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Abstract

The Coulomb interaction in a plasma must be considered both from
the point of view of binary collisions and from the point of view of
collective interactions. Fither in the collision theory on the basis
of binary collisions or in the wave theory based upon collective
interactions one must cut—off divergent integrals and hence the numerical
factors in the arguments of Coulomb logarithms remain undetermined.

These two complementary theories have been unified by the present authors
into a divergence — free theory, the results giving exact arguments of

the Couplomb logarithms. The present article is its review.
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Introduction

The kinetic theory of gases of neutral molecules has been
well established. The macroscopic properties of gases can be
calculated from the velocity distribution functions. These
functions are determined from the Boltzmann equation which is
derived on the basis of binary collisions between the molecules.
In plasmas, however, the collective interaction between charged
particles is also important.

The collective interaction has been treated by the so-called
wave theory, which is based on the Liouville equation or on
the fact that the plasma can be regarded as a dielectric medium.
Kinetic equations and several ‘examples have been 1nvestigated1-lo.
In the wave theory, however, the curvature of orbits of particles
at close collisions is not included. Hence the theory is hot
superior but complementary to the collision theory.

It was impossible until recently to consider both the bi-
nary collisions and thé collective interactions simultaneously
and exactly; the kinetic theory of irreversible processes in
plasmas was, therefore, definitely inferior to that in neutral
gasses, Now exists an exact theory of plasma kinetics unifying
the collision and wave theoriesll‘la; its review is the objective
of the present article.

Besides the wave theory mentioned above, there is an at-

tempt to apply the method of quantum field theory to the treat-

ment of the collective interaction. This method is successful
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only when the temperature of the plasma is so high that the
effect of orbital curvature is completely covered by the quantum
mechanical diffraction effectslg-zu. A rate of relaxation de-
rived by this method can be obtained as the high temperature
limit in the present unified theory in a more systematic and
elementary manner.

Irreversible processes are caused by relaxations of dis-
tribution functions due to interactions between constituent

particles. The rates of these relaxations are the main subject

of the present article.

I. FOUNDATIONS

1. Connection formula

In this section the merits and demerits of the collision
and wave theories are pointed out; and the two theories are
unified into an exact theory.

The potential energy between the particles in a hot
plasma is, on the average, much smaller than their kinetic
energy. In this respect a hot plasma is similar to a rarefied
gas. In fact, irreversible processes in plasmas were treated
mostly within the framework of the molecular theory of gases,
which was based on binary collisions between the constituent
particles.

The rate of a relaxation will then be expressed, in class-
ical mechanics, in an integral with respect to the impact para-

meter b, For Coulomb forces this integral is of the form
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b db

b'2 + ( collision r-a.d:u.s)z

b>o

in which and throughout this paper "collision radius" means
a distance at which the Rotential energy is comparable to
the kinetic energy. This integral diverges logarithmically
when we let the upper 1limit tend to infinity. The divergence
arises from the fact that collective interactions between
charged particles are not included in the "collision theory".
The integrand is valid only for b sufficiently shorter than
the Debye screening radius. When we cut off the range of
the b-integration near the Debye radius, then we obtain a finite
result containing a "Coulomb fogarithm" whose argument is the
ratio of the cut-off limit to the collision radius. This re-
sult, however; is only of logarithmic accuracy, i.e., valid
only for large values of the logarithm itself and not in general
for large values of its argument.

We are now interested in an exact Coulomb logarithm which
is valid so far as its argument is sufficiently large. Let

us take up a simile. The sum of the series

%—— + —31——+--~-+-L—

N

Il +

has an asymptotic form 1In(y N) for N» 1, where 1ln v = 0.57722
is Euler's constant. What we are interested in corresponds
to this numerical factor v in the logarithm.

In a hot plasma the number of particles which screen

the electric field around a charge is very large. Hence it

should be possible to ascribe the screening to the macroscopic
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dielectric properties of the plasma and to treat the collective
interactions in terms of the dielectric permeabilityé-g. Since
the screening in a kinetic problem'depends on the rate of
temporal and spatial variations, the dielectric permeability
must be considered as a function e(k,~) of the wave number

k and frequency w.

The rate of a relaxation is then given by an integral

with respect to the wave number k. This integral is of the

J & AR
2
5o | k-ECk, )k .

2
The fact that |k e*k| 1is different from ku reveals the col-

form

lective interaction. This integral diverges logarithmically
when we let the upper 1limit tend to infinity. This divergence
arises from the fact that the curvature of orbits at close col-
lisions is not included in the "wave theory". The integrand

is valid only for wavelengths sufficiently longer than the
collision radius. When we cut off the range of the k-integra-
tion near the inverse of the collision radius, then we obtailn

a finite result containing a Coulomb logarithm whose argument
is the ratio of the Debye radius to the cut-off wavelength.
Thus the result is again of logarithmic accuracy.

For a hot plasma the region of validity of the impact
theory,

b << Debye radius,
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and the region of validity of the wave theory,
. -1
collision radius « k ,

greatly overlap. In this overlapping region both the collective
interaction and the orbital curvature are negligible. By virtue

of this fact we can combine the collision and wave theories

to a unified theory.

Let us denote by X a relaxation rate and by Xwave the

rate calculated in the wave theory. Let us further denote

by X the quantity to which xwave is reduced when ¢ in

wave,rc
lk-e(k,w) -k|~2 is replaced by a static dielectric permeability

1l + K2/k2.' Here the constant « is to be taken such that

1

collision radius « X~ = ¢ Debye radius (1.1)

the sign ¢ indicating "smaller than or of the order of ".
The potential around a unit point charge in a medium with the
dielectric permeability 1 +‘n2/k2 is the screened Coulomb

1 exp (-xr), r being the distance from the charge.

potential r~
Let us denote by X, the rate X calculated in the collision
theory with use of this screened potential. The difference
between X, and xwav = lies in the fact that the orbital curv-

ature is included in the former but excluded in the latter.

We further let

X K(k) dk

=
wave j
A>o
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Both the integrals diverge logarithmically when the upper

limits of the integrals go to infinity. The difference
X\VAVC - X\uavg’n = j [K('ﬂ) - Kk(%)J dﬂ\/ (1.2)

however, converges. In fact, at wave lengths sufficiently short
as compared with the screening radius r' , both the collective
interaction in K(k) and the screening in Kyn(k) vanish and two
terms in the integrand cancel each other.

Now, we consider the combination X, + Xygve - Xwave, = -
The range of lengths considerably short in comparison with
the screening radius and the range of lengths much longer
than the collision radius overlap greatly.‘ The contribution

of the first range to X, is exact and that to X, sye - X

wave ,r
vanishes; the contribution of the second range to Xwave is
exact and that to X, - Xwave,n vanishes. Hence we obtain

the formula

>
"

Xy + Xyave = Xwave,x (1.3a)

or

>
]

Xy + S (K(x) - K, (k)]dk . (1.3b)

The final results are independent of the constant i .

The term K,(k) is simoly given by

3
* Lim R KR) . (1.4)

f) m ——
Ky (R + %) pre

Because K,(k) is proportional to kj(k2 + ):2)-2 and the con-

stant of proportionality is determined by the relation

b=




1im k [K(k) - K (k)] = O

~»p0

It is sometimes useful to define the "effective screen-

ing constant" w° by

X =0 . (1.5%a)

wave ~ Xwave,x"

By use of this constant, X is expressed simply in the form
r® . (1.5b)

The collision radius is inversely proportional to the
kinetic energy. The de Broglie wavelength is, on the other
hand, inversely proportional to the momentum. Hence at
high particle energies the de Broglie wavelength is com-
parable with or even longer than the collision radius. When

the quantum effects are appreciable we must let rt’l be also
-1
de Broglie wavelength << I (1.6)

and calculate the collision integral X, on the basis of

r<
quantum mechanics. The quantum effects will be taken into
consideration in §17.

For an oscillatory phenomenon with high frequency « we
let x © be 50 short that the duration of interaction in the
collision theory becomes much shorter than «)-1, the duration

of macroscopic state. This problem will be discussed in §11.




In the presence of a strong magnetic field we let x'be
also

v « gyroradius, (1.7)

so that the collision theory is not influenced by the magnetic
field. In the present article relaxations in a strong magnetic
field are not discussed in detail because of their complexity;
an exceptionally simple example is given in the last section.
A clue to the unification of collision and wave theories
5

. . 2 . . .
was first given by Hubbard ~. His connection formula was, in

the present notations,

X =X, + X

0 wave Xwave,o

ti.e. » = 0 in (1.3)). Though the three terms on the right
side are all diverging integrals, he did not show an exact
procedure of cancelling the divergences. Baldwin26 derived
on the basis of the Liouville equation a unified kinetic
equation which is of the form (1.3) and is the same as used
in Chapter V. Not a single problem or example was solved by

him with use of his kinetic equation.

2. Moments cf the change in particle velocities

The concept of the moments of the change in particle
velocities is very useful when the macroscopic state of the
plasma is not highly oscillatory. We namely consider the

following kinetic equation




2f Df 2f af
@ T Ve T FON < a6 (2.1)

with the rate of relaxation in f,

af = - > <{av)> ‘ R {avav)>
2t bv.( at ‘f‘)“" T—B—\V-W' ““Af -f>_.
= = A .-b_n < (qe)™> (2.2)
n.Z-| n! ( w) ( at f) .

Here f(v, p, t), or f(v, t) for short, is the velocity dis-
tribution function of one component at position ¢ and time
t; F is the macroscopic force per unit mass acting on the part-
icle; Awv is the change in particle velocity due to the inter-
actions in a small time interval 4t; and the bracket notation
< > indicates the average over all the kinds of interactions.
It is assumed that f is quasi-homogeneous. The coefficients
<av>/at, <av av>/ at,... are called first, second,... moments.

The change in the distribution function during 4t must
be infinitesimal. But 4t has to be sufficiently longer than
the time of continuance of the force correlation; otherwise
the moments would depend on 4t. We therefore assume for the
time being that the time interval during which the macroscopic
state changes appreciably is much longer than the time of
continuance of the force correlation (cf. §11). In the pre-
sence of a magnetic field we also assume that the periods of
gyration of plasma particles are much longer than the time of
force correlation.

The equation (2.1) can be derived as follows. The time

of continuance of force correlation is the time of relaxation
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of the binary distribution function. Hence, under our assumpt-
ion the binmary distribution function is in an "equilibrium"
corresponding to f(v¥, t), and the rate of change in f(v, t)
is governed by f itself at the instant t¢;in other words the

process is Markoffian. We let
f(v,t-+4t)==jdu:f(u,t) Plwlv, at), (2.3)

Here P(ulv, at) indicates the probability of transfer from u

to v in a time 4t due to interactions. Following wWang and

Uhlenbeck27, let us consider the integral

Jdv q(v)% | (2.4)

where R(¥) is an arbitrary function which goes to zero for

jvi>o sufficiently fast. Using (2.3) we have

fdv R(v) Ai:fpt)

j dv Rv) [ f(v,t+at) - fiv, t))/at

jdw f(u/,t)jdu[R(u)— R IP(viw,at) /at . (2.5)

Develooing R(«) in a Taylor series in u-v,

Ry =~ Ry + 3 L (u= v (3 Rivy,

LN

and using the moments of the change in velocity,

| o
F[(umv P (vis ar) du = S5

we obtain
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deR(\V)ZA{- =jdvf(vt)Z' - Ltaw> ( ) R(wv)

at

1

jd“’R(“’)ZH'(— b\V) (((av) 2 )CU’,f)),

Since this must hold for any function R(v¢), the equation (2.2)
follows.

For the pure Coulomb potential the first and second
moments in the collision theory diverge. The third and higher

moments, however, can be accurately calculated on the basis

of binary collisions. In other words, for
< (aw)™)
X = < ! n 2 3'
at
X, 1s independent of » and X .. - Xwave,n_ vanishes. In the

following two sections the wave and collision theories for

the first and second moments are developed.

3. Moments in the wave theory

Dielectric_polarization produced by a moving charge

We consider a charged particle moving through a plasma.
The charge will cause dielectric polarization in the plasma;
and this polarization will produce an electric field at the
position where the chargé is located.

LLet us determine the field produced by a point charge

q moving through &z plasma with a non-relativistic velocity v,
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the charge density at a position r and time t being given
by q & (r-vt). The electric field produced by the charge
will be denoted by E(r,t). We define the Fourier transform

E(k,w ) of the electric field by
E(r,t) = J[E(k,o)e® 010 gude (3.1)

and the Fourier transform f(k,wO of the charge density by

a similar relation. Then

)D(k,cu)r—'i—' S(w—k.w) . (3.2)

@m)?

The electric field produced by a non-relativistic charge is
rotation-free, or E(k,w) is parallel to k. Hence, by use

of the Poisson equation,

tkoetk,w) E(k,w) = ¢mp(k, w), (3.3)

we obtain

2k S(w-— k.v)
21 k-g(k,eo) k (3.4)

Ekw) =-10

Substituting (3.4) into (3.1) we obtain the field, which

takes at the position of the moving charge the form

ol
E' =E(vt,t)=-a_§_5f"s<“’—k'w akaw  (3.5)

It is sometimes useful to transform (3.5) into a real

integral

pel 4 { k- £ (kw) k
E =-‘-z—;zf TP k S(w—kv) dkdw. (7 ¢)
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Here €" is the imaginary part of € and use has been made

of the relation (see Appendix)

"k, w) = £(—k, —w) (3.7)

between € and its complex conjugate e*.

Correlation of fluctuations of the electric field

In a homogeneous plasma in thermal equilibrium we con-
sider fluctuations of the electric field E(er,t) as a function
of the position r and time t. A role is played by the cor-

relation function

CE(r,+) EF+S, t+T)D (3.8)

which is the averaged value of the tensor product of two
field vectors at different positions and times.
We define the Fourier transform of the electric field

by the same relation as (3.1). Inserting this relation in

(3.8), we obtain

CEW t) E(k+s, t+1))

ikt (ke (FrS)~lwt— LW (t+T)

= i ce wr e, w)> e dhotcs oo,

The integral on the right side will be a function of the
differences (r+s)-r and .(t+7)-t only if the integrand contains

t-functions of k + k' and «w+ «'. This requires that

-13-




CEK w)Elth,w)> = (EE), Sk+Kk)S(co+w’) (3.9)

and therefore

CEFt)EW+3,++7)> = f[(EE)kw Q;ks—:wrdkdw ' (3.10)

The relation (3.9) has to be regarded as a definition of the

quantity (EE) It is the Fourier transform of the cor-

ke
relation function (3.9); or it is the spectral density of

the mean square fluctuations since

CEE> =({(rE),,, dkdw

for s = 0, =« = 0.

The Fourier transform E(k,w~) of the fluctuating electric
field is related to the Fourier transform p(k,w) of the
fluctuating charge density. In a non-relativistic plasma the
fluctuating field due to moving charges is rotation-free, or
£(k,w) is parallel to k. Heﬁce, by use of the Poisson equa-

tion, we obtain

) Yrp(k, w)
= - k' .
El(k,w) K stko) K (3.11)

. rom which follows

P k k
I k- ECk,wyk I

(E(kw)EkR, w)) = Pk ptsen>, (3.12)
Here we have made use of the relation (3.7). On defining

(fzkw similarly to (3.9), we can rewrite (3.12) in the form

-14.




¥m) kk

| k€ ).HZ (P ke - (3.13)

(EE)l:l-o =

The first and second moments in the wave theory

In the wave theory the second moment <4v av>/ a2t for
a charged particle moving witnh a velocity v is simply related
to the correlation of fluctuations of the electric field.
Here 4v is a change in velocity in a time interval 4t, which
is taken to be much longer than the continuance of force
correlation but still so short that 4v is small. It is given
by an integral of the fluctuating electric field at the posi-

tion of the charged particle
2 (* |
4V = —FI-J E(vr,‘r)d‘c*) (3.14)
[-4

q and M being the charge and mass of the particle. Hence

-4
2

av aAv >
[< :'i‘ Jwa«vc - —F?S <E(0‘0)E(V?'T)>d?) (3.15)

- o0
where use has been made of the assumption that 4t is much
longer than the continuance of correlation. This relation

can be transformed, ty use of (3.10), into

<av av > 2ng?
[ at JW‘W = v JT(EE)‘:Q dlw-f-v) akAw (3,16)

and further, by use of (3.13), to

<avav> - QF){L’_ Kk N
A oave v ) Thechor i Fhd@-kv) dhdu 10,
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The first moment < aw>/ at is composed of (q/") Ep°1,
which is due to the polarization of the medium, and of a part
due to fluctuations of the electric field:

waye M At‘

at
<av > ol
[41;] =£*E? + ;i——ts <CE(KMz) ,2)>dT, (3.18)

Here the quantity € in the integral is the fluctuating elec-
tric field at the position r(t) of the moving charge. In
(3.18) r(t) can not be approximated by vz as in (3.14),
but the first-order effect of the fluctuating field on the

trajectory must be taken into account;

e (T ("
F(T)= w7 +-—P'1—( dr’fdz-"l-’(vt’,'r'),
(4 o

7 z’
E(rx),v)= E(¥r,7) + —E‘—jd?'jdt” E(vt” ?")-—}F E(we,2),
4 o

where a Taylor expansion has been made. Since <E(v=z,?)> = 0

we have
4t T T/
<AV>:[ Poeel 2] P )
= —FE + — = |dT\dt {at" < E(v? 1) - L E(vT, 7)),
[dt waye M M?* at ( )DR’ )>
'} (4

Changing the sequence of integration and taking account of
the facts that the integrand is a function of the difference
T-7* only and that 4t is much longer than the continuance

of force correlation, we finally obtain

©®

<avy - 2 rpl gz N . e > )
S e S RO BT 2

M M

-16-




The last relation can be expressed, by use of (3.15),

in the form

<AV>“] Z pol \ > <404V}]
At L ave = VE M) o at wave (3.19)

or, by virtue of the relation

22 L.
kk - ——S(w kv) = £ ;;Scw k.o)
in the form
(AV)] b4 eel ) Cav. 4v2
= ———E -+ - ] .
[ at wav<e ™ 2 [ WAV( 3.20)

8
The relations (3.19) and (3.20) were found by Hubbard .

Expressions in terms of the velocity distribution functions

Let us assume that the plasma under consideration is
composed of several species of charged particles. Let eg,
mg and fs(vg) be the particle charge, the particle mass and

the velocity distribution function of type s.

In the absence of any strong magnetic field it is known

that (see Appendix)

e’ T ew)
k-t'k,w)k = —¢n?] —;‘-’- Slw-#v,) - —
H

AV,

s - (3.21)

Substitution of this expressionsinto (3.6) leads to

MR S(w—k-%) 2%(%)

. (LY
E ZZ ™y |k-f(kA4‘k|" Kk A A, o '(3.22)
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Further it can be shown that (see Appendix)

(f‘)k = uﬁ)"Zes’JS(w—k-%)ﬁ(u/‘)duxs . (3.23)
“ s

Substitution of this expression into (3.17) gives

[S_fjﬂz} %72 Zf’J Kk S (w-ks)S(-kY,)
at wave M? s * )k'f(k,w)-klz fs(‘f)’“};d“d“/. (3.24)

From (3.19) follows

[<AW>

at wave

K Slwky) (k. (7«'1 al + j-’-)S(w-k-v)f(w)ﬂ;#W(

=££Z-225
M S ) ksk ek |} w 3.25)

4, Collision cross sections in classical mechanics
The change in velocity v of a test particle, which has

the mass M and charge g, in one collision with a particle of

type s is given by
(4.1)

Here g is the initial velocity of the particle of type s
relative to the test particle; g = Igl; b is a vector whose
length is the impact parameter b and whose direction lies
in the plane of orbit and is perpendicular to g; and @ is

the angle through which the relative velocity is deflected.

~18-




The first moment in the collision theory with the screened

potential (qes/r)e'"r between the test and field particles
is the following:

<av> _ Mg )

5% P Mt g@n g fvegrgdg . (4.2)

Here s is the velocity distribution function of particles

of type s and

00
@)
&, =§ (“‘—°‘(‘9))1rbdb, U= 1,2) (4.3)

In the second moment
<avav) ™My 2 [ . 23

b
+sin*p *‘i—,];’ f‘(v+(;)d;db

the tensor bb/b2 averaged over the directions of b around

g is (1 - gg/gz), L being a unit tensor. Thus we obtain

av ms . 79 aj Q)
[522), - 2 () [ e o)

a

i - 34 @ .
+3(1 %)Qn ];’f‘(way)ag. (4.4)

In particular the relation

{4V eq¥) Mg 2 ‘
[ 4-: ]..‘ ='2Z (M-rm;)jan) J’ﬁ(“’*J} dq (4.5)
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holds for the trace of the second moment.

In classical mechanics it is known that28

a)

Q. = 4=

e _L)
rgein 2./
(4.6)

@)

zes
th = n —
)(ﬁ XlZ'es’K : > '

where i = mgil/(M + mg) is the reduced mass and lny =

Inl1.78107 = 0.57722 is Euler's constant. As regards the

Eular's constant the following formulas will often be used

in the present paper:

(4

S -€‘x/nxdx —"jhr , (4.7)

z o ax 4.8)
J X€ Unxox = - fuy + |. (

(4

It should be noted that the second moment can be

written in the form

<4av 4av)> _ 1 (av-av)-
at -2 ( 1- %%) [ 4 }n

n

+ trace-free tensor, (4.9)

in which the trace-free tensor is independent of w and can

be accurately calculated on the basis of binary collisions.
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II TEST PARTICLE PROBLEMS
5. Relaxation of a slow heavy particle
As simplest examples we consider, in this and the next
sections, systems composed of a plasma and a test particle.
The mass, charge and velocity of the test particle are de-
noted by M, q and v, respectively. We calculate the rate of

diffusion of the particle velocity, which is defined by

<4V‘AV>’

D= o

(501)

and the rate of relaxation in the particle energy, which is

given by

!
.;‘?.. = > A—'t- [((v-rav).(w-r‘n)’)—v’]

- M }’2\;/- <awvd . <AV aw) (5.2)
2 ot at

Here the bracket notation < > indicates the average over
all interactions with the plasma constituents whose velocity
distributions are assumed to be Maxwellian

. 32
fv) = ns (5= ) asp (= Emowt/T) (5.3)

In this section we treat the case where the mass M of
the test particle is large and its velocity v is much lower

than the thermal velocities of the ions:

for all s,

M>>mg v o< (T/m)d

-2]1-




T being the plasma temperature. In this case < av.avd>/ at
is independent of w and -v*<awv>/ at is proportional to v2.

Furthermore, dw/dt must vanish when the kinetic energy %Mv2

is equal to % T. Therefore holds the relation

*

_____(’_ Mv‘)

In the wave theory (3.24) gives

= .f_z_f 2 ﬁz .
Duse M2 ; SNTE sk, 0p k12 Sk W‘)fs(“”)d"?dk :

Making use of the integration

jg(*‘%)ﬁcwd“’s = 2y O fanT)

and taking account of the relationship
k- -k, 0) k = R '+ &7, (5.5)
in which

2 4(7(’" é‘z
£, =ZS \,—r—‘—~ (5.6)

is the square of Debye-Hfickel's static screening constant,

we obtain

2 3| Ak
Doy = LHE L o' (535)

wave 2nT (A*+ -‘pl)z

(5.7)
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Forf the diffusion coefficient (5.7), the effective
screening constant v’ defined by (1.5) is equal to the static
Debye constant; 1w’ = kp, as it should. Thus we obtain,

by use of (4.5), (4.6) and (4.7),

ps2 2y 2Tm\E 3 «T M 1l
b= T«L Zs:"“" ( T ) (4 $7176 1Ry (M) 2>-(5‘8)

6. Relaxation of a fast particle
We now consider the case where the speed v of the test

particle is much higher than the thermal velocities:

v o>> (T /my )'iL for all s. (6.1)

On replacing the relative velocity g in (4.2) and (4.3)

by -v we obtain in the collision theory with screening x

_ Prpe 2 2pu vt
Du = iy Ime’ (bnglr = 5) (6.2)
and
qv ¢ ol n e’ .
BT SR 5 S Ly AP PRI S

Hpe v

where/ﬁs = mSM/(mS+M).

From (3.24) we have in the wave theory

47 A Sk w)
D = ? -k v a
wave — m* ;0‘ Ik gk, u) k| Blw-kwm) f ) av dba

which can be transformed, by use of (3.21) and (5.3), as follows:
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4
T 22 { P23 (k)
Dwave = Tl Ve o o ak

k- o).
T A g (6.4)
= 27T ’S' w £’ aAw
= 22 (L Rk Aw
M T FL, k- Sk, w) & W R

{P stands for "principal value".)

The dielectric permeability has no zero-points in the upper
half-plane of complex w. The integral with respect to o can,
therefore, be transformed into a sum of integrals along a
very small semicircle Cl and a very large semicircle 02 in

the upper half-plane as shown in Fig. 1. On the small semi-

circle Cl we have

E(hw)= S(E, 0) = | + ky /t?

and on the large semicircle 02 holds the relation (cf. Appendix)

ek, w)= | — "‘-’r"/wl where wr2' Z¢7T”sesz/ms~(6-5)
5

The path C, of the integral (( «’- «*)wdw can be shifted

2
to the real axis. Hence

oo

L PJ *’ Adw - Rt |
T K S (K w) o = +
P Frw)k A + A;
k! Fig. 1
Rt RS

Thus we obtain finally

2T 22 A2 ak
D - ! ’j * (6.6)
A>o

way e 1 R ——
M™v A R
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On substituting (3.20) into (5.2) we have

Aw pol M d <av-av> <avedavw)
- —_— - E - M U B it - <
[o(,‘t Zv 2 (\y D“’[ ot ]wo\ve+. <t ]mv¢>

The sum in the brackets, however, vanishes since [<Av.av>/4t]wave

is proportional to v‘l. Hence we have

Wr ol
~[2F] =~ g E (6.7)

0‘* wav ¢

or, by use of (3.5),

olw ~ LL_g wSlw—kv)
[-0(/'(“ wave = 2_Rzg kf(k,w)k dkd‘\/, (6.8)
which is calculated to be
v
ot wave v T e *‘ka,b)k
e dt (6.9)
v + '
P">wr/\/‘

From (6.6) and (6.9) we have

D D 2T o Ry Jw A A +*
- = 2L ®p -~ — |
wave Wave,)‘l Mz v o[ ‘Al‘f i; (‘A"f Kl) ]
(6.10)

= AT %, |
SR (L b))

2
M v )
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ew 02t ‘ £ Rk
— = jiw\ d a4
[ w«we ok wave, e 1% ay @ [ gw'/v- ( (& NS 1) ]

2
_Eiﬁ;(/ﬂ,:f‘ N (6.11)

f

Substituting (6.2),(6.3),(6.10) and (6.11) into the connect-

ion formula (1.3) we finally obtain

frt
p = r° Zne n 2pVE (6.12)
rige ity '’
ow ? #rng e’ 2pu v 6
_dt = _é_ Z Tfm /;‘ /" ( .13)
5 s r,zl!}“‘jr

ITI TON-ELECTRON INTERACTION IN HOMOGENEOUS PLASMAS
7. Two-component plasmas

In the following we consider two-component plasmas which
are composed of electrons and one type of ions. The mass,
charge, number density, and velocity distribution function
of the ion are denoted by m,, “e, ny, and f,, respectively;
those of the electron by m,, -e, ny, and f,. The electron-
to-ion mass ratio, m2/ml, will be neglected as compared with
unity.

For the dielectric permeability of a two-component plasma

(in equilibrium), we have, in terms of the constants

&,2 = ¢nn e /T and 4k, = 4nn.e/T , (7.1)
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the expression

2
k-s(kw)k = A = p (k-€¢h, o) k— A7) (7.2)
=)
where (see Appendix)
. 2 o Mg §
Eslk,w) k- 2= &' Foe), xo=2(57)  (7.3)
2(” 2 (7.4)
Foy= | — 2xe” f tat + L xe” &

Since the mean speed of ions is sufficiently lower than
the mean electron speed, the electronic part of the screening
around an ion is of static character. Namely, the dielectric

permeability effective to ion-electron interaction has the

form

k. fbw)k =A% + k- £ (Kkw)k,
’ ) ’ (7.5)

where k.e (k,w)-k refers to the ions only. For the imagin-

ary part e", holds the relation (cf. (3.21))

" ‘1_¢l d '(
kg (hw) k = = #r? Z—-fg(“—*‘“’.)k-—f:‘zdv (7.6)

m, YV

The ¢ effective to ion-ion interaction has also a similar
form. For electron-electron interaction, on the other hand,

the ions do not play any role in the screening:

Kk £(kw) k =k £,(k o) k| (7.7)
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8. Relaxation between the ion and electron temperatures

Let us first consider the relaxation between the ion
and electron temperatures. Since the mass ratio is far
from unity, the energy transfer between the ion and electron
systems may be much smaller than among the ions or among the
electrons. Hence the ion temperature Tl and the electron
temperature T2 can often be different even when the velocity

distributions are both Maxwellian:

(v) = n for s 1,2, (8.1)
f ) s (,Z-nT) ’“P( J'r, )
Here the difference ITl - T2| is not supposed to be small:
but we assume that the mean ion speed is much smaller than
the mean electron speed.

In an elementary manner, or on multiplying by %m‘v‘ the

both sides of the kinetic equation

)'f(“’) ) <av> \ <av avw) :
b't—_— nﬁ?v ( f"V)>+F Iv v ( At ft(V)>-

and integrating with respect to ¥, we obtain the time rate

of change in the ion temperature Tl in the form

3n, dT, o .
P kRt
m,
= TS(zv “:’ f.ﬂ%:%i"z)fu)dv. (8.2)
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It is easy to see, in the collision theory, that the ion-
ion interactions are cancelled on the rignt side of (8.2),
as it should; we need only to consider the ion-electron inter-

actions:

[g_}]h - j [\'AV)J <4\V A\V)] )f(v)alu/ (8.3)

where the notation < >> indicates tr¢ part originated in
the interaction with electrons. Further it can be shown

that

!Ql - L =T, ' <av:
a+L - 21—2' ;“ [4 ”‘)J fvodw (gL

(The quantity [« Av,~.4v.>2/ at],. in (8.3) is independent of
v1 but [<av,>2/ at],, depends linearly upon vy. For constant
T,, therefore, S[< av,- a¥ >,/ at)  f, (¥ )dv, is independent
of T1 and $2v,'[<<Jv|>2/4t],‘f"(v‘)dvI is proportional to T;.
On taking account of the fact that 4T;/dt vanishes for Ty=T,,
we obtain (8.4).) Hence, by use of (4.5) and (4.6),

[dn] . T2oT gme faw hla) (g 2mar 1y
¥ 2 — 2

Ta Iwm, Va F2e* v
= I_l_:l 8 e¢ 2ma ¢T —_ L
e (5F )"‘u 2o =) . (8.5

Here g and F2 have been replaced by Vo and ms, because the

mass ratio ml/m2 is far from unity.
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In the wave theory we substitute (3.24) and (3.25) into

(8.2) and integrate by parts. Then we obtain

wl
k- $(k,w) Kk |?

[£2)....- (5 - ) 2=

x Stw-kw)Sle - kv F ) fi%) dviav, ak de

the ion-ion interaction again vanishing.

Since the mean electron velocity is much larger than
the mean ion velcoity, 6(ew - k'vz) can be replaced by
6(k'v2) and the integration over v, can be performed,

daT LA ¢2%e" m, Ww’S(w—lk‘v,
— = -~ n a
[‘” wave (T' T‘) 3n, A(JTT’) kik sk o)ki? -;M)a“ydk “

The dielectric'permeability and its imaginary part are given

by (7.5) and (7.6). Thus

P w‘S(w—*‘*’c)
¢f$€ {g - f(w)avdw
1 Ik €K w) k)
_ w k-, K, w )k
= o w

L&, + ke £,k w) g )2

r,‘-f-ki(ku)k
-~ 00

Since the dielectric permeability has no zero-points in the

?alf

upper half-plane of complex «w , and the relation

Bho)= | —w,? /1u? where w,* =¢n2%°n /m(8.6)
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holds true on a large semicircle in the upper half-plane, the

last integral can be transformed into

i ” w? dw _ prus?
T RFRD) W= ATt (R4 A7)

- 00

Thus we obtain

T ey M b 23dt

A> 0

Since

3
dT, L an A _ yy
oAt me - [o{t waverc “’"‘*-f rowys el Kl

the effective screening constant defined by (1.5) is kos

the final result can be obtained by substituting k2 for » in
(8.5)'

Ty - -1 ?'rczae“<2m,33L

4T ] \
At T, 3 ﬂT‘}nl(f».}—,}—e—;ﬁz_E)'(&B/

The relaxation constant R defined by

d

L (=T) ==~ (h=T)R, (8.9)

an1 + n2T2 being kept constant, is

R=R°(f"__?~.l——_;‘),

1'% A, (8.10)
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where

1
R" = %umfmy%{i;f(ga?)z_ (8.11)
It is a remarkable fact that the ionic screening does
not play any role in the relaxation caused by energy transfers
between the ion and electron systems. 1In the case of re-
laxations caused by momentum transfers between the ion and
electron systems some fraction of the ionic screening con-

tributes as shown in the following sections.

9. Effective screening constant for ion-electron scattering
This section is devoted to the following useful theorem,

The effective screening constant for the first moment,

<av> /at and the trace of the second moment, <av:av) /at, of

the change in electron velocity due to interactions with the

lons is equal to kyo defined by

jr. ﬂ: = ‘A; " .f.?: - (9.1)
*l‘ ‘k: ,d i * | ’

where k,’: k,® + klz. The constant k;, is between kp and kp

as it should; more precisely

.&; -+ JXP(")‘&,2< “,:< *,1-4- J{’Al' .
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In the wave theory we have from (3.24)

[(4‘/ av>,

way e

2 73 2
_ 42e} ﬂ +* 3(kv)S(w—ky)f(u)dwekaw, (9.2)
m, Ik Sk, ) kI?

The dielectric permeability is again given by (7.5) and

(7.6). Thus we proceed as follows:

. T
(o] | - Ehlmsens o)

2

where

TC

I(h) = lg A7 k) (k) K

Aw
© w Ry ks w) k]’

= i.fgw A A
) Wl kogk ) k]

(P indicating the principal value at w= 0).

The integrhl with respect to w can be transformed into a sum

of integrals along a small semicircle C;y and a large semi-
circle C, in the upper half-plane of complex w(Fig. 1). On
C,, k, + k-e, "k 1s equal to k.2 + k,”or k;°; on C, we have
the relation (8.6). The path Cp of the integral

_f[(k‘ + k,")w? - k’kﬁll—uuduz can be shifted to the real

axis. Hence
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I(k) = —=k 4 f’
ﬁl‘f‘ ﬁpz ﬁ*ﬁzz

RR? (9.4)
(R% Rp)(R*+ £.)

Thus we obtain

[(4“/-4\\/)] -
AT wave

2-@’_" ‘&1( ’gsd'&
m_*y ') B2 A (A £5) + (9.5)
: h>o » 2

We have therefore, by use of (1.2) and (1.4),

[<4V~4V>,J _ r<av-avy '
At wave L

o0

2€’T xl[r 'i'%
= mty * j [%Tﬁpj/f:f‘f:. m(g 6)

From this expression and the definition (1.5a) the theorem

follows.

As regards the first moment < 4w >/at, the vector is

parallel to -v., Moreover the relation

<av) 1 <av-av)
— At | = > __j:t____i._ (9.7)

holds since the ion-electron energy transfer can be neglected
in comparison with the momentum transfer.

It is to be noted that the contribution of the ions to
the screening comes from the integral along a small semicircle

at the origin in the w-plane. When a relaxation is caused

T




by energy transfer between the electron and ion systems,
(9.7) does not hold and interactions corresponding to «w = 0
or k*v, = 0 do not play any role. This is the reason why
the rate of temperature relaxation discussed in §8 does not
depend on the ionic screening.

The third and higher moments and the trace-free part
of the second moment do not diverge for a pure Coulomb
potential (see the last paragraphs in sections 2 and 4).
Hence the above-mentioned theorem can be generalized to the
following:

The effective screening constant for any moment of the
change in electron velocity due to the ion-electron scatter-

ing is k,, defined by (9.1).

10. Electric conduction in an oscillating field

The electric conductivity will be considered under the
condition that the frequency of the applied field E,éﬁwtis
much lower than the plasma frequency but sufficiently high
as compared with the collision frequency.

By virtue of the second part of the above-mentioned con-

dition the right side of the kinetic equation (2.1),

)-f, p’) - {wt 3f <4V’>
—_— e E - (

2t *'—“' , (10.1)

is very small as compared with the first term 4n the left side.
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Thus, to lowest order, f2 is simply given by
fv) = (v)(,_*_‘_v,;e ity (10.2)

where f;(v) denotes the Maxwellian distribution. The cor-
responding function f(v) of the ions remains Maxwellian.
Multiplying both side¢of (10.1) by -ev and integrating

with respect to v, we obtain

_;-"’j'e-iw.t‘—— Y\):‘ez E- .€~wa = ,__ej(::) .f.’ dVI (10.3)
where je‘t“f = -eljvfz(v)dv is the electric current density.

We substitute (10.2) and (4.2) and make use of (#4.6)
in which r is replaced by the effective screening constant

ki, given by (9.1). Thus we have

<av) ¢ nl2e)” e - , .
e - Ll U R STLe
2 12

Here we have taken into account the facts that the electron-
electron interactions do not play any role and that the ion
velocity is negligible in qomparison with the electron veloc-
ity.

The electric conductivity ¢ , which is defined by

~ (W ( 2 2 Lut'
j t‘(-g%fm)z - (10.4)
is found to be
r'Ze'd, 2/
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where

oo M )} Dety? (27T N
0= T e (22 =), (10.6)

w, = (Uanez/mz)% being the plasma frequency.

11. High frequency conductivity

We are developing our theory under the assumption that
the time interval during which the macroscopic state changes
appreciably is much longer than the time of continuance of
the force correlation (see the second paragraph of section 2).
Thus it 1s assumed in the preceeding section that the frequency
of the applied electric field is much lower than the plasma
frequency. The case where the applied frequency is comparable
with the plasma frequency is treated in this section. For
the present case the concept of moments of the change in
particle velocity cannot te used in the wave theory; but a
somewhat similar procedure can be followed.

The collision theory is the same as in the preceeding

section; the conductivity ¢ defined by (10.4) is of the
form (10.5)

P o= 00 (Ln KT ). (11.1)

I'Deire 2

Here r is the screening constant which is taken in the range

collision radius « »~ « (2t/m9*/w
and should be eliminated by unification of the collision and
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wave theories.

In the wave theory the system of electrons can be treated
as a medium with the dielectric permeability e(k,w): and the
ions, as particles in this medium. In the electric field
E,e'iwt the medium oscillates with the amplitude a=(e/m,w')E,
while the ions are standing still. The force between the ions
and the medium is due to the polarization which is induced

jwt

by the ions. We denotes by Ze ¥ e~ the polarization force

acting on one ion. The current density is then given in the

form

J = & (n,eE, + n2¢F), (11.2)

m,w

For the purpose of calculating the field ¥ it is con-
venient to introduce a coordinate system which makes the
same oscillatory motion as the motion of the medium. In

this coordinate system the positior of the i-th ion is given

by
-q‘,u'f'
h=FK, - &e (11.3)

’

ris being the time average. The electric charge density of

the ion p(r;,t) = Zed(r; - ryy + ae” %) has the Fourier
transform
Plhw) = @M 3D [Sw)+ itk aS(w'—w) ] axp(~ ik F,) (11.4)

to the first order in a. The Fourier component E(k,«') of

the field induced by this charge density is determined by
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the Poisson equation:

(k,eo')
N -k Fmplles

The corresponding field at the position of the j-th ion is
E(§,+)==ﬂ/5(k,u92fp(ﬂkﬁ —lw't)dwdk | (11.6)
The quantity # is calculated to be

Fe ™t o 7 EH,t)

]

4
T o2n k-s(k,0) Kk K £k,o) K

x exp(ik-(b,-k,)-iwt)ak . (11.7)

This expression is independent of rjo'

Wwe shall evaluate the sum
Z exp ik(#‘,l—tv) .

The number N(r) of ions at a distance r from the j-th ion is

known as
2 T
F) = n, - o
N( ) [} (1W)J _‘1*;‘92 kl
2 2 2 2 2
where k “ = K + k3, kj and k, Dbeing biven by (7.1). Hence
we have

-k +
Zi-le tl-(#}.-h.,) = | + SN(I-) e o

= | ___"3:._1-4-(:1!-)’»'\,3(*). (11.8)
R+ Ry
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Substituting (11.8) into (11.7) and referring to (11.2)

and (10.4) we have

U\‘VAV{
—_ i ,p.Re e [ ! _ | 2R +m,vp (11.9)
a0 27 muw? Lk 2k, 0) Kk k- Ele) k] g gl 3 '

where the third term in (11.8) does not contribute because

the charge neutrality is assumed. An expression for
Kelk,w) k is

X

2

. —xil e -
kst wy k = B By (1~ 2xe je at + LFxE ) (11.10)

where x = (ka)(mz/ZT)%. Hence

af” 3
_d - X7 4 —x?
LT e Ve dt + €
4 rl
-
wav-e

k-&lk,wyk (04 By

£lak , (11.11)

0-° being given in (10.6). This expression in the wave theory
20 Fp —

was first derived by Oberman et 2l., | The real part Of‘Twave
_ a
£ > : .
Re o, .= 0° FrAl piad (11.12)
v \kf(t,“’)kf" £)+'ﬁ’§
*>0
diverges logarithmically as expected. 1In the following we

remove this divergence by the aid of the connection formula.
On the other hand the imaginary part of manQ converges:

the imaginary part of ¢ is peculiar to the coliective inter-
action and can be accurately calculated on the basis of the

wave theory. A graph of Im¢ /0° is shown in Fig. 2 in case

Fig. 2
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The connection formula unifies ¢,and BReo_,.,. into

Re o /07

&ty 1 pa
=, £T + -0‘{’(‘7‘5‘;7-) (£ £.)

i
Y2 2

!

—, [ #& (11.13)
PRI EINE ET A (& rc)

In some limiting cases the integral can be performed analyt-
ically.

Wwhen « « «,, we have

o0

o _ffT -1 - T ! - / k’dﬁ
Reo /00 = Jn rlev 2 jl '+ (Y fopt) l~&'+*t‘)’]
- o %1 _n (11.14)
ﬁ” ‘f’ 2 (2 k)) < !

ki, being defined by (9.1). This rerul% is the same as (10.5).
obtained on the basis of the guasi-static theory.

When w » w,

, We have
(m [ L om,
(ol - ’) 3
o o g 4T L Pl A2t/ Ak )
RQO‘/O\ j 1) e 2 )dl 7& (-ﬁ"_,.k")z]
- IR
= L %;7(.53;}‘ (11.15)
1_e/ rm‘klz

where use has been made of the formula

S & /x ax =~ Lapx)

, fTor x «1,.

In this case the distance covered by the electron in one period

of the electric field plays qualitatively the role of the
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effective screening length. This distance is much shorter
than the Debye radius; and hence the Debye screening does

not play any role. Thus it is possible to derive the re-
lation (11.15) merely on the basis of binary collisions
without using a connection formula. In fact, the relation
(11.15) was first obtained from this point of view by Elwert®’
in 1948. Careful discussions on Elwert's work are given by

Scheuerjo.

A graph of Reo /0° 1in case Z = 1 is shown in Fig. 3.

Fig. 3

Now that ¢ 1is obtained we can investigate the plasma

oscillation. The complex frequency of the plasma oscillation

is determined by

b= =+ — = 0. (11.16)

Since the third term is small, we have, in case Z =1

Rew ~w, = 27 0~:_“ x 0,3/?} (11.17)
= 2T (11.18)
mow = - 27 m'w‘w. (,Qn ',élﬂz "0.0/03).

The first expression shows that the frequency of the plasma
oscillation increases when the interactions are introduced.

The second gives the damping of the plasma oscillation.
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IV ION-ION AND ELECTRONELECTRON INTERACTIONS
12. BRelaxation of an anisotropic distribution bf ion velocity

We have treated examples of the ion-electron inter-
action. In this section we discuss relaxation phenomenon
which is caused by the interaction between ions and in which
the ion-electron interaction is effective only through the
dielectric permeability whose electronic part corresponds
to a perfect screening.

A plasma in a rapidly varying magnetic field has in
general an anisotropic distribution of ion velocities, the
longitudianl temperature T, being different from the
transverse temperature T, . The relaxation of this velocity
distribution plays a role in heating a plasma by means of
the so-called magnetic pumping. We consider the mean transfer
of ion energy between longitudinal and transverse directions

when the velocity distribution is as follows:

ﬂ(w)-.mflﬁ~ﬁ( ~ y{r('"% - :1921&2) . (12.1)

12T, 2nT. 2T, 2T,

The effects of the magnetic field on the rate of transfer

are usually negligible.

The time rate of change in the mean longitudinal energy

of an ion is given by

A w; _ __ LN RPIISCA f(") v
At —adt ]2 % n
—_ m <av; > <@V,
= o J(m D2 SR €y (12.2)

-43-




The results of calculations in the collision and wave

theories are the following:

dw; 2w 2%k« m g
[7‘2- rc - n:m, (jn )’2'-6’)1 - ')
x ?‘('—%)fcwy)fcv)o(vd; , (12.3)
AW}J J ! 22‘?«{{{ v; (v, - )
wav. = T,-, B
¢ ( L TSIPE
X S(w-kv)§w-tw)f () f (v dvdoidkosiw (12.4)

In order to proceed further, let us assume that

)"1~T,.]/T « | where T;:si‘--;-*+§'.7-"

’

and consider only terms of the first order of this small

quantity. Then (12.3) becomes

_¥T
n Jol?lel)’(.

o T.-T '
[d?Jm = 7‘T f: 2i¢(WT

(12.5)

Here we have used the formula (4.8). 1In (12.4) the velocity
distribution and dielectric permeability can be replaced by

their isotropic approximations. After performing intergrations

with respect to the ion velocities we obtain

[2‘_"2] = Ta=Th 8n, D%~ J 7 il
ot “wave T 1 & T T - [ K- S(K w) k)P
X exp (- _T‘h)dk;dﬁ (12.6)
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Since «w/k is very small compared with the electron speed,

the dielectric permeability is given by(7.5),

X R}
Ktk =R+ R+ 7‘%‘(1-27{5’{‘*’“** vne” ) (12.7)
where
= Y m,; ZL
x * (JT )

From (12.4) follows

[ 25 - o™
ot wave — LT dwove, e

o0
a [ 2 - . l/ 2 [N
= const. ([(ﬁ_)’J f’J‘F( v T*)aw-_ﬁ___:] ak
JUTT L kst ey w0 (h% et
(4

The effective screening constant n‘ defined by (1.5) can
be obtained by letting both sides equal to zero. The result
is of the form
.
el =[ R+ k)7 (12.8)
in which the effective fraction n of the ionic screening

in the present process is calculated to be

n(l) = 0.66147
W(2) = 0.66098
W(3) = 0.66151
W(4) = 0.66228
n(5) = 0.66306
N(e0) = 0.67137.
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On replacing v in (12.5) by »° we obtain the final

expression for the rate:

o vy T.—Ti &n € ¢, T \E
S . e ey _m «T
At T e (MT)ZI%’;QFETQ' (12.9)

It is to be noted that the effective fraction of the

ionic screening in another process is in general different.

13. Relaxation of an anisotropic distribution of electron
velocities
This section is devoted to the study of relaxation of

an anisotropic distribution

m, T, om ~ myVvy' _ oma(vy't vy?)
f;(v) =N, (27TT|,) (_ZWQT_‘)U 2T, MEAM IR ,21']"4_ )

of electron velocities. We assume that both T, and T, are

not far from the ion temperature T:

|IT, - TI «T, IT, - Tl «T,

n

The time rate of change in the mean longitudinal energy

of an electron is given by

A = ﬁ ma L2 )Cz(")
At = um) 2 n, av
= ﬂW‘, dwl
(dt): + ( At /3
where
oW, m
( ) = —2 (lw <4 12,
hERLES 3 <@va)?
A7 T 2w, -t S22 fvaw




s = 1 corresponding to the interaction with ions, s = 2 with
electrons.
The part due to the ion-electron interaction is calculated

to be

AWy = L - ?nl D¢ 27 4T
( ) Bl I!' ( ) /e" ’2*(1‘&'2

Replacing, in section 12, my, n;, Ze, k22 + Kgr k by

my,, n,, -e, K*'epk , respectively, we obtain

dwﬂ - T..."Tn\ ?h: ¢
("(f ): T T ('";T) A )"e'(né'?li?ﬁ‘) '

(O.6713?k22)% or (0.67137xhnn2e2/T)é being the effective
screening constant for the electron-electron interaction in

this particular process.

V  DIRECT CURRENT PROBLEMS
14, Kinetic equation
Although the rates of relaxation in simple cases can be
obtained by calculating one or two moments, it is necessary

in general to solve the kinetic equation (2.1) with

Afw) _ [dﬁw . [i@Q [AﬂW}

at at Jy at Jwave

wave, « + (14.1)

In the collision theory the nth moment is given by

@}"T),ZJ - %g 4"ﬁ(v+ g)70gab, (14.2.)

rc

where A" is a tensor of nth rank composed of the change

(4.1) in the velocity v per one collision.

-'J-?




Substituting (14.2) into (2.2) and performing the summation,

we obtain

[ afw)

at 124

= L{[ftr-arfvrg-a)- forf(vrg)] g ag b .

This is Boltzmann's equation, which is usually expressed, in
terms of inverse collisions for the terms f(v -4)f (v + g -a),

in the form

[.____4"0") - Z_’ﬁ[f(v')fscw) ~Ffw)] vi—vldy olb (14.3)

at

]
where v' and Vg indicate the velocities after the collision.

In the wave theory, formulas (2.2), (3.24), (3.25) and
the relation (1.4) lead to

[A'f(V)J _ [ )

at -]uavt,"t

at
22 \{\ k. 2 | o) Clo
:Z fg ov (“k~ €k w)k|? - W)s(“ k )g( k¥ )
* k'(—lﬁal\‘,"'m w)f( W) fy) dydkaw, (14.4)

the contribution from the third and higher moments vanishing.

Such a unified kinetic equation was independently found by

1
Baldwin26 and the present authors

15. Electric conduction in a Lorentz plasma

As an example let us consider steady electric conduction
in a Lorentz plasma. (The Lorentz plasma is a plasma in
which electron-electron interaction is neglected, or, what is

the same thing, the ion-electron charge ratio Z is very large.)
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Since the effective screening constant for the ion-electron
scattering in this case is known (see the last paragraph of
section 9), it is unnecessary to perform calculations in
the wave theory.

In the collision theory the velocity distribution funct-
ion fz(v) of electrons is determined by the Boltzmann equation
with the interaction term (14.3):

_ e g 2w
m, A%

g[ foeo) fw) — fuwfie) ) lv=v | dudb (15.1)

We expand as follows’

fv) = ﬁf(w)[|<+ V-], (15.2)

f20 being Maxwellian. On the left side of (15.1), f, can be
approximated by f2°; and on the right the relative speed can
be approximated by the electron speed v, which remains unchanged

during a collision. Hence

T E-o ‘faa = n, JS (Y=—vw) ) f)’ v db

©
-n, V: ¢ f, v j (1 —cos O) Jrrbdb/
P

where 9 is the angle through which the electron velocity
is deflected. Substituting (4.3) and (4.6) and taking ac-

count of the theorem in section 9, we obtain

E—E - 2<’- 2 v ?’(v)'f 2’" N
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where k,, is defined by (9.1).

The electric conductivity o 1is given by
OE = -egvfa(w)dv - —eS\v W-?(v)ﬁ’dv.

We have therefore

ey R
lh(zmz\/""/r‘?e‘.ﬁu)— /2

2mana ( 2T )‘;‘ | J < v
- TR - ———;
3’”2@ a TC L -fjhw"

En,e? r¢) rw) rle
- P t[:f“;;—-+ ; -~]¢15.u)
3R im, (ZeT ) (27T /) L

where
L = 2u(¢T/fRebn) — %>
ri¢) = ¢,

Pie) = =6Ly = 7537,

" — n 2
[ te) = n‘_%’__,..gﬂ___é_é‘gl-—L = /.17

16. Conduction of electricity and heat in general
In a plasma with electric field and temperature gradient
the electricity and heat are carried only by the electrons

in the absence of any magnetic field, the velocity distribut-

ion of ions remaining Maxwellian.
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The velocity distribution 6f electrons can be obtained

by solving the kinetic equation

S SN S > AP -
Y e sz = =2 (16.1)

On the left the distribution function f2 can be approximated

by its unperturbed Maxwellian distribution f2°

3 Dn(r,T)
[ L=

E ma )LT sz '
A w0 . (16.2)

2

On the right we let again

fiw) = £, [ + vePir) )

and expand ¢(v) by use of the Laguerre-Sonine polynomials into

Pv) = Z, P L 3‘.?\/-')

Y=o

Multiplying both sides of (16.2) by
yA m, 3/1 .
)y L (v

and integrating over ¥, we have the simultaneous equations

for P. of the form

)ﬂ"(H:T) E ),0..1' )
( 2+ = = )% = ? =-—£;(H *ﬁr)P (16.3)

The matrix elements in this equation are calculated to be

Hy, = «@,— n,a‘z [(fn 5T ,2 T L) A — B,.—J

’

@ 3T n,e
Hy = 55 2 “ﬂ .,ﬂzL)C"__p"]
’

1
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where

3 I
_ \ = /2 _ 0 1 2 .
Agp = 2 2 Ber =
ERNNE i | ‘ o2 4%
2 € T
FISNEY
15569 ¢33 ST
¥ (6 b4 N
Csr= o (4 o -
)
I
o | Z
o < ¥
% T8
Dgp = 4 o o

©  0oferf3 o0 920420

o 0.920620 0.¢231t9

The electric current §j is related to the coefficient

PO as

n.el

j =--€ij2(lV)dV’-— m, Pv (16.“)

The heat flow q is given by

?
na T

q = j"z‘M;V‘zVﬁ(v)dV
s
2 ™y (P,~ f,) .
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Hence the reduced heat flow gq* due to conduction is

N 06.5)

-

4

= i
7+ 3

s+

Thus we can calculate the electric conductivity o ,

thermal conductivity ), and thermoelectric coefficient a

which are defined by

22T
g* = - AT + Ay,

48 (16.6)
E = DB,O:T + O\‘IJ

The electric conductivity ¢, for example, is the

following:

T = Lim [e], (16.7)

$-» 00

in which the (s+l1)-th approximation to ¢ is

/

For 2 = 1, the third approximation is calculated to be

oin H,, --- i Hoe =+ - Hog
[0‘] = : o - cee e

St m,

(16.8)

Hi| .. H;, H" . H{f

- Je? T .2 m, Jf
(), = “m, (o) (Z=7

x[21.24(/m A ) 4+ 7.30(/wA) - 25.89)
(10.89(Zn A )’ + 11.05(fw A ) - 28.49 /A - 9.94]'1’

where

/\ T
ﬂ" x In 0'*1




VI FURTHER DEVELOPMENTS
17. Quantum effects

It is a characteristic feature of hot plasmas that the
quantum effects become appreciable at very high temperatures,
or, more precisely, at very high energies of the charged
particles under consideration. The form of the connection
formula (1.3) need not be altered in the presence of the
quantum effects. We need only to evaluate under the condition
(1.6) the terms on the right side in quantum mechanics.

The quantum effects do not play any role in the differ-
ence Xwave - Xwave,n-' Because the quantum effects in the
wave theory are appreciable only when Rk (2nh=Planck's con-
stant) is comparable with or larger than the particle momentum,
i.e., when k‘l { de Broglie wave length; waves of such small

wave lengths do not contribute to the difference X - X

wave wave ,r °

The term X, is not necessarily an explicit integral
with respect‘to the impacp parameter, which is a classical
concept. It can be expressed in the form of an integral
over the differential cross section. Quantum-mechanical ex-
pression for the differential cross section in a pure Coulomb
field is the same as the classical Rutherford formula. A
quantum expression for X,., therefore, is the same as the cor-
responding classical form excepting the argument of the
Coulomb logarithm, where = appears. (By virtue of this fact
the connection formula (1.3) does not depend on the choice

of r in quantum mechanics as well as in classical mechanics.)
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The above-mentioned facts can be expressed in the formula

quantum classical
X = X, + (Xwave - xwave,n)

(17.1)

When X is a third or higher moment, X, is independent
of = and hence its quantum and classical expressions are
the same. The first and second moments are given by (4.2)

(4)

and (4.4) in which the cross section Q, should now be cal-

culated on the basis of
=j(|— cospa)ola\’ (ﬂ-I,Z), (1?.2)

in quantum mechanics. Here dor denotes the differential
éollision cross section,

Let q be the charge of the particle under consideration
and (qes/r)e-nr be the screened Coulomb potential due to a
field particle of type s. Let the reduced mass and the
relative velocity be ¢ and g, respectively.

The classical expressions (4.6) hold for ng/lqegl «1,
namely, when the de Broglie wavetlength is sufficiently
short in comparison with the collision radius.

First quantum corrections to the classical expressions

are calculated by Kiharalu, the result being
) f‘s 2:;'
U = )[ riger -3 - "1 (l<’s ) 1. LA L
2 es | * 2
0, = g (£25) [dn 201 R e S (17.3b)

2
up to the terms of order (hg/qeg) .
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In general, (17.2) has the form
Qh‘“ - f(;—— 05?60 ) | o)) amsinode,  (L=~1,2), (17.4)

in which f(8) is called the scattering amplitude. At the
high energy limit, where the classical collision radius is
much shorter than the de Broglie wave length or lqesuhg « 1

Born approximation

_ 2pges
'fd?)— 2/4’;’(1—-w56)+ 122 (17.5)

holds true and leads to

Q\:) _ Z-t’s) (ﬂ .L) , (17.68)

2

Q.2 - (845) ( ) (17.6b)

From (17.3) or from (17.6) follows the identity

20— @, = Sw cos 6)dr = 4n (f:,’ ), (17.7)

in which the gquantum effects vanish, as it should.

The case where two identical particles collide requires
special consideration. Thus, for the collision of two electrons,
(17.4) must be replaced by

2
an = 5 (1- ws’a)[#lf(&)+ f(vr»&)lz+ -;—lf(o)— f(,r_g)f]z,,,;..u(l?.S)

0
For Q,.% this integral from 0 to n/2 is equal to one half
of the integral from 0 to x. For Q. , however, the restrict-
ion of the integration to the range é < % comes from the

following convention. One of the two electrons which has

-56-




after the collision a positive velocity component in the

direction of the initial velocity of a test particle \is

named the same test particle.) The scattering amplitude

me?

f®) =

Tmig2(I—cos @) + T
in Born approximation leads to

ZIfer+ fm—o)|*+ & [for - f(r -6l

kS

g, 2e? /1t 3cos?p
- (m a)
Jd [(=cot0 ) + (2K /mg)* ]°

where -e and m are the charge and mass of an electron. Table

I gives the results.

Table I. Collision cross sections between electrons in Born

approximation
from (17.4) from (17.8)
-} 2 1-2 u) m 3
) (zemp) Qe 2L o NI ¥
~ @) i

~—

The case of Born approximation will be considered fur-

ther. The effect of orbital curvature in X, is completely

covered by the gquantum mechanical diffraction effect. Each

f
of X, ave 8nd Xwave,n , in which the orbital curvatures are
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neglected, should converge by itself. Then X, and Xwave,w
should be equal, and the quantity X is given by X, gye oOnly.
In conclusion, the rate of relaxation in Born approximation

can be evaluated either from (17.1) or by use of the relation

Born Born

X = Xuave _ (17.9)

Thus the process of unification is not necessary in the
Born approximation. In fact, several examples have been

treated along this linel9'2u.

18. Stopping power in a magnetic field
This last section is devoted to an exceptionally simple
example of relaxation in a strong magnetic field. Here a
strong magnetic field means a field in which the electron
gyrofrequency w, is comparable with the plasma frequency «,.
We namely calculate the stopping power of a plasma against
a charge which is moving fast in the direction parallel to
a magnetic field. We neglect the electron-ion mass ratio
compared with unity; then the ions do not contribute to the
stopping power (cf. (6.13)). Let the charge, mass and number
density of the plasma electron be denoted by -e, m and n,
respectively; let q, M and v denote the charge, mass and
velocity of the fast charge, respectively; and let p Dbe
the reduced mass, & = Mm/(M + m). The speed of the fast
charge is assumed to be considerably high in comparison with

the thermal velocity of the plasma electrons.
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We denote by X(w,) the stopping power or the energy
loss per unit time in a magnetic field. The quantity X(wy)

in the wave theory is of the form (6.8):

X (r) = _ELS ® oS (kv—w) Ao & 8.1)
wave W) = 271t oo k-SCk,ew) Kk ' (18.1

Under the assumption that the incident particle has a high
velocity, k~£(k,w)-k/k2 is given by

kK itk,w) b/ = (1 - “"1) osd + ()~ el )sinted (18.2)

w.\ w a_ le
where a is the angle between k and the magnetic field. 1In
the present case a is equal to the angle between k and v:

cos a = (k°v)/kv. On substituting (18.2) into (18.1) we ob-

tain

i 2
Xyare () = -%S

v
g . ot
k>0

| o Wi wt— W W Ry *

Here only the poles of the integrand contribute to the integral.
The path near the poles should be in such a way that each con-
tribution to X is always positive. (This comes from the fact
that the original dielectric permeability has no zero-p&int

in the upper half-plane of complex w ). The condition

that the denominator becomes zero at a point in the region

0 ¢ w'< kK°v2 of w? is

Woinl 2 T a
a2 h,‘ kY

L whi < f'r? < " (“’DJWH‘), or Mu(w.)uh1)< .& v ’

.
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which we name first and second domains of k, respectively.

Thus we obtain

2t wi? ak J _ et ak
v [L““{ ( Ayt ") * N ;o:pm/( : 'ﬁlv“) t

X wave (“n) =

a
W'

A T
B v [-&>w./v & éj" : ] (18.3)

The collision theory is not influenced by the magnetic

field (by virtue of (1.7)); the final result is therefore

1 ? 2 2
X)) = X(o) - S22t 222 (18.4)

2
W.

or, in the case of classical mechanics (Av « Igle)

0,2 v 2
X(ww) = L= I“B;§¢|)u}+w;] : (18.5)

The relation (18.4) was first derived by Akhiezer?0 in

Born approximation.
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APPENDIX
Definition of the dielectric permeability
For a material medium the Maxwell equations take the

form

W

div E = st (p+p,), Yot E = - —
| (1)

retB = T3S v i), dive = o
Here ¢, and 30 are the charge density and current density
of external sources of the field, while p and j are the
corresponding densities induced in the medium. For the
induced charge and current densities holds the continuity
equation

L

3 T divjzo_

(2)

The physical meaning of the electric field £ and the magnetic
field B is determined by the expression for the force ¥ act-

ing on a point test charge q moving in the medium with velocity

v

F=q(E+%-va), (3)

By virtue of the relation (2) we can eliminate p and }§

making use of the electric displacement which is defined by

D YE . (4)

the result being




28

J
div D = b4xp, , rot € =-<- &,
(5)
1 2D L .

The system of equations (5) must be supplemented by
a material equation giving an explicit expression for D.
For a stationary and homogeneous medium the material equation

has the form
f
D(r,t) = j dt'fdr’&(r-»gf_f')- E(+.t) (6)
~o

It is convenient to expand the electromagnetic field in a
Fourier integral, representing it as a set of plane monochro-
matic waves whose dependence on the coordinates and time is
given by the functions exp(ikr - iwot). For such waves the

relation (6) takes the form
Dik,w) = e(k,w) E(k,w), (7)
where the dielectric permeability tensor ¢ is given by

® Awt - ko
E(k,w)=5dtjdl~ e Eh,t) | (8)
o

The quantity e(k,w) is, in general, a complex tensor function
of the regl variables k and w. Taking account of the fact
that the function e(r,t) is real, we obtain from (8) the

relationship

e*(k,w) = e(-k, -w) (9)
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between € and its complex conjugate e*,

When we regard « as a complex variable, € is a one-
valued regular function in the upper half-plane of w,
Furthermore, the diagonal elements of € has no zeros in the

upper half—plane.31

e(k,w) in the absence of any strong magnetic field

The dielectric permeability of a stationary and homo-
geneous collision-free plasma composed of several types of
charged particles will be calculated. We denote by fg(v)
the velocity distribution function for the charged particles

of type s assuming that
fvffkv)dw =©o, for all s.
The Boltzmann equation fora distribtion function fs slightly

deviated from fso takes the form

bfs )fs Q ) £, - | °
_ST._\'W'.;;_"* —';:E'_):’L—-;<-f;—-f‘). (lo)

Here t> 0 is the effective collision time, for which the

1limit ©'> 0 will be taken later. Substituting
f, = £°+ f' (11)

and considering a monochromatic plane wave with the factor

exp(ik*r - iot) we have the linearized equation

'
A

\
my v T
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from which follows

B [eww c L] | (12)

From (4) or

o/

;E=a_§ ‘ |
€ 3% at"4"Zﬁ5Vﬁ Av

we. therefore obtain

e.? v )f”
E®uw) = | + Lim le—L[ s /ov

T o0 “w g Mg

av (13,

w—kwv+ i/

Using

im !
Z.,. X <+ t?

|
- f;( - irSW)

we obtain the imaginary part of & in the form (3.21) where
'fso are denoted by fs.

o
In the case where fs are Maxwellian,

° ' 3/2 N
f} () = Ng(mg/2xT) xp (= msv 727),

we have

m 3/2 2 .vl _ lz
kskw)k— R = —Lim :‘;%( ’) %, S“ ) expl M‘Y/T) AV

Ty w— kv + /2

in which

A= gmongel /T

In terms of

x.‘&’._mL% :_2:_&!21
s fr(zr): 2T 4"

this expression is transformed as follows
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R ~ R \yl
ketkw) K~ &2 ==% : [PJ"Lf———wW-+ana'c-&1J

Taking into account that the function

é‘r(x)i f __i-_’:_.d = f ""f[" (1‘-1—)()'_) at
) - % v t

satisfies the differential equation

fix) = - 2m — RxGwx),

"we finally obtain

k stkow)k— A= ;&j Fex ) (14)

where

1

X B
2 1 \ -X
ch)*/—,zxc"‘(’c‘dt.-, LR X e . (15)

When we regard x as a complex variable, the function

F(x) has the limiting form

Flx) m — —4— for Ixl » 1

Zx?
in the upper half-plane of x ; and hence
2 1 ?
Fex - grue, jwl , mg 4
'ﬁ, s) W Tom for _,-(}_T:‘_)! >> | (16)

in the upper half-plane of w. Another limiting form is
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F(x) =1 for x| « 1
and hence

RIFo) = B2 for & =¥y (17)

‘Fluctuation of the charge density

The relation (3.23) can be derived as follows. The

charge dens1ty p at a positlon r and time t is given by

Prt) = T T oS (k- (e)), (18)
s ) J

where r J(t) is the position at time t of jth particle of

type s. In terms of the Fourier transform

ei . .
Pihyew) = ; ey’ JZ; axp [~ kbt riwt ] At

the correlation function is calculated to be

PR w) PR, wi) >

(zv)' Ze Zﬂ<ur[ﬂ* () = kLK Bplt)+ (otiv tw't] > dedt’

terms concerning different particles vanishing. By use of
the time difference * = t' - t and the displacements

VgjT = Fgy(t') - r i(t) we rewrite the right side in the form

\
[;)‘a;ﬂszgyuff-d*ﬂ) JE)+ Uwrw)t + {(we~ ltvj)'c1>4-tdz*

Since particles of the same type are equivalent, we obtain,

by using the velocity distribution fs
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<Pl w) PK,w)>

= 62,'—!;; Ze ' SEtk)Sete) | So—ky)f (s )av, (19)

or the relation (3.23).

-67-




References

1.
2.
3.

11.
12.

13.
14,

R. Balescu: Phys. Fluids 3 (1960) 52;

A. Lenard: Ann. Phys. 10 (1960) 390. ,

R. L. Guernsey: Phys. Fluids 5 (1962) 322, Phys. Rev.
127 (1962) 1446,

T. Y. Wu and R. L. Rosenberg: Canad. J. Phys. 40 (1962) 463.

M. K. Sundaresan and T. Y. Wu: Canad. J. Phys. 40 (1962)
1499, 1537.

N. Rostoker and M. N. Rosenbluth: Phys. Fluids 3 (1960) 1.

A. Simon and E. G. Harris: ibid. 3 (1960) 245.

N. Rostoker: ibid. 3 (1960) 922.

V. P. Silin: Zh. eksper. teor. Fiz. 40 (1961) 1768,
[Sov. Phys. JETP 13 (1961) 1244].

V. P. Silin and L. M. Gorbunov: Dokl. Acad. Nauk SSSR
145 (1962) 1265,

R. R. Ramazashvili, A. A, Rukhadze and V. P. Silin:
Zh, eksper. teor. Fiz. 43 (1962) 1323.

J. Neufeld and R. H. Ritchie: Phys. Rev. 98 (1955) 1632.
J. Hubbard: Proc. Roy. Soc. A260 (1961) 114,

O. Aono: J. Phys. Soc. Japan 16 (1961) 2264.

C. Oberman, A. Ron and J. Dawson: Phys. Fluids 5 (1962)
1514,

J. Dawson and C. Oberman: ibid. 6 (1963) 394,

T. Kihara and O, Aono: J. Phys. Soc. Japan 18 (1963) 837.

T. Kihara, O. Aono and Y. Ttikawa: ibid. 18 (1963) 1043.
Y. Itikawa: ibid. 18 (1963) 1499,
T. Kihara: ibid. 19 (1964)

-68-




150
16.

17.
18.
19.

20.
21.

22.

23.

24,

25.

26.

27.

28,

29.
30.

31.

. Aono: ibid.
. Aono: ibid. 17 (1962) 853.
. Honda, 0. Aono and T. Kihara: ibid. 18 (1963) 256.

. Kihara: Ecole d'ete, Univ. Paris (1962) vol. 1, P69,

> 3 2 O O

. I. Larkin: 2h. Eks. Teor. Fiz. 37 (1959) 264,

[Sov. Phys. JETP 10 (1960) 186].

I. A. Akhiezer: ibid. 40 (1961) 954, (13 (1961) 667.].
0. V. Konstantinov and V. I. Perel: ibid 39 (1960) 861,
(12 (1961) 597].

V. L. Gurevich and Yu. A. Firsov: ibid. 41 (1961) 1151,
(14 (1962) 822.].

V. I. Perel and G. M, Eliashberg: ibid. 41 (1961) 886,
[14 (1962) 633].

D. F. DuBois, V. Gilinsky and M. G. Kivelson: Phys. Rev.
129 (1963) 2376.

J. Hubbard: Proc. Roy. Soc. A 261 (1961) 371.

D. E. Baldwin: Phys, Fluilds 5 (1962) 1523.

M. C. Wang and G. E. Uhlenbeck: Revs. Modern Phys. 17
(1945) 323,

T. Kihara: J. Phys. Soc. Japan 14 (1959) 402.

R. L. Liboff: Phys. Fluids 2 (1959) Lo,

G. Elwert: Z. Naturforsh. 3A (1948) 477.

P. A. G. Scheuer: Monthly Notice Roy. Astron. Soc.
120 (1960) 231.

L. D. Landau and E. M. Lifshitz: Electrodynamics of Continuous

Media (Pergamon Press, 1960) §62,

-69-




1 by




940 4dwksp 1S
—1 2/*




'O

(1=2)

0P e0/0 BY ) —+0/0 BY

— $0-




