (2 T)(EU)J’du o(v—90) (38~Db)
nqC

127 p

Note that the ion fluctuations are malnly responsible for QM, while
the electron's contribution QC is negligible compared with QY

2)

According to Ginzburg and Zhelezniakov, it is convenient to

introduce the effective cross—sections ape and o, for a plasma

bubble of the volume V in which plasma waves are scattered

Tpe 05 = I(S)dS/Zp ,
o =Jape ds = QV/ZP, 89
where Zp is the energy flux in the incident wave

. 2 2 40
Zp (Vo /Vph)(e U 2.

From(38-a), (34—b) there result for Z=1

4
. (v-w_)das = sin” 9 d4s,
e P 327° nOC3VT
4 5\
M 1 wy Vv
(v~ w,) = 3
1Y 127 noc VT




We should like to comment on the frequency spectrum of the
radiation. We have derived the radlated electromagnetic waves with
the line spectrum at the frequency of the incident wave.
This is due torour approximations in (28) and (29). Strictly
speakxing, the ensemble mean value of ANM(E,cu) has a width of the
order of KV, =K(mMY* V, around w=0, tat is, the Doppler
proadening due to the ion thermal motions. Thus it may be expected the

radlation spectrum is presented by the substitution,

71 1
a - - —= |4 42
d{ vo(v—2) - J~u TR

wilth

rs = (mA? KV = (m/W% (V) @ = Q.

§6. Effect of the charge fluctuation assoclated with the plasma
oscillations.
We shall deal only with the effect of F1O= ZF1i -Fﬁ in (8-b)
and (19) and set 5Ff3 and EHM4—8EHM zero. We expand the corres—

ponding electric field 6« in the spectral resolution of the form

+oo oo o
— —> — —> ik -r—wt
g,(r, v)y=| ak | aw };—81 (k,w)el< T W) &)
with
EXE, w) = -€, (<% -w
1 ’ ) - 1 ’ )
Substituting this and (10) into (19) and with use of The inversion
of (20) one finds
-'_)'.')”—) — s
?==J¥aln . s, (rHar!
j_e 5 -— _ > —> — - > =
= (ZN)Jkodw 0(k+K-n")o(v—2-w)U 81(1<, wYH(k, K), @)
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wnere

—>

H

v
Cl
BEED = = (k2 12D "t L o2 nBDE

) = kK ) KK )
Then Ep, in (23) will oe

in'r - —  —>
a .

- e ie nx(nxX¥)
Epy =~ 7m0 7 U = (2m) J [dwﬁ(‘HK 0"y 8 (v-w-2)

2
x(—zilfi—lﬁ—le& w) ) ®

This indicates that the frequency spectrom of the radiation is very
—>
sharp at vZw +0Q= ZwP since 81(1{, w) has a resorant peak
2 2 L2112

The radiation intencity I(g) dg in (26) is

—_ > " 5 —>
1@ =0T (L 7 [, - 2 onf 2D .G 0 )
PRI
w=v-D

The upper suffix "c" emphasized the effect of charge fluctuation.

ow v=w+0Q =20, and [A'| << K, then

(kz—KZ)Z _{E@B2-r) 4@ B2
1 (_H| _E)2 K2

1°(S)ds is turned out o be

(2m)

(e U2 )(sm 6 cos?f ds)

SO “7?‘ J @y 8K =K, 0=v-2)|°

The integral jdv(€/2) |E1|2 can be expressed in the auto—correlation

form and estimated approximately in (A—9) as

e2

& - 2 e T c cxk 7 ~ 6 TV
Zdelg1<k' w) | = —7 7 <4Np (k, E)ANP &, t)>= 2 (2ny




The fact that k does not appear in (48) cames from our neglect of

the Landau damping for ?1 . In this approximation the frequency

spectrum of the radiation is simply the line spectrum at 7y =w +0Q
where w is the averaged frequency of the plasma oscillations in

the medium. Therefore the final results are

4

e e WAL LY 2., . 2 2, = =

I (S)ds-(z—n—)—g n005 (_O_) (e UM (sin 00050ds)jdu8(u W=, 49
4

c 1 (e 2 Y V2 2 SC oy —

Q=5 | T s == noos(c)(eU) avé(v-u-9) . 60

QC( v zzwp) must be compared with the Ginzburg and Zhelezniakov value

and theilr value is to be reduced by the factor or (Vph/c)2 = (.C;?/oK)2

as already stated in §1. The effective cross—sections for the box

of the volume V such as defined in (39) are found to be

4
—> A3 w V V -
o. (v=2w_)ds = P ( ph)(sinzﬁ 0?0 a8) ,
pe 1Y 72 n_cd = e2
o
4 v BN
8 wp' 'V h
Cr, ~ - D D
% (VE2O) = TR L G <)

It may be remarked that the due estimation of the auto—correlation
coefficient in (48) will result in a small width 7y given in (A-=5,6)

in the spectrum and possibly,

sy I 1
Jduﬁ(u w-£2) anu DR

52
= R (/K V) exp (~(3p) (wyf +V2K2 )y (K2 VDT

§7. Comparison with non—uniform models.

It is interesting to compare our model with non—uniform plasma
models. The transformation efficiencies of the plasma waves 1nto the
electromagnetic waves in the presence of inhomogenelities are estimated

ty many auathors. We shall refer only to the Tidmen and Weiss theorys)

_.18...




and. the Cohen theory5) because theilr results can be easily compared with
ours.

As stated briefy in §1, the radiation intensities given by these
authors will become equal ©to our value of the radiation intensity due
t mass fluctuation QM(ui:S?) in (38—b) when the scales of localized
inhomogeneities in non—uniform models are reduced TO such submacroscopic
scale as the Debye length or the wave length of plasma osclllations.

Tidman and Welss treated the collision of an incident plasma
wave with a small localized variation in derslity where the static
non—uniform background of the ions is assumed. They derived the
source function of the scattered fields and the radiation.intensity
to the first order in the small parameter by which the density
variation 18 characterized. Thelr pervurbation procedure corresponds
to the Born approximation above.

The source function of the Tidman and Weiss model corresponding

to S in (19) can be expressed as

w2
—> w esb__> e — > — e = —>
Sy = 2= £+ ZL28,(V-E,) + EQV-EN+(E, DE +(ENE, ).
“too oo Iz T
- — — > -—3» .'Ll‘g‘_:“(l)t @ )
Er)=V¢(r)=| dr| at eC ’ ) {7~-——7-5?6(w)}, (53)
ix ew-s 2 72

and

I =| rar(-e¢/0) wysin kr,

o

where €, 1s the corresponding electrostatic field of the inhomogenelty,

—

and. €, ig that of the incident wave defined in (10). The difference
— —> 3
between S (ours) and S (T-W) comes from that

0 —

0 —
—_— T__ — , ~.: y o
" 81 (T-W)=0, while P

&, (ours) = 0O

According to telr assumptlon for 51 the first terms in S (T-W)

can be rewritten in terms of the perturbed distribution of the

electrons F1G as




«—-———80 ( A Jdv F1 ) &s (54)
Then

—

—> e e — —> —> —>— - = —_ — > —> —>
S(T-W) =—(——|av FL &, +28,(VED+EV-EN+E Mg +(E, TE] &

It is seen tat the electron perturbtation F,° in the Tidmen and Weiss
model plays the same role as the ion pertubation F1i in our case
since F1i:: F1M the mass fluctuation in s in (19) and which ascertains
the coincidences between our result and the sultable version of the
Tidman and Weiss result for the radiation having the same freguency
as the incident plasma wave. We shall show 1t in the following.

From § (T—W) we obtain the scattered field of electromagnetic

mode ﬁ (T-W) as

.

i—=r — —> — 2
- e g ¢ n x(nxK) 1 Vg U

By ,(T-W) = — - < (1 3 o7 2)—K I (56

where the same notations in (32) are used. This coincides with —gT
in Eg. (76) of the Tidman and Weiss paper.

For the model Cohen dealed with, in which the linear dimension
of the localized inhomogenelty 1is much less than the wave—length
of the incident wave and the density there deviates by 4dn from
e mean value n,, the respective parameters are obtained by the

substitutions

e¢/0 — —dn/n, in V_ and zero outside V.,

&7
_ oK

(S22 v

k 47 n, o

where <dn> is the root mean square of density variation in VO.

—
Then E; ,, in this case is given by
?




v
i—r1r — — 2 .
__ e c' nx(nxKk) KQ'Q (<dn>

v
T,V AmTr K C2 no )U o (58)

——> o .

This is egquivalent to E; in £q. (8,16) of the Cohen's paper.
Cohen has derived this 0y the ccntlnuum theory of a simple

plasma model with the contlmous loss—Ifree electron fiuld immersed

in the ion background. Now the radiation intensity 15 proportional

w <dn>* and <dn>? = (1/2)(n/VO) must e used corresponding to
(A-%, 7), though the statistical theory of one fluld theory tells

<dn>? = nO/VO at thermal eguilibrium.
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Appendix

The statistical ensemble means of density fluctuations

We recall the definitions in (27)

a2, o) =de7(F1M + 5F1M)

(A1)
AN t)=JdV(F1O+5F1C)—Jd?7 P =dN° (3, t)—deC(?, ).
As defined in (28) their spatial Fourier transforms are

— 1 —-¥, T
AN (%, t) = jdr AN (r, vy e

: (27m)°
;i C = 1 - C — "‘i—),_l:)
dNp, (L, 5)=(2m5jdf dNp 7 (r, T)e , (A=2)

A0 (x, vy = dNS +4nf .
Now

<AN(K, ©) AN (K, T)>
N,ZJ_m —j J de dw' <AN(k) >0 (w) < dN(K)>6(w") oi(@ -0t

= | <dNx)> | 2,

According to Salpeter4) we have for the plasma at thermal

equilibrium,

2m)® 2 ' 1+

L0 caty> 2 = R st (a-3)

(2m)® _ Z+1

S AN = e (A~4)
0 for a<<1,

2

(”) |<dNC (> P = (A-5)
a* e"XOZJ ax
avT (x=x, P+ 2)?




where
x = @2/5Y% k'
on = (8/2) (wPZ +VT2 k_z) (kZVTZ) -
(A=6)
(VTE/2) a* exp(—x )

\{
=
il

2 _ 22 2 4 2+7 2
ac = 1/}{ De = SU)P /1{ VT
It k=K the wave vector of a p¢lasms oscillstion, then in usual cases

a? = S(wP2/‘K2VT2) = 5<Vph/VT)2 > 1.

Therefore one obtains

(em® | wme 2] ~

7 |<<dN"(K)>|° = AGEED, (A7)
(2m)° NSy i2 = L ~0( ‘ (A—8
<Al (> = R S AN D )

These values are used in (38-a) and (38-b)

Next we consider the integral in (48)

2
el . = - 2 e° T ¢, Ok -

<

As seen from (A—4) and (A-5) the harmonically oscillatory gart in

charge fluctuation is dominant for o = 1/K2D2 > 1, and then

e NT — _‘/_LTL (A=9)

1
ek? 2(27) a2 2 (2m)

g e 4 2
> dw181\5., w)| 4 =

This is inserted in (47).




