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Abstract

In this paper we consider the electromagnetic wave propagation in
a simple model of a dielectirc medium which is characterized by a non—
linear relation between the electric displacement and the electric
field strengtin. The formation of shock—like discontinuity is shown
by the method of characheristics, and we derive the Jjump relations
across such a discontinuity corresponding to the Rankine-Hugoniot
relation in gas dynamics. Then we shown that the evolutionary
condition enables us to select a physically relevant solution among

others admissible by the jum relations.



1. Introduction

In this paper we consider a transparent medium, in which the
electric displacement is given as a local non—linear function of the
electric field strength. Under such the dielectric property of the
medium the MaxWell equations constitute a non—linear hyperbolic
system of partial dirTerential equations, and the characteristics
representing the local phase velocity of light depend on the electric
field strength in just the same way as in gas dynamics the local sound
velocity depends on the density. Hence one may naturally expect
that a discontinuity like a shock in gas dynamics will be formed.
As a result the unique existence of solution of initial value problem
will Dbe lost. In regard to this non—uniqueness of discontinuous
solutions, in hydrodynamics and magnetohydrodynamics the mathematical
problem of selecting a physically relevant solution among others has
been discussed extensivelyf1)(2) and it has been shown recently that
instead of using the entropy condition or considering structures of
discontinuities the evolutionary condition may be used to select a
relevant solution.(s) Since at the present stage of our knowledge we
do not have any thermodynamical relation for the medium which would
be essential for the physical aspect of such a discontinuity, a
mathemsatical selection rule seems TO be most desirable. The purpose
of this paper is to examine whether or not the evolutionary condition
still selects, for the present model, a physically relevant discontinuity.
In § 2, the general solution representing polarized plane waves 1S
obtained on the basis of the method of characteristics. Then in § 3 a
simple wave solution is obtained under a given initial condition, and
the formation of shock is demonstrated. In § 4, it is shown that the
evolutionary condition enables us to select a physically relevant
discontinuity. The formation of shock—like discontinuity seems to
impiy a conversion of electromagnetic wave energy into heat, without
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being caused by the ordinary atomic absorbtion of 1light. Though our
model is too simple to be applied to actual phenomena such as obtained
bty the laser, such the conspicuous property in non—linear wave field

might be observed experimentally.

As is wellknown the Maxwell equations in a non—magnetic medium

take the form

UXB—-— —=20, | (1.a)
c 9t

o 1 aH '

VXE+—"——=O, (1.b)
c 8t

v-HE=20, (1.¢)

v.-D =0, (1.4d)

Where'B is the electric displacement vector,.ﬁ the electric field
veotor,<ﬁ'the megnetic field vector and the Gaussian units are used.

We now assume that D is given in terms of E by the non—linear

equation
BT=(a+BE - -ETE (2)

in which @ and  are positive constants and @ will be assumed to De
greater than unity.
Under the relation (2) egs. (1) admit solutions representing the

transverse plane wave solution, which may be specified as follows:

The components of'ﬁ andlﬁ'are gero .except E, and HyJ which are

functions of x and t only. From egs. (1.a,b) E; and.Hy are

determined by the following eguations,
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GX_61(1+€E2)E=U (5.8
i 0H

T 0 (3.0)
X T

in which E and H stand for E, and ﬁy/ﬁ a respectively, € 1is equal to

B/ and T denotes ct/[a.

Introducing the column vector U through the equation

U= B
(4)
H
we can transform egs. (3) into the matrix form,
o0U oU .
— o A —— =0 (5)
o0x 0T
in which A is the two dimensional matrix given by
A= 0 =1
(6.2a)
—{1 + 3eB?) 0
The metrix A has the two, distinct, real eigenvalues AT,
xi=ij1+5eE2 (6.1)
where the + signs on either sides correspond respectively. The
corresponding lett eigen vectors, l(i), take the torm
1(£) = (=), 1) (6.¢c)

Egs. (7) and (8) imply that the system (6) is totally hyperbolic (note

that € > 0). Applying the method of characteristics results(4)

immediately



ou

om

L),

along & = constant,

along v = constant,

in which § = constant and 7 = constant are the characteristics

C™ introduced through the equations

9& 0 €
S gt S _ g
b4 0T
arc
i.e. —=2"  along ¢ £ = constant
ax
0
O =00,
x 0T
_ at __ -
i.e = A along C . m = constant.
ax :
In view of egs. (7), egs. (8) become
- . t.ooe
F(E) — H =1r(£) along C' : £ = constant,
F(E) + H = s(7) along C : 7 = constant,

(7.p)

(8.

(92.a)

(9.D)

where r and s are the Rieman invariants constant on each ¢ ana ¢

respectively and F is given Dby

1
F=f(1+3eE%)? aE

1 X _1 1 A
=—2—(E(1+35E2)2+(5e) 2log{(3e) 2B+ (1+3eE%) %))

(10)

Since T 1is proportional to T, 12%] are the inverses of the absolute
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values of the phase veloclities; consequently if B increases the
absolute value of the phase velocity decreases. Tl\lis is, of course,
due to the assumption that as the intensity of light increases the
medium acts to decelerate the propagation of light. This implies

also that a light of small intensity is able to cateh up with a forward
advancing light of large intensity, leading tc the formation of shock—

like discontinuity.

5. Simple Wave

In order to illustrate the non-linear response involving the
formation of shock, we consider a simple Wave( 4) specified by the
following initial condition: at 7 =0, s =0 for all x namely the
relation F(E) + H = 0 is valid everywhere. B(x,0), which will Dbe
written as E(x), is given such that for x < 0 E(x) is equal to zero,
for x > 0 it increases as x increases and E(X) is everywhere contiﬂuously
differentiable with respect to x. Since F(E) =0 for E =0 and F is:
an increasing function ot E, -H(x,0), which is equal to F(:F:) , has a
belaviour similer to that of E, consequently F(E) — H(x,0) = 2F(]§) = r(x)
behaves in a similar way, namely tor x < 0 r(x) =0 and for x>0
r(x) increases as X increases.

In the limit € — 0, F(E) reduces to B, hence the initial condition
under consideration leads to the small amplitude wave progressing
toward the positive x direction. Namely from (9.b) E+ H =0 for all

+

X and t and from (9.a) E - H=1r(x,0) is constant along each c',

X — X, = T ; solving these Two equations immediately results the solution

] —
E=-H =—2‘I‘ (x=7) =8 (x—1)



which represents the wave tall of BE
the positively progressing plane wave.

(c.f. Fig. 1) For finite amplitude the direction
of propergation

/ -

wave in which € is finite, the

situation is entirely different.

Fig. 1

As bpetore from egs. (10) we still have F(E) + H = 0 everywhere and

ME) — H = r(xo) along ea.ch ot characteristic issuing out of the

respective initial point x = Xq at =20 ;

1
consequently F(E) = —H =—§-r(xo) = constant along each ot (11)
s0 that a = aF(x) (x-x%) (12)
_ 1
in which X+(XO) = {14—55E?(xo)}2 v (13)

Since E(xo) is a non—decreasing function of xg, AT increases as x

o]
increases. Theretfore the straight d+ characteristics cross among
themselves. Thus the shock is N direction of

tormed. (c.f. Fig. 2) On the propergation

other hand if ]E(x)] decreases as

X dncreases, the solution

.. B T =20 direction of
represents the positively * .
propergation
progressing wave front, which is ‘//////,,_,_____
flattened out as t increases. - - X
Pig. 2



4. The Propagation of Electromagnetic Shock

Introducing the column vector V through the equation

V=7y-H
(14)
—(E+€E5)

we may rewrite eq. (5) in the conservation torm,

oU oV
—_—t— =0 (15)
0x 6T

Let us now conslider a discontinuity propagating toward the positive X
direction with a constant velocity, g€§==’53> 0, by whichh two constant
states are bounded. Beyond the dicontinuity the positive side on the
X axis will be called as ahead and
the quantities on this side will be
specified by the sutftix 0, whilst
the negative side as behind and the
quantities by the suttix 1.

Then by means of Gaussian theorem

it follows the generalized

(2) ,

Rankine-Hygoniot relation
: Pig. 3
(V] =ACU) (16)

~

in which A = 1% and (Q) stands for the jump, Qy—Q, for any quantity

Q.- If, for example, By, Hy and B, are given, from (16) % and H, are

determined, i.e.
1
~ 2 2,12
A =x{1+e(Bj+E,By+E;) } (17)

H, =Hy—=A(E, — By) (18)



. ~ + .
It B, = Ey, then A reduces to A (Ey); if By > Ey,

IAE(E )1 > 1% > 13 (By) | whilst tor By < Ep, 135(Ey)] > 1AE]1> 135 (B))]

Prom (18) we have

-1
2

G = L 14+3¢€ Min (Ef, EJ) )

max =1

Theretore the provagation speed of discontinuity never exceeds C/ﬂfa-
consequently the light veloclty in the vacuum. As was shown in the
last section, the electric tfield behind shock is less than that in front
when the shock is formed out of smooth wave. Hence in our terminology
the shock for which E, < Ej accordingly X+(E1)~1j>’€j> 7«+(EO)'—1 seems

to be physically relevant, whilst the shock for which E, > By and
'c‘3'<1)\+(EO)"1 does not. In order to justity this statement, we apply
the evolutionary oonditionsz) by means of which the unphysical shock
waves can be excluded ocut so far as ordinary gas dynamic and
hydromagnetic shocks are concerned. Since the evolutionary condition
is formulated for the general oonservgtion laws of hyperbolic typegz)
The result for the general case can directly be applied to tﬂe present
case. Let us now restate the evolutionary oondition(z) for the con;
servation law (15):7

BEvolutionary Condition (ﬁ.1). A discontinuity is said to be
evolutional if and only if the disturbances, which consist of outgoing
waves, and the motion of the discontinuity, resulting from small
amplitude disturbances incident upon the discontinuity, are both small
and uniquely determined.

Bvolutionary Condition (E.2). A discontinuity is evolutionary if
and only 1t the number of smail amplitude outgoing waves diverging
from the discontinuity is equal to the number of the boundary
conditions minus one, and at the same time the eigen vectors of A
corresponding to these outgoing waves and the vector (V)] are linearly
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independent provided of course that the disturbed boundary conditions
resulting from egs.(16) are independent.

The derivation ot (E.2) trom (E.1) tor eq. (15) can be done in
the same way as was done in the retference (2). The number of
outgoing waves diverging from a discontinuity may be given by the phase

velocity in the coordinate system moving with the discontinuity,

c?j: - T( 3=0.1), where ¢t is equal to ()\i)_1 and the sutiices J reters
to the state ahead and behind the discontinuity. On the positive
side of the X axis the positive >
value ot oﬁ — ¢ corresponds to an ‘
outgoing wave whilst on the negative i
side the minus value corresponds. E
The number of outgoing waves may be 4 ;
counted by Fig. 4, which implies that %1 -”"““"”_“T"““—
.\ i
c > cg i
i
¢ > CT cé“ T
consequently Eg > Bj. Though the Fig. 4

shock waves for which Eg < Ej,
consequently c_*{ < T <L o—é-, do satisty the conservation laws, they are
not evolutional and have to be excluded out as physically irrelevant.

(The linear independence ot the eigen vectors and (V) can be shown easily

and alsO the independence of the boundary condition is obvious.)



Concluding Remarks

Though our model is too primitive to be compared with physical
result, 1T seems to be interesting to estimate in the order ot
magnitude the time ot shock trormation, t, wnich may be given roughly

by the equation

1

)
C T om m‘

where A is the characteristic wave length E the characteristic tield

T

strength. We assume, ror example, 8 = 107'¢, A = 10 %cm and let
. 22 3 X - 40—8 <
the photon density be 109 /cm”. Then t, < 10 “sec. consequently

the corresponding distance X, may be estimated as

Xo S 102 cm

—10—~—



(1)

(2)

(4)

References

Friedrichs, K. 0., General Theory ot High Speed Aerodynamics,
pp 33 — 61, Oxford Univ. Press, London and New York, 1955
Lex, P. D., Communs. Pure & Appl. Math. 10 (1957) 537 — 566
Gel'fand, I. M. and Babenkc, K. I., Nauch. Doklady Vysshei
Shkoly,. Fiz. Mat. Nauki, 1 (1958) 12 — 18

Jeffrey, A. and Taniuti, T., Non-linear Wave Propagation (Academic
Press) 1964, Chapter 3

Akhiezer, A. I., Lubarski, G. J., and Polovin, R. V., Soviet
Prnys. JETP 8 (1959) 507 — 511

Syrovatskii, S. I., Soviet Phys. JETP 8 (1959) 1024 — 1027
Taniuti, T., Progr. Theor. Phys. 28 (1962) 756 -/57

~Jeftrey, A. and Taniuti, T., loc. cit., Chapt. 3, Chapt. 6 and

Appendix B

Jeftrey, A. and Taniuti, T., loc. cit. Chapter 2

—11—



