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Abstract

Relaxation time and phonon mean free path have been obtained for an
electron—ion gas ( a Quantum plasma ) from the expression for the angle
of dielectric loss. The familiar formula for the dielectric constant
given by Nozieéres and Pines') has been extended so as to include the
life time effect of electronic levels. In this way a quantum mechanical
version of Pippard's semi—classical theory2> for the phonon mean free
paxh has been shown in & simple but convincing manner. The result can
be applied tO liquid metals and classical plasmas. The problem &t
finite temperatures is also considered. As anotherbapplibamion the

polarizability in the presence of a static magnetic field is obtained.



§ 1 Introduction

The theory of an electron—ion gas serves as & realistic model of
metals and plasmas as far as the long range phenomena are concerned.

This Theory affords us useful fundasmental information about the elementary
excitations and the relaXation processes. One of the most important
quantities is the phonon mean free path which determines the rate of
approach to thermal equilibrium, the absorption rate of ultra-—sonic wave
and the thermoelectricity in metals.

According to Pippard the phonon mean free pamh.Ap increases by a
factor ( upr y‘1 for long wave lengths compared with shorter wave lengths
such as A <Ay, Where Vp s A, T and Ag are the phonon frequency, the phonoxn
wave length, tThe electron relaxation time and the electron mean free
path, respectively. His derivation of the result depends upon a classical
reasoning and involves some intuitive assumptions. In this paper it will
shown trat the corresponding result can be derived from the recent theory
of the dielectric constant for electron gasss developed by Noziéres, Pines,
Schrieffer and others,5> by taking account of the lifé time of the single
particle excitation near the Fermi surface. The origins of the level
broadning may be perturbations due to collisions of electrons with ion
cores, impurities and others besides those by the screened potential. The
electrostatic effect such as the screening effect is already involved in
the dielectric forrmulation.

The elementary excitations are given as poles of the inverse dielectric
constant. If the ‘imaginary part of the dielectric constant is negligible
at the phonon freguency, the pnonon would become a pure elementary
excitation. Usually the imaginary part is not negligible, the phonon level
is broadened and tnhe life time effect appears, even if the electron levels
are sharp and their level breadths are negligible. As pointed out by'wentzéi
and the authors), the phonon behaves as if it were an unstable particle met

in the field thedry. In the classical theory of plasma the frequency of
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the plasme oscillation may be imaginary. This fact is known as the Landau
dampingé) From the classical point of view the rhoncon damping is considered
as a reflection of the Landau damping to the ionic oscillation.

In § 1 the half level width of the rhonon spectrum will be given in
terms of the angle of dielectric loss. 1In § 2 the 1life time of electronic
levels near the Fermi surface will be introduced and the Pippard formula
will be examined. In § 3 the magnitude of the life time will be estimated
for liquid metals. The mean free path and the relaxation time of the
phonon will be obtained. In § 4 the result will be extended tO the problem

at finite temperatures. In § 5 the problem of a static magnetic field

will be considered.

§ 1. Half level widths of phonons

The relaXgtion time oOr the level breadth of the phonon excitation is
obtained from the expression for the dielectric constant of the electron—

ion system which becomes

2
e(k,v)=¢eg(k,v) ——%%r , (1.1)

where e, is the electronic dielectric constant and w; is the ionic plasma
fregquency. Usually the expression depends on the wave number k and the
frequency v and is given by the fourier transform of the retarded longituei-—
nal dielectric constant. If the imaginary part of the dielectric
constant €, is negligible, the inverse dielectric constant would have &

pole at the phornon frequency. Near the phonon frequency we expand the

*

real part of the dielectric constant €, and put

51(k,y)=e;(k,u)(v—up) : (1.2)



Near the phonon fregquency Y the inverse dielectric ‘constant is exXpressed
by
1 e(x, vp )
= 2 2 2
e(k,v) §1(k,up) (v—vy) +&, (k,vp)

(1.3)

This expression has a peak at the phonon frequency and the half width I/2
is given by the derivative of ey and e,;//2=¢€,(k, v )4 (k. vp) -
The relaxation time is defined as the inverse Of the half level width.
As a solution of the dispersion equation ; € (k, v) =0, the phonon

frequency with the imaginary part is written as5)
yp=wp+11‘/2 . (1,4)'

For small wave numbers, the real part wp approaches to the well-known value
X

( zm/5M)Avfk, where z,M and Vv, are the ionic charge, the ionic mass

and the Fermi velocity of electron, respsctively. The derivative 81' (k.

Yy ) can be expressed in terms of the real part of the electronic dielectric

constant €5 (k, up) from (1.1) ; e{ (x, up) = u:p/251e(k, ¥) . The imaginary

part is also replaced by the electronic value e? (l‘k, v ) , the value in the

absence of the ionic oscillation. The explicit form of these quantities
will be given in the next section. Introducing the angle of dielectric

loss ; #(k,v) =arctan ( eg/e?) , the level breadth may be written as
I"'=v

ptan,@(k,y) . (1.5)

§ 2. Hlectronic dielectric constant.

i ‘ 7
The free—electron polarizability 4 ma ( k, v) is given by )



e, K . X
4re’ £ (55) — £ (K—)

Py
¥ K

dra(k,v) =

o (2.1)
+ i

A(v—vy i

Here ¢ is an infinitesimal positive quantity and r(X) is the distribution
function of an electron in state K, energy B(K)=kn’K’,/2m ; at thermal

equilibrium one has the familiar Fermi-—Dirac result

f(K)=1/(exp(E(K)—u)/sT+1] (2.2)
where px is the chemical potential and « is the Boltzmann constant. We
have also introduced one—electron excitaion frequency‘uK: K=dE(KF+%§)-—
IB(KL—%;) . The electronic dielectric constant becomes

eg(k,v)=eF (k,v)+iej(k,v)=1+4nma(k,v) (2.3)

We assume that the electronic states near the Fermi surface have a common
constant breadth denoted by ry , and consider that the energy of an electron
( outside the Fermi sphere ) has an positive imaginary part and the energy

Oof & hole has a negative imaginery part. In this case the electron

polarizability can be written as

4%92 1

4ra(k,v)=

2

k E(K+—12C—) < p vHyg ptir

B(K—-%) > 4

1

V M

E(K+“12<')
k
E(K-—7) < u

(2.4)
V=g +1iy

in the low temperature limit. After a simple calculation we obtain the

following result



47te2

2N (0) +- N(O)ln
X { (©) 2y, (©) (v+vg )2 +77?

2 2
y—y +7r
ef(k,v)=1+ ( o)

_LN(o)(arotan(uo— v/ r)+erctan (v, + v,/7)

Yo
(2.5)
r (1/O~u)2+r2 v [ Yo —y (vo+v)
es(k,v) = in ;— +-—{arctan (—2—)+arctan ————
2v, (vo+v)  +7r Vo | r r
(2.6)

where N(0) is the usual level density and v, is the maximum excitation

O

frequency v.k. Hereafter we are only interested in the low frequency

region since the phonon frequency is much smaller than Vo

If the level breadth is infinitesimal we are led to the previous result.

In this case, in the small wave number limit, we get

2 47T2 eZ

N(0), &f= —— N(0) (¥ v ),
k

8mre
ef =1+

2 = arctan (ny,/ 2y, ), 1’=77u2/2uo . (2.7)

If the breadth of the electronic states is nuch larger than the maximum
excitation energy ¥ v, ; r >V, , Or in other words the wave number is

—1
smaller than the inverse electron mean free path ; A >k we find

e
o o ity 5= w0 ()
€7 = N() (v 1), €;=——N(C) (v r°)v
s © 2 3K? ©
g =arctan (2v,/7), I'=2°/7 , (2.8)

Using the electron relxation time 7=2/, the phonon level breadth

becomes as simply as y? T, Wwhich is smaller than the value given in (2.7)
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by a factor 2 v, T/, When we define the phonon mean free path by s/71°,
using the sound velocity s, we find the mean free path increases by a

factor m,/2v,t and

— = () K (2.9)

at the phonon frequency up =sk. This result is slightly larger than

Pippard's classical value by a factor 5,4 . Froelich's theory of dielectrics

gives also the same result as (2.9) in this limit.

§ 3. Life time due to collisions with ion cores.

As pointed out by Ziman and others,g) the scattering of electrons due
TO ion cores is important in describing the relaxation phenomena in liquid
metals, especially in polyvalent metals. Here we would simplify the
problem so that the electrons are scattered by an average potential of ion
cores which is obtained from the resisitivity oOf a metal at its melting
point. The scattering due 1o the screened potential is important for
monovalent metals, especially for Na and Li. The scattering by this
potential exhausts almost the whole transition probability. It can be -
shown that the matriX element Of this scattering is exactly the same as
that for the electron—phonon scattering. The relaxation time of phonons
due to this scattering becomes twice the inverses of " given in (2.7). By
this fact, it is implied that this bype of scattering process 1is an
electrostatic one and is already included in our formulation. For polyvalent
metals, on the other hand, this effect plays the minor role and usually
negligible. According to Ziman, the contribution from this scattering is
72 for zn, 1 2% for Hg, 3% for Ga, 4% for In, 22 for Sn and 12 for PD.

The transition probability Wk for the momentum transfer nk is given

by the ion—core potential Uy and the x—ray distribution function 8y



Wi, =—i—n—Uf<ak N(0) N, (3.1)

where N is the total number of ions and 2N(OL4Q==Sz//25f.;sf==nw§7/2==p .
Ziman obtained the resisitvity using this expression and estimated the
magnitude of the average potential from the experimental values obtained

for 1liquid metals. We subtract the contribution from the screened potential
and find the value for the average ion—core potential. The values for

W which may be identified to the level breadth are listed in Table. 1

n Hg Ga In S n Pb Bi
Z 2 2 3 3 4 4 5
kam“f’ 4.3 5.6 3.9 2.6 5.1 9.1 1.6 Table. 1

These values are as large as about hundred times of the values for Na and

Ce.

considering these large level width we are allowed to apply the expressions
given in (2.8). Using Froelich's theory of dielectrics we can derive
formally the same expression for the level breadth, if we could indentify
the relaxation time appearing in Froelich's theory to the inverse of the
nhalf width Of the electron state. Such an identification, however, oOpens
to many questions so that it seems not to be fully justified at present.
In this respect our formuilation is more reasonable and pertinent to our

problem tO present a quantum mechanical reformulation of Pippard's theory.

§ 4. A plasma with high electron temperature.

As a limitting case, we consider a high temperature plasme.
At finite temperatures, the sound waves are well defined only when the
effective positive charge temperature T* is small compared to that for
electrons T ; T >> T+. This is not the case of complete thermal equili —
brium. In this case we can obtain €,(k, v) from (2.1) using the Boltzmam

distribation function for f(X). For over all range of frequency v, we find
— 8 —



2

-n(m/ /1) sinh (kvf) , (4.1)

o 4me
e, (k,v) =

kS

where we have put f(K) =nexp (—(8E(K)) and n is the number density Of
electrons. With the aide of the Cauchy relation, the real part is found

by

2vieg(k,v')

e?(k,u)=f NERE: dy!
47 _
= = ng (p—0) . (4.2)

In this limit the phonon level breadth approaches to
1.,:=2(7Z'mZ/8M)% )Jp , ypz(ZICT/M‘)%k' (4.3)

whicCh is tanteamount to the classical result derived from the Vliasov

equation and compared tO the expression for the Landau damping

2
Ty af (v, k)
- _°© p y

n kx awv P

: (4.4)

| 1
where v, is the electron plasma frequency ; ( 4rne® /m)? and v is the

electron velocity ; v=xK, /m. The phonon half level width may be
regarded as the rate of growing up Of sound waves in a plasma. SuCh
excitations of sound waves Or ionic oscillations are considered as a .
origin of instabilities occuring in & hot plasma which is known as the
two—stream instability. The growing up Of Somd waves in the presence

of a static magnetic field is an interesting problem and will be discussed

briefly in the next section.



§ 5. External constant magnetic field

It can be shown that the polarizability for & constant magnetic field

BO parallel to the z—aXxis iS given by

A 1 1 3 )
drna = P — P..(€)5(Q) -
xZm,n h+E, Q__q—En Q-:LS ny +E, Q-Em M—ia mn &
p’ Q, 9, y » ’

(5.1)

Here £,(Q) =T (B o) By o= (n+12 )A v+ % Q7 /2m and vy is the Lamor
frequency ; eB,,/m { megnetic unit ).  Pp,(¢) means the square of the

matrix element Of the phase factor ; exp (ik.r ) between the Landau states

specified by the quantum numbers n, P, Q and m, P—1, §—Q where 1 and q
are the y — and z — component of the wave vector k, respectively and

€ =}1(124-q2)//2nn@r The analytical expression for By, (e) will be given
in the Appendix. Here we restrict ourselves to the propagation along the
megnetic field, the z axis. The real and imaginary part of the

polarizability turn out to be

2
4re myy

brra, = Z1,(a) . (5.2)
! q2 (27(?1)2 n

2 2
4 re m UB

5.3)
dra, = ! (
z q2 47n’ !
K 1 1
n
a(@) =S 7 ) (@) (5.4)
v W on Y YT

where A is the difference of A, and A_ which are defined ny

1q?

Ai=§fn(Q:t)' Qi='§!— (yi_é—l’r—;) ’ (5'5) ’
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4 1
and K, = (2ny452)2 Elt—-(rl+—%-)IiuB ]2 . The q%?ntities Aq_ become

inwgaewmumemenothwga'mm1GZ%- ;éﬁg——ﬁiémﬁzjlnjpw
O

Temperature limit. In terms of these quantities the level breadth of the
phonon spectrum becomes

a T v

2
r=v,—~=— 2 (5.6)

a; ha g(aq)
In low temperature limit the quantity g(q) =XI,(q) is a periodic function
with respect to the inverse of the frequenoy'uB as shown by Quinn and

RodriguezQ).
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Appendix

The gquantity appeared in (5.1) ; P,,(e) is expressed by the

Charlier polynomials

Byy(e) =e~fc(m,n,¢)? e mHn/min: . (A.1)

The Charlier polynomials are related to the associated Lagueeres polynomials

by

n—m

C(m,n,e)=C(n,m,s)=(—-e)—mmsz (=€) .
It is readily seen that
€)=1,2nP =n + , A.2
2 Fyp(€) Zmp (e)=n+e (A.2)

which confirms the sum rule for the dielectric constant and we obtain
the classical plasma frequency in smell wave number limit. From the

equation (5.1), in the high frequency limit, we get

n2q2
PP —2(m—n Yayg ———
T+4ne=——>23 X Pon(e) fp(Q)+1=0 (A.3)
kK"n m hzyz
P,Qq

Using (A.2) and the definition of ¢ we are led to the exact classical

plasma frequency :

47rne2

1T——— =0. (A.4)
my



