jNSTI{TUTE @F' E»LASMA PHYSECS

NAGC}YA UN%VERSITY : _'

T T N A GO A, TIAPAN L i



"Resonances of Radio Frequency Probve
in a Plasma’

Hiroyuki IKEZI
and Kazuo TAKAYAMA

IPPJ—48 March 1266

Further communication about this report is to be sent to the
Research Information Center, Institute of Plasma Physics, Nagoya

University, Nagoya, JAPAN.



-

Abstract

The RF probe experiment is carried out by the use of a 1low
density plasma, and resonances of the probe impedance are studied.

We observed two resomances in a frequency range between the sheath—
plasnme resonance and the plasma frequencies.

A mechanism of the additional resonances 1is discussed. It is
shown that finite electron temperature introduces resonances 1in
addition to the sheath—plasma resonance. Choosing some artificial
density distributions in front of the probe, the frequency dependence

of the resonances 1s explained gqualitatively.



§ Introduction

In recent reports1) 2) on the resonance rectification probe
developed by Tak&yamas) et al., there have been found two resonances.
One of them is known as a sheath—plasma resonance4) by the comparison
with a RF probe experiment5). As to the other nigher frequency side
resonance (second resorance), however, there is no thecretical
explanation yet.

In earlier experiment, Tonksé) and Dattner7) found that a plasma
column showed several resonances upon the incidence of microwave at
the frequencies lower than the plasma frequency. Recently the
theories on this phenomenon are pr0posed8> ), They have explained
the experimental results by assuming that the plasma has a finite
electron temperature and density gradient. Here, it is shown that
the additional resonances of a probe could be explained by the same
mechanism as that of the Tonks—Dattner resonances from following
informations. The RF probe experiment is not different from the
experiment by Tonks and Dattner except for the method of coupling
between the plasma and the oscillator. As is shown in this report,
the secord resonance is observed in RF probe experiment. Moreover,
we have found three resonances for strongly negative probe.

In this paper, we shall report the experiment which will show
the characters of the additional resonances. The frequency
dependence of the impedance is calculated with the idea along the
same line of the theory for Tonks-Dattner resonance. The results

are compared with the present experiment.

§ IExperimental Arrangement and Method
In the figure 1(a), the low—pressure mercury-vapor discharge
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tube used in the present experiment 1is shown schematically. Two
plasma sources are placed at the opposite side of a spherical bottle.
After the discharge 1n the plasma source, plasma diffuses into the
bottle. The grids, which separates the source from the bottle,
prevent the propagation of the fluctuation in the discharge region

to the bottle. In order to obtain reprcocducible results, the vapor
pressure depending on the temperature of a mercury reservoir was stabi—
lized by a thermostat during several hours.

In this type of tube there produces a plasma of density 10§/bc
and of electron temperature 3000 °K. Two disc probes of 30 mm
diameter with a separation of 20 cm were inserted from both sides of
the bottle. The plasma 1s very quiet, and only the shot noise and
the thermal noise are detected by these probes10).

With the circuit which is shown in Fig. 1(b), the resonance probe
experiment (the resonance rectification of RF current by the probe)
and the measurement of the RF current through the plasma between two
electrodes, which are shown in Fig. (1 a) as P and Fig. (1 c¢) as B,
are carried out. The signal from the RF oscillator (10 Kc to 50 Mc)
is terminated at the probe 1 or one of the plates so as TO produce
constant voltage at the terminals, whose value is several ten milli
volts. During the resonance probe measurement the IC probe current
is recorded through the voltage at Yy or Y,. The RF current through
the plasma is recorded at Yz-. The signal applied to the diode 1s sO
small that the detector shows gquadratic character.

Measurements were carried out by varying the frequency at fixed
discharge currents. The probe current and the RF current through the
plasma are plotted by an X — Y recorder. We did not measure separately

the real and the imaginary parts of the admittance but the sum of the

square of them.



§ Experimental Results

In order to check whether or not the rectified current by the
probe and the RF current have the same resonant frequency, a
measurement of both currents is carried out at the same discharge
current. The typical characteristic curves of the rectified current
of the exciting probe (p,) and of the detecting probe (p,), and that
of RF current I.r are plotted in Fig. 2. In this case, the
freguencies of the first peaks (sheath—plasme resonance) and the
second peaks are 2.2~ 9.5 Mc and 11.4 ~ 11.6 Mc respectively. The
first resonmant frequency of the exciting probe is slightly lower than
That of the other two cases. This difference is due to their
geometries and is inessential. From this figure, we see that the
resonant frequencies of RF current are the same as those of the
rectified current. Therefore, we conclude that-the second resorances
observed in those different two experiment are due to the same
mechanism.

If the second resonance results from plasma wave, the resonant
frequency must change with the electron density distribution, which
is varied by the probe bias. The RF currents are plotted in Fig. 3
for extremely different probe biases and fixed discharge current.
When the probe bias becomes strongly negative, the height of the main
resonance peak is reduced and that of the second resonance peak is
increased. We find also the third resonance pesak. The resonant
frequency and the height of the resonant peaks are shown in Fig. 4 as
& function of probe bias Vb. When the probe bias increases, the
resonant frequency slightly decreases for the main resonance and
increases for the second and the third resonances. The height of
the second peak is almost constant for strongly negative probe. When

the electron current increases the second and third peaks disappear.
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In the theory of the Tonks—Dattner resonance, the resonant freqguency
is a function of A/A, where A 1s the thickness of a plasma and A the
Debye length. A similar parameter L/A or §/% also decides the
resonant frequency in our calculation which is discussed in the
following sections. Here L and d are the distance between two
electrodes and the radius of electrodes respectively. The Debye
length can be varied by changing the discharge current.

The resonant frequencies in the unit of the plasma freguency,

are shown in Fig. 5. This data are obtained at the floating
potential. The plasma frequency corresponding to the maximum density
is obtained from the minimum ERF currentA). The electron temperature

is measured by the Langmuir probe method. The resonant peak does

not appear in the freguency region higher than the plasma frequency.
For the case of disk probes, the lines which represent the ratios

ﬂ/fp of the resonant frequencies to the plasma fregquency crosses the
line ﬁ/fp = 1. At the crossed point the resonant peak and the minimum
current overlap each other like the curve shown in Fig. 3.

For the case of the outer plates, the retios f/fp are much smaller
than the case of the probes. This discrepancy 1s due to the
difference of geometries of these electrodes. When the distance L
is much larger than the radius d, the ratio £/f, depends on 4 A, and
when d is larger than L, ﬁ/fp depends on L/A. This fact will be
discussed in the following sections.

When we plot Fig. 5, the plasma frequency 1is obtained from the
minimum RF current. As we see in the next section, this method is
correct even for the finite temperature plasma. In fact, the minimum
RF current gives experimentally the same frequency for different two
geometries within the error of experiment. The frequency which
gives the minimum RF current is, however, very sensitive to the stray

capacity of the circuit. From this reason, the RF current which 1is
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measured at the exciting probe side does not give rise to the correct

result.

§ Derivation of Impedance

In this section, we derive the impedance of the hot and non—
uniform plasma between two electrodes and show the results of numerical
calculations. We shall use the hydrodynamical equations for an
electron gas, and adopt the quasi—static approximation, for the
dimension of our plasma (~ 30 cm) is sufficiently smaller than the

wave length in vacuum (sSeveral ten meters).

m (dvdt + v v) = eB — kT ' V n, 1)
on/9t + V- (nv) = 0, (2)
V-E=4me (n— ny). (3)

Here, ¥ is the macroscopic electron velocity, n the electron density,
n; the ion density, T the electric field, Vv the collision frequency,
and e and m the charge and the mass of an electron respectively.

For simplicity, we have assumed the electron temperature T = const.
We now replace the variables in (1) — (3) (denote by F symbolically)
by FO (x) + B, (x) exp (wt), where the index 1 is to stand for the
perturbed quantity. We consider only a strongly negative probe,
thus ?fo = 0. This assumption will be discussed after the equation
for the current is derived. Equations (1), (2) and (3) now become

—

E, = 4me (ng — ny), ¢ 5)

ﬁo = (kT/e) Vny Mg, (4)
A\VAR o

— w (w —1ivV) 31 =w12) (T1 —?])1) — Vr% (VnO/nO)V~_j>1
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where, wf) (x) = 4me® n (x)Mm, vh = KT, 71 =en, v, and v, = 0. (7)

Here, I, is the total current density defined by

I,=3; + (lw4n) E,. ' (8)
The equation (4) shows the balance between the pressure and the
electric force which results from space charce represented by (b).

In the following we shall consider a plasma between parallel—

plates for simplicity. Two plates are placed at the position
X = 3:1/2, and tne plasma density 1s assumed be spatially uniform in
v and z directions. We assume 6,0y = 8,0z = 0 in Fy. (6), then
the eguations (4) to (6) are reduced to

J'— (8'/8) T'H(LM? (e — @) T =—g(lyM? (9)
and J + (1w 4m) E?/I1 =1, (10)
where g (u) = wé/wpoz’ e = w(w —'iy)/&boz, u = x/L and

J=3,1,. c11)
Here, J' and J" are the first and 'the second derivatives of J with
respect to u, and all quantities K, I and J should e read as x —
components of those wvectors. If the total current equals zero and
the plasma is wniform, we obtain from (9) the familiar dispersion
relation: w(w — iv) = w? + k’v4.  We obtain the impedance Z per

b
unit area from the solution of (9) and the expression (10)

1,2 ] 1,72
Z=L/I1f E, du= 4740w (1 — f Jaw) . (12)
—1,/2 —1,2
The first term of R.H.S. of the expression (12) represents the
capasitive component of parallel plates and the second term of it
the reactive component due tc the plasma current.

Before solving the differential equation (9), we should have

3 - . .
some consideration about the assumption Vo = a. This assumnption
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introduces that the probe is biased by — oo. Therefore, g(u) must
be zero at the boundaries (u =+ 1,2). This condition leads.f% = Hoo
at those places, because_ﬁg is proportional to g'/g (see Eq. (4)).

Conversely, it is obvious that i% = £ oo gives rise to infinite

negative bias. In the case of-;b = 0, J must be zero, because g
is zero. This gives the complete bourndary condition for Hg. (9).

When probe bias is finite as in the experiment, g (£ 1,72) is not zero,
and-zb is finite. Such g (u) introduces ambiguities on the boundary
condition, and the wave equation becomes very complicated. When the
probe is biased strongly negative, an assumption of ;B = { is, however,
a good approximation except for just in front of the wall. Thus we
set g (£ 1/2) = 6 and assume J (= 1,2) = O.

In order to compare the results of calculation with experiments
we must choose a realistic density variation. Itatani11) calculated
the density profile for one—dimensional case. Here we approximate
his density profile by & sinusoidal form and assume g (u) as an even
function.- One of the examples of the calculated density profile
and our g(u) are plotted in Fig. (6).

Because of the symmetry of the plasma, the driven part of the
current in the plasma is an even function of position. In this way
we miss certain natural oscillation modes driven by statistical
fluctuation having odd symmetry. For a small amplitude oscillation,
these odd modes are uncoupled with the even ones and do not contribute
to the impedance.

The equation (9) is solved by an electronic camputer by the use
of the boundary condition J (+ 1/2) = 0. One of the result is
plotted in Fig. (6) and Fig. (7). In this case, when uy&bo is
smaller than 0.7, the current J increases with @/wpo at every point.
Therefore the integral in Eq. (12) is monotonically increasing
function of m/wpo. If the collision is neglected, the integral
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becomes unity and the impedance becomes zero at some value of “yﬁbo
smaller than 0.7. This corresponds to the sheath—plasma resonance.
When.aywpo is greater than 0.7, current J oscillates spatially.
This oscillation corresponds to & standing plasma wave in the sheath.
Therefore the integral oscillates with an increase of ayﬁbo, and values
of‘ayhbo at which the integral is unity give a series of resonances.
Inserting the solution of Eg. (9) into Fg. (12) the impedance 18
calculated. The result is shown in Fig. (8). For convenience, we
have introduced the admittance Y which is inverse of the impedance.
In the case shown Figs. (6), (7) and (8) we find only one additional
resonance. But, as seen in Fig. (9c), two additional resonances
appear, when the thickness of the sheath is increased. We shall
find more resonant peaks, when the distance between two plates and
the thickness of the sheath are increased. This result is consistent
with experiments, which are shown in Fig. (3).

The dependence of the resonant freguency on the thickness of
the sheath is shown in Fig. (9). -As it is expected, the resonant
freguency becomes lower, when the sheath expands. For the expansion
of the sheath results in the decrease of the electron density in the
sheath, therefore the current J changes i1ts sign in the sheath for
lower freguency. '~ On the other hand, the freguency of the sheath—
plasma resonance becomes slightly higher with the expansion of the
sheath. This character may be explained by simple consideration4)12)*z
Thnese results on resonant frequency agree with the experiments which
is shown in Fig. (4). In the present calculation, however, tThe

dependence of the resonant frequency on the thickness of the sheath

*) If the temperature goes to zero, A becomes zero. The equation

(9) is simplified as J = (1 —e)”1 for -an uniform plasma. If the
plasma, has sharp boundary and its thickness is A (< L). The impedance
is (47?L/ia0 (1 - ﬁQ{L) —el(1 —¢e). Ifvy= 0. the resonant freguency

is W, (1= WLJ , and anti—resonance occurs at wp
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is not remarkable, but on the ratio LA which may be seen in Figs.
(5 amd (9). As seen in Fig. (9), lYI always takes minimum value at
“yh@o = 1 except for the case in which the additional resonance
appeares atcgﬂnpo = 1.

In order to discuss the geometrical factor, we consider a couple
of concentric spheres. The radil of the inner and the outer sphere
are ag and a, respectively. The space between two spheres is
filled with a plasm. Here, we write down the equations in poler
coardinate. In the representation of the impedance, only radial
component of the plasma current is sufficient. If we assume that
the plasma density varies only along radial direction, that is

8,600 = 8,6 = 0, By. (6) is reduced to

o e D) S WD o - w7 =~ G
(13>
and Zz'{c%é“o 1 _-Z.?._ {a/ao T ap), (14)
vhere P = T8y J=1731pTy, end I,=1I,,. (15)
Here, we have used that I has only radial component. When the

ratio a,/a, is much greater than unity, the impedance may be written

as

iwa,

1 oo '
z =—— (1 -/ J dp) (167
o) 1

because J is proportional to 1/@2 at distant point. In this case the
outer sphere only plays a role of a reflector for the waves.

The equation (13) does not include the characteristic length
except for the coefficients as in the case of Eq. (9). Therefore,
we can conclude from Eq. (12) and Fa. (16) that the resonant frequenc—

ies are a function of I,/A for the plane electrodes and are a function
.__10_..



of ao/ﬂ for the spherical ones. This conclusion explains the
difference of resonant frequencies on two experimental conditions
which are shown in Fig. (5). In the experiment, we have used tThe
plane probes with the radii smaller than both the thickness of the
sheath and the separation of probes. Therefore 1t may be considered
that the probes behave as the spherical dumbell. In this case the
resonant frequency is independent from L to the first order, but
depends on g/A, since L > d. On the other hand, since the diameter
of the plates out side the sphere are greater than the effective 1L,
its geometry may be approximated by one—dimensional parallel plates.
Therefore the one dimensional calculation, which we have carried out,
should be adequate to explain the experimental results. As a matter
of fact, an extremely good agreement between them is seen in Fig. (5).

Iastly, we should mention about the validity of the assumption:
J=0at u=+ 172 This assumption states that the plasma wave
reflect perfectly at the wall. When the probe potential approaches
the plasma potential, this assumption does not hold any longer. As we
see in Fig. (4), the heiéht of additional peak decreases rapidly near
the plasma potential before the resonant frequency does not shift
largely. This may be due to that the wall absorbes the plasma wave.
Bven though the travelling wave exsists, 1t does not affect the

impedance, because the phase angle between the oscillating component

of J and RF voltage depends on time.

§ Discussion

From the following results, we arrive at a conclusion that the
additional resonant peaks should result from the standing plasma wave
in a sheath,

a) Two additional resonances were observed.



b) The resonant frequency 1is always lower than the plasma frequency,
and the ratio £/Tp depends on A and the probe bias.

c) The frequency which corresponds to the minimum RF current does
not depend on geometry.

a) The frequency characteristic curve of the impedance derived from
the theory is consistent qualitatively with the experimental results
from a) to c¢). Though we may explain the resonances qualitatively,
there are some problems remained to clear up. Firstly the geometry
of the electrodes is not ideal in our experiment, so that the end
effect should be eliminated. Secondly, the electron density distribu—
tion in the sheath should be determined experimentally in order to say
something more quantitatively about the resonances. Thirdly, the
boundary condition in our calculation is not prerfect which should be
examined mare carefully. Lastly, in the present theory we must Know
the amplitude of the plasma current in order to predict the resonant
frequency. It is the only difficulty for the gquantitative agreements
on the present resonances which was free for the theory dealing with
the natural modes that is the Tonks—Dattner resonance. Therefore,

the loss rate of energy must be important. Here, we have considered
only collision damping and not considered ILardau damping and the
wall—loss. As we see in Fig. (4), the second peak disappears, when
the probe bias is near the plasma potential. This disappearance of
the peak must be due to the wall—loss. In fact, near the plasma
botential electrons flow to the probe which result in the wall—loss

of the plasma wave.
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Fig. i. (a) A sketh of the discharge tube. Here, A is

the anode, G is the grid, C is the oxide coated
cathode, and P, and P,eare the probes.

(b) A circuit for measurement of the DC probe
current and the RF current through a plasma.
(¢) A sketch of outer alminium plates.
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RF current and Increment of Probe €urrent

(a)

(p)

(c)

Fig. 2.

10 15

Frequency (Mc)

Frequency characteristic curve of the RF current
and the increment of the DC probe current, when
the probes are at the floating potential and the

RF voltage is constant. The curves b and ¢ show
the IC current at P; and P2 respectively, and (a)
shows the RF current.
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RF current

..._:g:

Frequency (Mc)

Fig. 3. Frequency characteristic curve of the RF current.

The solid and dotited curves correspond to

Vb - Vg = — 10 volts and — 20 volts respectively,
where Vb and Vé are the probe bias and the
space potential respectively.
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Height of peaks
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Probe bias to the cathode (volts)

Fig. 4. The heights of resonant peaks and the resonant
frequencies as a function of the probe bias.
Curve (a) and (e) are correspond to the sheath-
plasma resonance, (b), (d) and (c) are to the
second and the third resonances respectively.
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5. The ratio of the resonant frequency f,. to the

plasma frequency are shown as a function of

(L2)2.

@® : The probes at floating potential

O : The outer plates

+ . By the theory. The density profile of the

sheath 1s the same as that which is

shown in Fig. 6.
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6. The normalized electron density g and the real
part of the normalized current J as a function
of x/A. The dotted curve 1s calculated by
Itatani for the case in which the probe electron
current is 10°° times the electron satulation

current. g/ubo =0.1.
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Im (J)

—10

(x1)

Fig. 7. The imaginary part of J. The density profile

g 1s the same as that in Fig. 6.



Admittance Y

Fig. 8. The admittance as a function of qywpo. Here,
D/ﬁbo = 0.1, and g is the same as that in
Fig. 6. The peak (a) and (b) are the sheath--
plasma resonance and additional resonance

respectively.
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