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In recent years, partiy because of the attempts to achieve thermo—
nuclear fusion in the laboratory, there have been extensive and
intensive investigations on various aspects of the physics of plasmas.
Underlying many of these investigations is the study of the basic
equation governing the behavior of a plasma, especially its approach
to equilibrium. Thé corresponding problem in the case of the neutral
gases 1is a very old one. To appreciate the nature of the problem
and the difficulties of the theory of plasme, let us briefly review

the more familiar case of the neutral gases.

1. Kinetic theory of neutral gases: theory of Boltzmann

In dealing with a gas consisting of N particles, we are only
interested in the macroscopic properties of the gas, and not in the
detailed dynamical motions of the particles. To give & description
of the macroscoplc behavior of the gas, we introduce the concept of
probability and the method of statistical mechanics. Thus we
intrcduce the concept of an ensemble of systems and the distribution
function D (ql Qo Byt Py oo t) of the ensemble. . Then on the
basls of the equations of motion of classical dynamics, one obtains

for the function D the Liouville equation
——={H, D) (1)

Where H is the Hamiltonian of the system of ( interacting) particles
and { , | the Poisson bracket expression. We make the basis
assumption that the average value of any property, say Q, of the gas

is given by the average

S Al dpl-‘--de- (2)



In principle, if (1) has been soived as an initial value problem, then
one can determine the whole history of the evolution of quantity Q in
time from (2).

The equation (l) is, hnowever, reversible in the direction of time,
and the first question is how the observed irreversible processes
( such as diffusion, etc. ) can be understood on the basis of a
reversible theory. The answer to this guestion was supplied by
Boltzmann and by Gibbs. The theory is well known. We wish to
emphasize here that the very basic concept of "course—graining" must
be introduced. By this we mean the necessity of assuming a finite
( not infinitesimal) volume element & in the phase space — the cell.
This finite size 1s connected only with the macroscopic, instead of
the microscopic, description of the gas, and 1is unrelated to the
uncertainty principle of quantum mechanics.
It can then be shown that the state of thermodynamical equilibrium
corresponds to the overwhelmingly most probable distribution of the
system in the phase space. We now make the only assumption that
in the macroscopic view, all ( dynamical ) states of the system inside
this finite cell A are nondistinguishable ( or equally probable ),
then, starting with a gas from any state within A at qgu--qﬁ, p3~--p§
‘E=Tp, in the course of time, the phase points within A will be
distributed, with the same volume, over almost all the avallable
phase space — the energy shell. Since an overwhelmingly large
portion of this energy shell corresponds to the state of thermodynamical
equilibrium, we can understand why a gas, starting from any arbitrary
state, always approaches equilibrium. This 1is the so—called the
phase—mixing theory of Gibbs. Note that this conclusion is based
on the probability argument, which is used for the macroscoplc view
of the gas.

The above theory, while perfectly sound, is not convenient for
the purpose of applicaticn to actual calculations. The Liouville
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equation in é N — dimensicns i1s too complicated. It deals with the
dynamical motlons of the gas particles and presumes a knowledge which
we do not have (i.e., we cannot specify the initial values of the
coordinates and moments anyway) and which is really of no interest
to us in the macroscoplic view. Thus it is most desirable to have &
theory of non—equilibrium gases which has the following features: (1)
It is considerably simplar than the Liouville equation in the 6éN-—
dimensional phase space, and (2) It is explicitly irreversible such
tThat it describes the observed macroscoplc irreversible approach of
the gas to equilibrium.

To achleve these, it 18 necessary To introduce assumptlons.
By a great intultion and on plausiblility arguments, Boltzmann formulated

the wellknown kinetic equation

or oF K o6F 0F
Ty g 2 (2 , (3)
0t or m oV ot collision
oF ) ) iy / /
(—) =fJJ dvy 0ab d@‘v~—v1l[F(r,v ,TF(r, vy, B

0T collis ion
”“F(I‘,V,t)F(I‘,V1,t>], (4)

where b 1s the lmpact parameter and bdb the differential cross—section
of the twoLparticle collision. We shall here only emphasize the
following points in connection with the Boltzmann egquation: (i) The
Boltzmann equation presupposes that the behavior of the N—particle
system can be sufficiently described in terms of the one—particle
distribution function. (ii) The equation is irreversible and is not
to be used when direction of the time t is reversed. (i) A gas
described by (3) and (4) satisfies the H—theorem dH/ /dt < o. This
means that the Boltzmann equation describes an irreversible monotonic

approach to equilibrium- (iv) Consider the time—evolution of the gas




from any arvbitrary initial state. In a time of the order of the
mean—free—time t, (L, = A0, where A is the mean—free—path and u the
mean Speed of the gas particles ), the gas will have reached a state
of local equilibrium, 1. e., a stage such that the average values

defined by

n(r,t)=JF(r,p,t)dyp ,

iy
nu(r,t)=J‘ﬁF(r,p,t)dp , (5)

3 pz
—nf(r,t)=f — F(r,p,t)dp ,
2 2m

can be identified with the local particle density, the mean flow
veloclity and the local temperature. One can derive from the Boltzmann
equation the equations of continuity, momentum and energy transport

for n,u,0, namely,

on .
— 4+ aiv (nu)=o0 ,
0T
Du 1 1 8
o .
K = — P 6
DT m & mn 0rg aff (e)
Do

2
s D = D == 5
Dt+ 5n(d1vJ+PaB aﬁ) o

where P is the stress tensor, J the energy flux
Paﬁ=mf(v-—u)a(v~u)ﬁl?dp , (7)

1
Iy =~—2—m J*(v~u)2(v——u)a F dp ,

and ————=~—+UcA ,



Equations (6) are the nydrodynamical equations. The second equation

is in fact the Navier—Stokes equation of motion which contains the
emplirical cOncept of Viscoslity in the expression for Paﬁ' The third
equation contains the phenomenclogical equaticon of conduction of heat.
The above theory furnishes not only the theoretlcal derivation of

These transport equations, but also & thecretical expression for the
transport coefficients in terms of the law of intermolecular interactions
through the differential crosssection bdb in the Boltzmann collision
integral (4). (V) The Boltzmenn equation (3, 4) and the hydrodynamical
eguations (é) have been sclved Dy Chapmen and Enskog by assuming that

in this hydrodynamical stage of the approach to equilibrium, the
distribution function F(r,p,t) depends on time only through a

functional dependence on the macroscopic quantities n, v and 6 of (5),

F(r,p,t) » F(r,p|n,u,0) (8)

This assumption has the following ccnseguence: one does no longer
gsolve the Boltzmann equaticn as an initial value problem, i, e., it 1s
no longer possible To assign arbitrary initial values To F (r,p,t).
One can only prescribe the initial values of n, u, 0, and then F is
already completely determined. This situatlion was noted early by D.
Hilbert. The basis for the validity of the assumption (8) is that
there exist in a gas of ordinary densities charscteristic Time
constants, the

To above, To ==L/”us, and

T, < T (9)

i . 1 : s
whnere L, is length such thatiy(V@f) L =1, v being & macroscopic
property such as temperature, ug 15 the velocity of sound, Ug = U
The scale of Time in the "kinetic stage" of the time—development is

a much faster one Tthan that in the hydrodynamical stege. The

assumption (8) is thus a change of the Time scale from that of F in
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the kinetic stage To that of n, u, 0 in the‘hydrodynamical stage -

The Boltzmann equation has the satisfectory features briefly
sumarized sbove, and has been very successful in dealing with the
Ttransfexr problems- But from & more basic point of view, one
remembers the following limitations: (i) The starting point of the
theory, namely, that an N—particle system can be sufficiently well
described in terms of a one—particle function F, is heuristic.

(ii) The collision integral (4) is very plausible, but is based on the
assumptions (a) of binary collisions alone and (f3) of the absence of
correlations between the coordinates and velocities of the colliding
particles. The assumption (a) has the following conseguence: the
Theory falls to give any density dependence for the transport
coefficients as one would expect by analogy with the virial expansions
of the equilibrium prcperties of a gas such as the eguation of state.
The reason is of course the neglect of ternary and higher order
collisions which become important for high densities. The specific
nature of the assumptions (a) and () above is revealed most clearly
when one tries tTo apply tThe Boltzmann equation to an ionized gas

a plasma. When the differential cross section bdb in (4) is
caiculated for the Coulomb law, the collision integral (4) diverges
for large values of b corrcsponding to distant collisions.

We shall come back to this difficulty below.

It is hence of the greatest interest TO have otlier theories
describing the behavior of a gas which are based on more general

assumptions than the Stosszahlansatz (4) of Boltzmann.

- The Master Equation for Irreversible Processes
We have emphasized before that in order Te have an explicitly
irreversible theory, 1.e., one having a definite direction of time

such as in the Boltzmann equation, 1T 1S necessary to introduce some




assumptions in one form or another. There are of course many

different ways by which irreversibility can be introduced other than

the Stosszahlansatz (4). Just as an example, let us consider the
following way of obtaining the Master Eguation. Let W, k= 1,200

» be the probabiiity of & system being found in state Xk at time T,
and let W/ be that in state n &t time T+4T, AT > o.

Then >w, =1, sw,=1. (10)

Let us assume that the W, at T+4tT are related to the W, at T by the

relaetion

/ -
Wy, = Apye W (11)

>
k

where A is the transition probablility, in time interval &1, of tThe

state kK at t passing To Wé at T+ALt. Then the A have the properties
YA =1, (12)
n
o< Ay < T, (13)

From (11) and using (12), one readily obtains the so—called Master
Equation

oW

no_. >
AT I’s

—~

e W = Ay W) (14)

where a,, 1s The Transition probability k — n per unit time

Bk T Ay /AT

We shall now emphasize that the relation (11) and the eguation
(14) are not reversible in time in the following senge.

Let us assume that the matrix A, 1s non—singular so that A
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exist, 1i.e.,
AT A=AAN =1 , (15)

and hence, algebraically, the inverse of (11) is
st !
W, =2 A, W, - (16)

But from (15) and (12), it can easily be seen that the Ai% are neither
all positive, nor all less than 1. Thus the Aig do not have the
meaning of transition probabilities. The Master Equation (14), which
has the same from as that for Markovian processes, is irreversible in
Tims. In fact, if we define

S(t) =3 W, In W, , S(ttat)=—3 W, In W, ,
n n

then it can be shown by means of an inequality for any positive

numbers a and b

a/b _
bJ1 Inxdx =2a (In a — 1n b)+b—-a > o0

0

due to Gibbs, that
/ —
S—-8>o0, (17)

which can be interpreted as the law of entropy-

The Master Equation (14) is a very general irreversible equation.
The Boltzmann equation (3,4) may be regarded as a special case of it
if we identify W, with F (r, vy, 1) and &, with ff bdb d, lvn - vkl
F(r,v,t) dv. The apparent simplicity of (14) on account of
linearity is deceptive, since the transition probabilities &y MY
themselves be functions of the Wé, as 1in the case of the Boltzmann

equation. The generality of (14), i.e., the as yet unspecified



nature of the a,., makes it not directly useful for practical
calculations without additional knowledge or assumptions about the
I We shall hence pass on to & theory which is less general

than (14) but more general than the Boltzmann eguation.

.- Theory of Bogoliubov: Neutral Gases.
The starting point is the Liouvillie equation. From this

equation, one cbtains for the functions

FC; (q_)]....qms’ p1....ps, t) :VS J.J‘D (q1.qN, p1....p,n’ t)

Qg 170Gy GPgyq o APy (18)

the Bogoliubov-Born—Green—Kirkwood—Yvon system.of equations

0r,

0T

N—s
= {Hg» Fglt——Jf dgyq gy

P ¢ (|as=9g51]) » Fopr] (19)

i=1

where V 1s the total volume of the gas, ¢ the interparticle
interaction, Hg the Hamiltonlan of the s — particle subsystem, |
the Poisson bracket expression. The system (19) is completely
equivalent to the Liouvilie egquation and is hence reversible in time.
One basic idea of Bogoliubov 1s the recognition of another widely
different characteristic time To (in additional to the mean—free—time
Ty = A/u and the macroscopic time Ty mentioned before), namely, the
time of a collision 7, = ro//u, where r, is the range of interaction.
From the presence of ¢ ( Iqi-wlj) in Hg for § > 2 in (19), it is seen
that for S > 2, Fy changes rapidly, 1n a time interval of order
To = 10172 second, while Fy does not have these rapid variations.
Since in the macroscopic view we are not concerned with such rapid

variations, we shall make &g coarse—graining in time by changing the
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time scale for Fg, from the fine-grained time t to a time scale in
which the slowly varying F, has made some changes. This is
mathematically expressed by the following " functional Ansatz" that

the time—dependence of FS be expressed through a rfunctional dependence

on Fl

FS(ql“”q-S’ pl....ps, ‘C) —_ Fs(ql....qs’ pl....ps F1) (20)

A second basic idea of Bogoliubov is contained in the "initial
condition" which is expressed as follows. Let ﬁ? be the canonical
transformation operator which transforms the dynamical state of the
subsystem of s particles at Time T To The state at the time t+7 in

accordance with the dynamical equations of motion for the Hamiltonian

Hgy of the subsystem. The initial condition is then
. 49 5
i /f_T Fglayagr Py Py t)f_lgl Fq(a3.05) (21)

which postulates that when the system 1s traced backward in time for
an interval T much longer than 7, ( so that the particles are farther
apart than their range of interactions ), the s particles become
uncorrelated. Note that this condition (20) cannot be proved; it
is in fact a definition of the direction of time; tThe "past" is that
direction in which the correlation vanishes. This is of course an
unphysical state, and we do not 1lock at the gas in that direction.
The theory describes only the evolution of the system in the direction
of time in which the gas molecules are correlated by virtue of their
interactions.

With this initial condition, the equations (19) become
irreversible, 1in the sense of the Boltzmann eguation. On account
of the Ansatz (20), the equations (19) for S > 2 become functional

differential equations of ¥, and the equation for F, is
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6:511 6F1 6F1 1 I / /
— + Ve + Ke——= ——ff drdp {¢(Ir—rl),
ot or op Vo !

A / .
Folry Ty Dy D

i)t | (22)

where v, = V/N 1is the volume per particle.
The equation(22) contains Fy, and the equation for F, contains

Fz, etc. Bogoliubov makes the virial or density expansions

., 1\n
FS = Z (_._.__) F(‘g’) ( q’l....qs’ pl....ps F1 ) ,
n VO
oF B 1T n
—=>(—)" 4, (a, v |7y) - (23)
0T n VO

The system of equations (19) and (22), together with The Anshtze (20)
and (21), can then be solved in successive orders in (1/v,)-

We shall not attempt any further discussions except to make the
following summarizing remarks.

(i) Bogoiiubov has shown that up to the First order in 1/v,, The
theory yields for the kinetic equation (22) a generalized Boltzmann
equation which reduces to the Boltzmann equation (3,4) if one makes
the further simplifying assumption that ¥4, can be regarded as
homogeneous within the range r, of the intermolecular interactions.

(i) A transition from the kinetic stage, described by (22), to
the hydrodynamical stage can be made in a way analogous to that in the
case of the Boltzmann equation. The theory has been worked out
by Choh and Uhlenbeck to the second order in 1/v, s0 that the effect
of "3-pody collisicns" is included. The transport coefficients
for momentum and heat are then density dependent, in contrast to the
result from the Boltzmann equation.

Thus we may regard the Bogoliubov theory as a more general
theory than Boltzmann's. It gives the theoretical basis for working
with Fq as in Boltzmann's equation, and allows for the possibility of
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including higher order correlations ( "n—typle collisions" ) for gases
of high densities, although numerical calculation cannot be carried

out on account of the difficult dynamical problem of many bodies.

IV. Kinetic Theory of Plasmas: Basic Consideration

For a fully ionized gas, or & plasma, 1T would seem as if the
theories that have been developed for neutral gases could be taken
over with the provision that the intermolecular interactions be
replaced by the Coulomb intersctions. But 1f we apply the Boltzmann
equation to a plasma with the differential cross—section bdb for the
Coulomb law, it 1s found that the collislion integral (4) diverges for
large values of the impact parameter bD. This 1s because the total
scattering cross—section for Coulomb interactions is infinite.

This long range nature of the Coulomb interaction in plasmas
constitutes a rather basic difference from neutral gases. On account
of the long range, it 18 no longer meaningful to conslder only binary
collisions; also the effect of two— and many— particle correlations
can no longer be neglected as in Boltzmann's equation. To include
all orders of collisions, 1t is not sufficient to stop at the first,
or the second, order in the density 1/V, in the expansion (23) or
Bogoliubov. Many theories have been suggested [for plasmas.

We shell discuss briefly the most familiar ones and the more recent
attempts.

(A) Boltzmann equation with a "cutoff"

The most obvious and natural attempt at a kinetic equation of
plasmas is to modify tThe Boltzmann egquation so as to get rid of the
divergence difficulty. One argues as follows. In the integration
over the impact parameter b in the collision integral (4), one can
divide the range of b into two regions, namely, & region [ of small
distances smaller than the mean distance 3/ v between particles, and
a region i greater tThan i/;T In region 1, two colliding particles
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do not see other particles between them and the scattering is

governed by the Coulomb lew. In region 1, especially t>}>-i[;: a
given particle may be regaorded elither as being acted on simultaneocusly,
independently and with random relative velocities, by a large number
of distant particles, or as undergoing & rapid series of random,
small—angle scatterings due to collisions with many particles at

large distances.

Only for the binary collisions in region [, one employs the
Stosszahlansatz (4), so that one integrates (4) to an upper limit Dy
There is of course no sharply defined value for by, but 1t is very
plausible to assume for b, the Debye%H&cKel length

vl 1,72
—) 7/

rm =
4%@2

(24)
This procedure of cutting off the range of integration in (4) can

be made mathematically more convenient by replacing the Coulomb law

in calculating bdb in (4) by the Debye—Huckel screened potential

2
24 zze

¢ (ry2) »———

exp (—r,,/rp) - (25)
T2

The total scattering cross—section becomes then finite.

A kinetic equation obtalned in ﬁhiS'way is irreversible and has
no divergence from distant collisions.: But we may emphasize that
the procedure elther of cutting off the integration at Iy or of
replacing the Coulomb by the Debye—Huckeli potential cannot be regarded
so completely satisfying from & basic point of view. such a theory
does not contain within itself the statistical feature represented by
(25) but has to bring it into the theory from a separate theory, namely,
that of Debye—Huckel. Also the procedure of using the screened
potential (25) cannot be readily identified with a systematic

apporoximation method based on an expansion in powers of a parameter




of smallness.

(B) Fokker—Planck egquation with & cutoff

On the same argument above of regarding a particle as beling
subject to a large number of independent, smalil angle scattering, one
may employ the theory of stochastic processes 1n treating the rate of
change of momentum of & particle 1in going through a medium.
The theory leads to the well—known Fokker—Planck eguation in which
the effect of the random collisicns is represented by a diffusion
term in momentum space. To obrain the "Fokker—Planck" kinetic
equation usually used in the literature, one regards the particle,
whose distribution function F, is being considered, as moving in a
medium described by an equilibrium distribution, thereby leading to
a2 linear theory. It is necessary also To remove The divergence at
large impact parameters by the same procedure as described in the
preceeding section.

In the literature, & Fokker—Planck kinetic equation with a

cutoff has been used very often both in general discussions and in

actual calculations. We shall not go further into this theory,
but shall make the following remarks. (i) The theory is based on
the theory of stochastic processes. It must be accepted as a

theory on its own, and not as the most general theory.

(ii) From the way the divergence is avoided, it is seen that the
theory is subject to the same criticism mentioned at the end of the
preceding section on the Boltzmann equation with a cutoffl.

(ii) It has been found that the kinetic equations That have been
obtained on other, more general assumptions ( see the following
sections ) do not reduce To the usual Fokker—Planck equation unless
an additional assumptions and approximations are introduced. This
makes 1t clear that the Fokker—Planck type kinetic equation for
plasma s a plausible theory, but not one to which other formulations
can all be reduced.
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(c) viesov equation

Ancother kinetic eguation that has been used and discussed a great
deal is the Vlasov equation. There are many ways of arriving at this
equation which for a plasma consisting of particles of Type o (za e,

m, for the charge and mass) 1s

6F+1p\7F~z o2 X ° s ! F(r ,p .0 ,t)ar dp ). (26)
— P = ——'\zZ g ,—f —FPBlr ,O0 ,T ] .
R Y T ap & 9 5y || ¥ P

oF
The righthand side 1s the scalar product of — and the force on the

0p
particle z e due To all the other particles of the plasmé. This
equation is reversible. That 1t dcees not describe the irreversible
approach to thermodynamic equilibrium can be seen from the following

considerstions. (i) For a spatially homogeneous plasma, VE = o, and

the righthand side of (26) vanishes on account of symmetry (and also

N / ) / / .
of neutrality X 2zy e S P (r ,p,0 ,t) dp = charge deusity = o.)
o
or ) ) A »
Hence—— = o0, 1i.e., any velocity distribution I remains stationary
0T
and does not approach the Maxwellian distribution. (i) From (26)

one obtalns the equation of contlinuity

*f—-f de'+~l—vhf PFAD = 0.
ov m

It follows that 1f any instant T the F 1s isotropic in velocity, then
the density fFAp remains constant in time and does not approach a
uniform distribution. (i) If F is assumed To vanish as r, p — e,
Then one finds that the H function of Boltzmann is & constant.

But this cannot mean thermodynamic egquilibrium since T is an arbitrary
state.

If we linearize the Viasov equation (26) by writing
F =T, (p%) + £ (rpu), | L] < (27)

where [ 1s the deviation from the equilibrium.distribution,Fo(p2), we
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can solve the equation

or 1 2 0F, 8 1
— +—— PV =z, e (2250 — S
8T my D o or ~ |r-r|
e(7,9 ,d ,v) ar ap ) (28)

by expanding the Fourler component f in a series of orthogonal

functions of the momentum

2

1Y P
f(x,p,t)=3 f (k,t) exp (—— ) H, ( . (29)
(1,p,0) > Iy ) 2m@) - ,————Zme)
To obtain the coefficients fn(iK,t) we set
£ (%,10) = ag(k) eT. (30)

The A are given by the eigenvalues of the matrix formed by the
coefficients of ay(k) in the system of linear equations from (28).
The results of such a study can be summarized as follows. (i) for
any finite number of terms in (2?), the eigenvalues A are all pure
imaginary. (i) for a plasma consisting of electrons of mass w and

positive ions of mass M, an n—term expansion (29) leads to 2n

frequenciles wg =-—Xj such that one frequency is given by
m 30 4
w? = (1 +—) (w2 — k2)+ o(x*/u), (31)
M P m B
4 e’ 1,2
w, = ( ) = eleotron plasma frequency,
b mv,
. . %0,
n—1 Ffrequencies of order — k-, (32)
m
. 30
and n frequencies of order ~?E—vk . (33)

The last 2n—1 frequencies are those of streaming and are not dependent
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on the Coulomb interactions.

The general solution of fn(k,t) 1s then the superposition of all

the "normal modes"
fn(k,t)==42 d%@ &é%@ elWity complex conjugate,

where the constants d%£)are to be determined from the initial
condition on f(k,p,t)- Thus in principle one has solved the
linearized Vlasov equation as an initial value problem for F.

The Fourier component of the particle density variations is now

on(k,tv)=f £(k,p,t) dp
=2 d%b égk@ g WIT 4 cowplex conjugate, (34)

which is a "wave packet". Whether the wave packet shows a damping
( Landau damping) or a growth in time will depend on the initial
conditions ( 1,e., on the dj&j)- This is essentially the result of
the work of Van Kampen in 1955; but the method indicated above is
more elementary.

As we have emphasized above, the Vliasov equation does not describe
any irreversibie approach to equilibrium. for the discussion,
however, of phenomena having characteristic times very much shorter
than the genulne relaxation tTime (1. e., the damping time due to the
collision, or correlation, effects which are not included in the
Vlasov equation), it is perhaps a sufficlent approximation To use
The Vliasov equation. Otherwise, 1T 18 necessary 1o use a Kinetlic
equation that takes into account Tthe collision, or correlation,
effect. For this purpose, we have the Boltzmann equation and the
Fokker—Planck equation, with the cutoff, already discussed in
Sections (A) and (B) above. But it 1s desirable 1o 1look for more
genersl theories.




V. Kinetic BEguation of Plasmas

To formulate a kinetic Theory of plasmas from a more general
starting point than the Boltzmann or the Fokker—Planck equation, one
now starts from the B-B-G—K--Y system of equations (19), as in
Bogoliubov's theory for neutral gases. Here again it 1s necessary
TO introduce some definite assumptions or make some mathematical steps
TO destroy the symmetry of the Liouville equation in the two directions
of time. One may again assume the initial condition (21) of
Bogoliubov to distinguish the "past" from the " future". Or one may

make & Laplace transformation

o

F(r,v,p)= f F(r,v,t) e P* at (35)
o
with the real part of p > 0. This procedure excludes negative values
of t from the theory. These two methods of introducing a definite

direction of time are not exactly identical, but are similar to each
other.

The next step from the B—B-GK—-Y gystem 1s TO make some
assumptions or approximations such that the chain of equation can be
solved in finite terms. To do this, two procedures have been
suggested which we shall now briefly describe.

(A) Theory of Ichikaws, Rosenbluth and Rostoker and of Guernsey.

If one writes the two— and ﬁhree— particle distribution functions

Fys» Fz in (20) in the form

5
Fe(1,2,%)=T11 P(1) + X Fi(1) (k) + 8(1,2,3), (37)
i=1 1K

and make the approximation of neglecting g (1,2,3), then the eguations

for ¥y, F, in the system (22) become & palr of coupled non—linear
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integro—differential equations for Iy and G, which are decoupled from
the rest of tThe system. The equation for G has been formally solved
by Guernsey in 196Z. It 1s a very involved solution and it seems
that very little has been discerned from it. The substitution of
this solution G ( in terms of F1) into the equation for Fy glves the
kinetic equation, which is of course a very complicated non—linear
integro—differentical equation. The eguation is irreversible since
in integrating the equation for G, the Laplace transform (35) has
been made. The equation has not been studied much in its exact
form. Only certain cases have been examined or. 1tTts basis, namely,
the equilibrium case, the spatially homogeneous, and the case of
small deviations from homogeneity ( linear egquation ). Some
approximate calculations have been carried out, with many simplifying
approximations, to study the effect of the two— and three— particles
correlations on the frequency of the plasma oscillations and the
relaxation times (damping constants). I shall not describe this
theory further here since Dr. Ichikawa is here and he is certdinly
more gqualified to discuss his own work. I shall therefore describe
another approach which is somewhat different form this theory.

(B) Theory based on Bogoliubov's theory: Guernsey, Rosenbers,

Sandareson and Wu.

As in Bogoliubov's theory for neutral gases, the " functional
Ansatz" (2) is also made for the plasma. This presupposes that
FS, s > 2, change faster in time than F4, & supposition which, on
account of the long range nature of Coulomb ilnteractions, may no
longer be justifiable as in the case of the short—range van der Waals
forces for neutral gases. This assumption also carries with 1t
the 1limitation that one no longer obtains the most general solutions
since only the initial value of F4q can be specified while those of

Fz, Fgeeeees are already determined as functionals of 4 and no longer
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arbitrarily assignable. The advantage of this functional Ansatz
is that, once it is wade, no further assumptions ( except the expansion
in powers of ez) are necessary in the rest of the development of tThe
theory.

We 4o not want to stop at a finite order in the density
expansion (23) on account of the importance of many—body correlations
and "collisions" in the case of the Coulomb interaction.

Instead we make expansions in powers of the strength of the

interaction (4re?), namely

o 2 \m
Fg =3 (d4me”) F(rsn)’
=0

oF |

=5 (4me?)™ Am(r,p,o|F1). (38)

It is then found that,'gifh the initial condition (21), the
1
or i
equations for 61 and 5 2 are decoupled from the rest of the B—B-GK—
t T

Y system without having to make the approximation correspending to

the step of neglecting g (1, 2, 3) in (37).

For m=0, the kinetic equation

oT
1
= Ay (1, p|Fq)
ot © ‘ !
turns out to be precisely the Vlasov eguation (26). A, consists

o}
of the stream term and the self—consistent field term of Vlasov.

Up to m=1, the kinetic equation is
oFr P
L= A+ 4me? a, (39)
8t 0

where A4 (r, p, o |Fy) depends on E(%)_. F(;) is itself given by an
non—linear integro—differential equation which contains Fq.

The coupled equations for Fy, Fzm are complicated in the general case.
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For homogeneous plasmas, however, the integral equation for F;”ihas
been solved by Guernsey and by Lenard, and the kinetic eguation has

been obtained by these authors and also by Belescu in a somewhat

different approach. This equation 1is
2 4 )
oF 2z° e k 0
1 - a J dk— « ——
0T v K 0D
0 0 /
Joan 2z o(u—v) % (ﬂ—p—@—)m(n)m(n )
o
{ 2 by (40)
©
o 271 4re? ’
p(k,u) = k'~ S an gz
24 v
| or (1)
\ "y . A
oy (u—a') k -———é%f—-—, (41)
where
u = (k+p)/ kmg, U= (kep ) kmy
T]Ep’ o, n/Ep/) oj,

/
and the integration over 7 Iincludes a summation ever all particle
Ty pes. k is the wave wvector in the Fourier transform of the

Coulomb potential

1 1 - 1
KT
—~——Jl~—el ar =—s— .
47 r k2

This equation (40) has the following properties:
(i) It is irreversible, in the same sense as the Boltzmann eguation.

(i) It satisfies the H—theorem and leads to the Maxwellian

distribution as the equllibrium distribution.

(i) The integral in (4U) is convergent for small k, i.e., for large
distances, in contrast to The Boltzmann eguation. This

convergence 1s brought about by the factor 1//lp‘2- The second
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term in p in (41) arises from the correlation effect represented

by FéU'Which appears in this approximation ( to the first order
in the interaction strengh 4me?) .

(iv) The two—particle correlation function Fzm in the equilibrium case
n
Turns out to be precisely the Debye—Huckel result

2
Zq 2y © 1

2 (i) kT T,

exp (—r,/1p) (42)

1
where rp is given in (24). Thus the Debye—Huckel result comes
out of the present theory instead of having to be introduced into

the theory as 1in the theories based on the idea of & cutoff.

(v) By (40) is not exactly reducible To a Boltzmann equation with

a static screened potential replacing the Coulomb potential.

(vi) By (40) is also not reducible to the usual Fokker—Planck eguation.
Even in the linearized approximation, the equation is still
different from the Fokker—Planck eguation- For example, the
rate of change of momentum at value p depends on all other values
P

' instead of on p alone a kind of "nomlocal" effect.

(Vi) The equation (40) for homogeneous plasmas obtained on the basis
of the functional Ansatz (20) is eguivalent tTo that obtained by
the method based on (36, 37).

(vil) The equation (40) in the linearized approximation has recently
been solved by my colleague Professor R. L. Rosenberg for the

spectrum of relaxation times ( or damping constants)-
The method 1s to make an expansioﬁ (29) for the ¥y of each type of
particles. For example, for & plasma consisting of electrons of
mass m and positive ions of mass M=2500 m, with a 6—term expansion
in (29), there are 11 distinct relaxation times. For densities and
Temperatures such that ré//V':/103, The relaxation time 7, in units

of (IB/*va), where w

p 1s given in (31), are as rfollows
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electron—ion ion—icon electromn—electron

r, = 0.95 x 10 t, =2.31 x 10° t; = 6.7 x 10
T5 = 1.80 x 10° , tg = 4.5 x 10
T, = 1.16 x 10° , Ty = 2.5 x 10 (43)
T, = 0.54 x 10° T,g= 1.06x 10
— 3 _ )
7, = 0.19 x 10 , T41= 0.38x 10

The grouping of the relaxation times under the different headings is
guided by an examination. of the eigenvectors (i.e., the amplitudes)
corresponding to the various eigenvalues ( the relaxation times ) -

It is seen that T,/ T4 and 75/ 74 are = 51, which is approximately
the value of (M/m)?% = 50. The electron—electron collisions and
the ilorn—ion collisions are intrinsically equally efficient in the
redistribution of their velocities. That Tg/ Ty T/ Ty = (M/ﬂn)%
is simply due to the smaller velocities of the ions than those of the
electrons. The longest relaxation time 74, is assoclated with about
equal amplitudes of the electron and the ion functions; it corresponds
1o the slow velocity redistributions due to the large difference in
Tthe masses of the electron and the ion in thelr collisions.

All these are Jjust the results one expects on elementary considerations,
but it is satisfying that they come out from the kinetlic equation (40)
without any further physical arguments.

For the case of plasmas haeving only smell spatial Inhomogeneities,
it 1s possible tec formulate & Kinetic equation along the line of the
Bogoliubov method ( initial condition and functional Ansatz) in the
linear approximation. The equation for F, and hence the kinetic
equation for ¥y are much more complicated than (40). In the kinetic

0F 4 )
equation up to m=1 for—;:;, there are the streaming and the Vlasov
Terms which are reversible; then there are the corrections to both
the streaming and the Vliasov terms which arise from the correlation

effect represented byiFé” and which now render the equation irreversible.



Then there is the "main collision" terms coming from Fé” ,  which is
irreversible. The equation nas not been solved, but one can expect

the spectrum of frequencies or relaxation times 7 in (30) to be
- AY
)\_-‘ = lw. — r_] (44)

Where;b are positive ( corresponding to the relaxation similar to (43)),
and wy are similar to the values given by (31)—(33), with corrections
arising from the correlation effect Fén'not present in the Vlasov
eguation (which is the m=0 approximation in (48) here).

Recently my colleague Professor M. K. Sundaresan has made &
calculation of the thermal conductivity of & plasma on the basis of
the theory described above. The formulation of the theory for the
hydrodynamical stage follows the same line of Chapman and Enskog
indicated 1n Section I above, tThe kinetic equation and the hydrodynamical
equations are solved for the case of small deviations from
equilibrium. I shall only report the result here. For a plasma

of ré//v :’105, the conductivity coefficient is

0> x
X = (1.05), 0 =xT, (45)
m e
K beling the Boltzmann constant. This result is to be compared

with the expression

6% % 1088

X = (46
m e’ in A )

obtained by Spitzer and Harm in 1953 with the use of a Foxker—Planck
eguation With_a cutoff by means of the Debye screened potential.

In (46), ALfT§:477rg//v. For the same value r%/”v = 10° as used
in (45), 1n A = Y.7 50 that the two results (45), (46) are in good

agreement with each other. Thus our theory seems TO have furnished

some justification for the usual procedure of using the Fokker—Planck
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equation with a cutoff.

We have also formulated the kinetic equation of a plasma in a
strong, static magnetic field on the basis of the Bogoliubov method,
and we are calculating the transport properties.

I shall conclude this review with the following remark.

The method (A) above employed by Ichikawa, Guernsey, et al without
the use of the functional Ansatz (20) and with the use of the Laplace
transform (35), shows some direct time dependence of G (1,2) in
addition to the dependence on Fy-. This is cealled tThe norrMarkovian
effect. On the other hand, the method (B) based on the Bogoliubov
Ttheory first used by Gnernsey and followed by my colleagues and myself
does not have this non-Markovian behavior, since by assumption, F,
depends on Time only through its functional dependence on Fy-.

The significance of this difference between the two methods i1s not
very clear. My feeling 1s that since we are aiming essentially at
a statistical theory, the presence of some nonMarkovian effect, which
reflects some dynamical rather than stochasdtic features, may Or may
not be really desirable. Further clarification of thlis seems

necessary.
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