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TPPI-76 Errata
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The stabil:zation condition of the slow

*
Alfvén mode for (/) T (U >0 should be read
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because the magnitude of stabilizing curvature
derived from ea. (3, 10} has to be restricted by

x
the condition ¥/ W > 0.




The effect of magnetic curvature on density gradient drift
instabilities is examined for a collisionless plasma in which B
satisfies m/M < B << 1, where B = plasma pressure / magnetic pressure,
m and M are the electron and ion masses. For simplicity, the effect
of magnetic curvature is simulated by an equivalent gravitational field.
The present considerations are restricted to the cases where the wave-
length of perturbations is much longer than the mean ion Larmor radius
and the radius of magnetic curvature is much larger than the character-
istic length of the density gradient. It is found that the slow
Alfvén mode which is unstable in a straight and parallel magnetic
field is stabilized by magnetic curvature with a sign favorable to
stabilization of the interchange instability while it remains unstable
by unfavorable curvature, and that the fast Alfven mode remains stable

independently of the sign of magnetic curvature.



§ 1. Introduction

Recently the shear stabilization of drift instabilities driven
by density gradient in a collisionless plasma has been studied inten-
sively. The stabilizing effect of magnetic shear is to increase the
component of the wave vector of perturbations parallel to the sheared
magnetic field, resulting in the increase of the ion Landau damping.
On the other hand, magnetic curvature shifts the resonance frequency
for constant wave vector tc either a lower value or a higher value
depending on the sign of magnetic curvature. Krall and Rosenbluthl)
have considered the curvature effect by introducing an equivalent
gravitational field and have found that favorable curvature can stabi-
lize the electrostatic drift instability with a wavelength longer than
the mean ion Larmor radius. Taking into account the dispersion of the
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curvature drift velocity, Laval et al.’ have shown that favorable
curvature has strong stabilizing effects even on the short wavelength
perturbations because the ion Landau damping becomes effective in the
direction of curvature drift as well as along the magnetic field.
However, the two papers concern only with a low 8 limit in which case
the electrostatic approximation may be permitted.

In the present paper, therefcre, a plasma in which 1 >> 8 > m/M
is considered and the effects of magnetic curvaturc on the Alfven type
modes are examined by use of an equivalent gravitational field; the
slow Alfven mode is found to be stabilized by some small amount cf
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favorable curvature, while Mikhailovskaya and Mikhailovsky have
shown that the flute perturbations with kzﬂF 0 cannot be stabilized
even by favorable curvature.

In the next section, the general dispersion relation in the

presence of an equivalent gravitational field is derived by the same
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method as used in the previocus paper by the present author.a) In § 3,

the effects of magnetic curvature on the Alfven modes are examined in

detail.

§ 2. Derivation of the Dispersion Relation

We consider a plane plasma slab in which a density gradient Vn is
in the x direction, the magnetic field go is in the z direction and
a gravitational field equivalent to the effect of magnetic curvature is
parallel to the x direction. Under the assumption 1>> B > m/M, only
the bending of the perturbed magnetic field is considered and the
compression is neglected. The local dispersion relation is derived
by neglecting the x dependence of the perturbations as usually done in
the case with a uniform magnetic field. The method of derivation of
the dispersion relation is the same as in Appendix A of ref. 4.

The equilibrium distribution function which is a function of
constants of the motion may be taken as
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in which j refers to the particle specices, v, m and T are the velocity,

mass and temperature, gj is a gravitational acceleration equivalent to

the effect of magnetic curvature 1/RC and equal to 2Tj/ijcs Qj =
ejBO/mjc, and
de¢nn, m.g.
€, = - — + =L, ( 2.2)
j dx Tj



The unperturbed distribution function foj given by eq.(2.1) satisfies

the Vlasov and Maxwell equations
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From eq.(2.4) we obtain €, = €4 and X - dx .
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We introduce the vector potential Aez as well as the scaler

potential ¢ for the perturbed fields El and ﬁl
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where f is a small‘perturbation from the equilibrium distribution

1j
and given by solving the linearized Vlasov equation
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where the integration is carried out along the particle orbit
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v .
y(t') ~ vy 7?'{cos(6 - Qt') - cosB} - (g/V)t' ,

( 2.10)
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A time-space dependence of the perturbations is assumed as follows:
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Treating ¢, A and fl as constants, the local dispersion relation
at x = 0 is obtained; substitution of the perturbed distribution
function eq.( 2.9 ) into eqs.( 2.6 ) and ( 2.7 ) gives us the homo-
geneous equations for 5 and A
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Here vj and a, are the thermal velocity and mean Larmor radius, and
we have assumed w2<< k2c2, |w|<<ﬂj and quasi-neutrality of charge.

The dispersion relation derived from eqs.( 2.12 ) and ( 2.13 ) is

arranged as follows
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When g = 0, we have C = D = 0 and eq.( 2.14 ) is reduced to eq.( A.15 )

in ref. 4.

§ 3. Effect of Magnetic Curvature

In this section, we restrict our considerations only to the long
wavelength perturbations compared with the mean ion Larmor radius,
that is, bi =b << 1 . The radius of magnetic curvature Rc is assumed
to be much larger than the characteristic length of the density

gradient r = |n/n'|. We assume further vi<<|w/kzl<< A kz<< ky and

T, = T. Then we have approximately

and T
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parameters refer to ions. Substituting eqs.( 3.1 ) - ( 3.4 ) into

eq.( 2.14 ), we obtain
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Thus the frequencies of the Alfvén type modes are derived approxi-

mately from the equation

wz - ww®- k2V

2 % o
“vi + 20 mg/b—O ( 3.6 )

where vy is the Alfvén speed. The sclutions of eq.( 3.6 ) give us

two modes
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in the absence of magnetic curvature, the fast mode is always stable
and for 2@*2 >> kivﬁ the slow mode is unstable. Substituting
W =W, + 8w dinto eq.( 3.5 ), the imaginary part of 6w is

b4

obtained after some careful calculations

22
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Let us restrict our considerations to the case where bkzvi >

*
ngw , then we have Im w = Im dw independently of the sign of g or

Rc’ It must be noted that the assumption bkiv2

s leng is reduced

to a simple relation

( kZIRC|)( k,r)>8 . ( 3.9)

dn/dx is taken to be negative so that w = —(kyT/MQ)(dﬂnn/dx) > 0,
*

and w = W + wg is positive independently of the sign of g or RC

since we have assumed r << [R_ | . Thus we find w; >0, w

+w <0,
g

2 <0,

1 -

* *
2w1 -w >0, 2w2 -w <0, w t wg > 0, and wy T

(I) Effect of favorable curvature ( g < 0, cusp curvature )

(i) The slow Alfvén mode

*
If w, + w > 0, the slow Alfvén mode is unstable in the absence
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of magnetic curvature, and the curvature stabilization is attained
provided that the sum of the terms within the square bracket on the

right-hand side of eq.( 3.8 ) becomes positive

W w (w, + w*)
& } o+ Z
b(w2 - wg) b(w2 + wg)

(w2 - w*){ 1 -
( 3.10 )

Let us first study the effects of favorable curvature. Since wg is

negative, the second term is positive. Thus the stabilization condi-
tion is given by

b <« —& ( 3.11 )

. ( 3.11)

If kzvi is roughly equal to —wnwg/b, the stabilization condition

is further simplified

TEEW- ( 3.13 )
Rc

Therefore this mode is easily stabilized by small favorable curvature.
In the case where w, + w* < 0, the slow mode is known to be
stable in the absence of curvature, and it remains stable after the
introduction of favorable curvature provided that an unequality reverse
to eq.( 3.10 ) is satisfied. Now the second term is negative, and if

the sum of the first and second terms becomes negative this mode remains

surely stable. That is, if
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2 2
ksz

> zwz /b, ( 3.14 )

this mode remains stable. The condition eq.( 3.14 ) is easily shown

to be reduced to

2
( szc) > 28 ( 3.15 )

and it is always satisfied under the assumption eq.( 3.9 ).

(ii) The fast Alfven mode

It is easily found that the fast mode remains stable even by

*
curvature with any sign. Now we have wy > o, Zwl - w >0, and

*
Wy T 4" > 0. Therefore the stability condition is given by

w w (w

*
e )} 1+w )

+
b(wl+wg)

*
( w; - {1 - b(wl

( 3.16 )
The first term is positive and the second term is negative. This
stability condition is found to be reduced to eq.( 3.14 ) or eq.

( 3.15 ) and always satisfied under the present assumptions.

(II) Effect of unfavorable curvature ( g > 0, mirror curvature )

(i) The slow Alfvén mode

The stabilization condition given by eq.( 3.10 ) for Wy + w*> 0
cannot be satisfied by unfavorable curvature because each term on the
left-hand side of eq.( 3.10 ) is always negative for g > 0. The
growth rate of this mode for W, + w*> 0 increases by unfavorable

curvature. On the other hand, the stabilization condition for the case
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W, + w* < 0 1is an inequality reverse to eq.( 3.10 ) and given by
eq.( 3.14 ) or eq.( 3.15 ) which is independent of the sign of g. Thus
this mode for W, + w* < 0 remains stable by unfavorable curvature.
(ii) The fast Alfven mode
The second term on the left~hand side of the stabilization
condition eq.( 3.16 ) is positive for g > 0. The stabilization

condition is found to be the same as eq.( 3.14 ) or eq.( 3.15 ). Thus

this mode remains stable by unfavorable curvature.

§ 4, Conclusion

We have examined the curvature effects on the Alfven drift modes
with long wavelength by simulating the effects of true curvature by
a gravitational field. It has been shown that the stable modes in the
absence of curvature remain stable independently of the sign of
magnetic curvature provided that ( szc )2 > 28 1is satisfied. This
condition may be satisfied for most experimental devices only if kZ
is finite. The unstable Alfven mode may be stabilized by introducing
small favorable curvature which satisfies b<2r/|RC]; by unfavorable
curvature, however, it cannot be stabilized and its growth rate

increases.
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