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Nonlinear behaviors of monochromatic traveling waves are discussed
by the use of the asymptotic method of Bogoliubov and Mitropolsky.
The wave is assumed to be stationary in the first approximation and
nonlinear interactions are taken into account only among the wave under
consideration and its harmonics. It is shown that two cases should be
distinguished according as the frequency of the wave in the first
approximation is given by a simple root or a double root of the dis-
persion relation. The dominant corrections to the frequency and the
growth rate due to nonlinearity are of the second order with respect
to the amplitude in the former case, but is of the first order in the
latter case, Characteristic behaviors of the wave in the latter case

are studied by discussing a model equation and a special case of two

beam instability.



§ 1. Introduction

Plasma is a nonlinear medium. If the amplitude of a wave propa-
gating through a uniform plasma is infinitesimally small the wave is
characterized by the dispersion relation of the linear theory. But
when the amplitude becomes finite, several nonlinear effects occur.

In the linear theory, we consider usually a simple harmonic wave.
But in a nonlinear medium a harmonic wave is always accompanied with
its higher harmonics. Accordingly the smallest closed unit which we
must consider in a nonlinear theory is the whole set of the wave under
consideration and its harmonics.

Suppose that we want to study a dispersion relation of a wave
and excite the wave by an external force with a prescribed wavelength.
When the amplitude becomes large, we will see that higher harmonics
are excited as well as the wave under consideration. Then we stand
at the situation in which we must analyse the phenomena considering
the whole set of waves mentioned above.

The nonlinearity brings about also the deviation of dispersion
relation from that in the linear theoryl). When the amplitude of the
wave is fairly small, we can consider the nonlinearity as a perturba-
tion. But in this case the ordinary perturbation expansion technique
is not useful, because it brings about terms secular with respect to
time. This difficulty can be avoided by allowing of a small shift of
the frequency and a slow change of the amplitude due to the nonline-
arity. The method for such is given systematically in a book by
Bogoliubov and Mitropolskyz), and several modified version of the
method have been applied to problems in plasma physicsB) 4).

One of the most interesting problems in the theory of nonlinear



waves is the determination of the wave amplitude. Usually we expect
that when the growth rate of a linearly unstable wave is sma}l, the
amplitude will be saturated at a low level owing to the nonlinearity.
This is, however, not always true. If both the growth rate and the
saturated amplitude are really small, we will be able to determin the
amplitude by using the asymptotic method of Bogoliubov and MitropolskyS)

A typical example of such cases is given by the well-known Van der

Pol equation:

dt?

6)

where 1y 1is a small positive parameter ’.

In this paper we study some typical nonlinear behaviors of
waves, which are traveling, simple harmonic waves in the first
approximation. In § 2, we give a general formulation. There it is
shown that two cases must be distinguished according as the frequency
of the wave in the first approximation is determined as a simple
root or a double root of the dispersion relation. In the former case,
the asymptotic method can be applied straightforwardly. But in the
case of a double root, the situation is a little different. The
section 3 is devoted to a model equation of the latter case, in which
the nonlinearity tends to suppress the growth of the amplitude. The
two-stream instability gives also examples of the double-root case.
In 8 4 we treat a special case of two-beam instability, in which
the nonlinearity is shown not to suppress but to enhance the growth
of the wave. A more detailed analysis of two-stream instability in

this method will be given in subsequent papers.



§ 2. General Formulation

Longitudinal waves or waves in the quasi-electrostatic approxima-
tion in a steady uniform plasma are governed by an equation of the

type7)

e ( k,w )Ekw = (EE) 4+ (EEE) + ecscecce . (2.1)

where e(k,w) 1is the dielectric permeability of the plasma in the
linear theory, Ekw is the Fourier component of the electric field
and (EE), (EEE), °°** represent the nonlinear terms quadratic, cubic,
*°+ with respect to Ekw . When the wave is neither longitudinal
nor quasi-electrostatic, we need only to replace e(k,w) in eq.(2.1)
by the dispersion function D(k,w) and a similar argument can be made.
We shall neglect the quasi-linear effect, that is the temporal changes
of characteristics of the plasma as a medium.

In the configuration space, eq.(2.1l) takes the form

1
E(I

d 19
3%, ~ T3¢ ) E= (EE) + (EEE) + - (2.2)

We divide e(k,w) into two parts:
e (kyw) =¢p (k,w) - pe” (k,w , (2.3)

where eo(k,w) is the main part, which is assumed to be a real
function of k and w, and ue”(k,w) is a small deviation from it,
characterized by a small parameter u . We take € (k,w) such that

the dispersion relation



eo( kyw) = 0 (2.4)

has a real root w = mo(k). This means that the plasma characterized
by so(k,w) sustains a stationary wave with a prescribed k.

Now we consider a wave of a small amplitude of the order X and
replace E by AE. Then the basic equation (2.2) becomes

1
e ( 1

9 _
0 9%,

+ A(EE) + A2(EEE) + --+ . (2.5)

In the example of the Van der Pol equation, this corresponds to

the arrangement

Pu oy, oo e Lz de (2.6)
qe2 dt dt .
The equation in the first approximation
eo(%%s—%%)E = 0 2.7)
has a solution of the following form
E, = a exp i( kx ~ wot) + Cc.C. , (2.8)

where a, k and wy are real and c.c. means the complex conjugate



of the first term. Our purpose of the following analysis is to study
the effect of the nonlinearity on a solution of the form (2.8).

We assume the following form of solution

E=aexpi(kx - ojt = §) + c.c. + AE; + A2E, + cee
(2.9)

and substitute this into eq.(2.5). Then the righthand side of
eq.(2.5) can be regarded as external forces toithe unperturbed system.
If we take a and Y as constants, then the terms proportional to
expi(kx - wot), which appear in the righthand!side of eq.(2.9),
resonate with the unperturbed system and bridg about the appearance
of terms which are secular in t. In order to avoid the appearance

of secular terms, we allow slow variations of 4 and ¢

da

e _ 2 i oo

ic - AAl(a) + A Azéa) + s (2.10)

a 2,

it - Awl(a) + A “2(a) + , (2.11)
of which Al’ Wy, A2, w,, *** are assumed to depend on the

amplitude & only and are to be determined by the condition of non-
secularity.
The next relation is an identity for a function f(x,t) which can
be expressed in the form of a Fourier expansion in ¢t:
9 iwgt
wy + 1 St Y[ e

1 3
(%%, ~ £l

(2.12)



Applying this identity to

3 - & R
£ = ael(kx wot )

we have

19

eo ( iox,

_ e1(kx - wot) e0( k, wy + i;; ) I ae-iw ]
i(kx - wot) 9¢g d
e { eo(k, wg) + ( o ) izT
=@
0
3¢ 2
l 0 ‘i ce e -iw
+5 Cgmz) (570 + } [ae 77
=@
0
- e:'L( kx - wgt - ¢ )
360
x {( 5= il A(Ap - daw)) + A2(A - daw,) + cee ]
w=w0
32¢ dA
1 0 2 1 2 . d
-5 ( ) _ CAslda g - awy?) - iA, ( gplaw;) ]
w—wo
boeee Tk e ). (2.13)

where we have used eqs.(2.4), (2.10) and (2.11)
So far, u and XA are small parameters independent of each

other. The parameter u dindicates, for example, the order of linear



growth rate. An interesting choice of the amplitude A 1is such that
the contribution of the nonlinearity is the same order as that from
the term wpe’E. It can be shown that (EE) term cannot yield the first
harmonic in the order XA , that is terms proportional to expi(kx -

wot = Y). Thus the first harmonic, which is the origin of the change
of amplitude and the frequency shift, appears first in the order A2,
Consequently we should retain the terms of the order A% in ue’E,
too. The appropriate choice is u = A% if e7(k, wo)f? 0 and p = A

if e”(k, wg) = 0, so that we take wue” in the following form:

ve(k, w) = rey (k, w) + Azesz, w) (2.14)

where ¢, (k, wy) = 0.

Then a similar procedure to the previous one yields

S 13
we'( T3, 193¢’ E
oe i(kx - wgt - )
= A2 { ( " ) [ i(A - iaw)) e 0 + c.c. ]
w=w,
+ [(sr + isi)aei(kx - wot - ) + c.c.]} + 0003 , (2.15)

where

e,( k, wg) = s_ + isi (2.16)

Now we must treat two cases separately.
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I. Normal Case, ( deg/3w ) 20 .
m=wo

When wg 1is a simple root of the dispersion relation, the

nonsecularity condition in the order A gives

e

0
i (—5;) ( Ay - iawl) = 0 5 (2.17)
w=w
0
from which we have
A1 =0 and wy = 0. (2.18)

Thus the wave suffers no effect in the order A

In the next order, the nonsecularity condition gives

o,
W=wo

= ( s, + isi ) a + ( a + iai ) ad s
(2.19)
where the second term on the righthand side comes from the nomlinear
terms of eq.(2.5) and a and a; are constants. It can be easily
shown that this contribution should be proportional to a’ .
Consequently the growth rate A2 and the frequency shift w, are

given by

X -1
€
0
= — 3
A ( ™ ( s;a + a,a Yy . (2.20)

W=



w, = (-55— ( s, + araz ) . (2.21)

Since this case is simple and has been already treated frequently,

we shall no further discuss on it here.

2 2
II Exceptional Case. ( 3ep/3w )w=wo =0 but ( 93 gp/dw )w=w0f¥:0.

This situation arises, e.g., in the case of two beam system near
its marginally stable state. In this case the first harmonic in the

order )\ disappears automatically, and the nonsecularity condition

in the order A% gives

1 3280 dA

1 . d
- 5 567—-)w=w0 (CAg7 - aw?d ) - ia) ( gzlaw)) + wpd]

deg,
= . -3 . 3
( ™ ) _ i(a, 1aw1) + (sr + isi)a + (ar + 1ai)a .
w=w,
(2.22)

The term ®1(k, w) arises, e.g., from the collision term, in which

case (asl/aw)w_w is pure imaginary. Then from eq. (2.22) we obtain
0

-1 h
Aliiil—-aw12+vA=—(ii€—o) 2(s_a + a_a3d)
da 1 dw? i, r r ’
- (2.23)
326 =1
Ar(aw)) + Ajo; + vawy = ( aw?-o ) 2 a,a?) ,
=wg

where we have assumed that v = Zi[(le/aw)/(3260/3w2)1w=m is

real, avoiding unnecessary generality.
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§ 3. Investigation of Exceptional Case by a Model Equation

A typical example of the exceptional case is given by the following

model equation with a small positive parameter A

.
.

2 2
(et v v-a2(2+22-2-v2)v=0, @
X

where V and £ are constants. The linearized version of this

equation has an unstable solution, the frequency of which is given by

1/2
w = kV 4+ ir(2-k222) (3.2)

where k 1is the wave number of the wave and is chosen so as to

satisfy the inequality (k&)2 < 2. The effective growth rate, i.e.

1/2
an average of A(2 - k222 - v2) decreases with the increase of the

amplitude, and for a sufficiently large amplitude we may expect that

the wave will become stable.

At first we arrange eq.(3.1l) in the form of eq.(2.5)

3 NG 32 .
(—B—E+Va—x—)v=}\2(2+225§—2-)v-)\2v3, (3.3)
and seek for a solution of the form
v = acos(kx - wot -~ Y) + Avy + szz + e (3.4)

where wy = kV. We choose k as g1, Owing to the term

-2222 32v/3x? in eq.(3.1), this choice of k (k% = 1) guarantees

that only the fundamental mode is unstable and all higher harmonics

- 11 -



are stable. We allow slow variations of @ and ¢y in accordance with

eqs.(2.10) and (2.11):

da

T = M@ + A2A,(a) + oo, (3.5)
L= @ FA2u,@) + e, (3.6)

Then following the procedure of the proceeding section, we find that
A, =0, w, = 0 and that A, and w, are governed by a set of simultaneous
equations:

da, ,

lw
Q
w

it
o

AL aw) +w ] (3.7)

In solving this set of equations, we use the condition that A1 should

approach to a as q tends to 0 in accordance with eq.(3.2).

The solution compatible with this condition is

(3.8)

b2
it

" Thus we conclude that for a small amplitude, the frequency shift does

not occur and the amplitude grows up according to the equation

- 12 -



da _ 3
dt 1-3 a? (3.9)

The solution of eq.(3.9) is easily shown to be

a(t) = /g—sech [ x(t - tc)] for tftc s (3.10)

where tc is defined by

- /8
ao =. 3 sech ( tc) . (3.11)

a, being the initial value of a at t = 0. Thus if we have a small
amplitude wave initially, the amplitude grows up and reaches its
maximum value v 8/3 at t = tC . No frequency shift occurs in
this case.

For t > tc’ the behavior of the solution cannot be determined
from the arguement so far made. But by solving eq.(3.1) numerically
with an initial condition, we found that the amplitude seems to

decrease for t > tC , in accordance with the equation
- 3 2
-~ = - Aa [ 1~ g4 (3.12)

so that eq.(3.10) is valid for t > tC , too. The equation (3.12)
arises from such a solution of eq.(3.7), that corresponds to the
damping mode in the linear theory. This may mean that the growing

wave changes into a damping wave (in the sense of the linear theory)

- 13 -



when it passes the maximum of the amplitude.
Once we have known that w, = 0, we can obtain the result above

more visually. Consulting eq.(3.5) we can write eq.(3.7) in the form:

2
__...“2‘ - Az(a_%aS) ) (3.13)
dt

of which eq.(3.9) is one branch of the first integral. Thus we can
regard the amplitude @ as the coordinate of a particle which moves in

a potential ¢(a): (Fig. 1)

o) = A2 ( -2 a2 + 3 g ) (3.14)

The excitation of a wave from a small signal corresponds to the start
of the particle from a point very near the origin 0. The particle
moves to the right and reaches the point A, where the amplitude a
attains its maximum value. Then the particle will return to the left
(d decreases) and approaches to the origin (a = 0) asymptotically.
The solution (3.9) has just such a character.

A system with a dissipation is simulated by an equation slightly
more general than eq.(3.1) :

3 3 \? 3 32

9 Ly 9 2L v Py, a2 2.98% 2y, =
( Py + Vv Y ) v + 2v( Y + Vv Py v Ac(2 + 8 ax2 ve)v =0

(3.15)
This is an equation of the type just described in § 2. Then in place

of eq.(3.7) we have

- 14 -



dAy R

- 2 I
Al aa awl + vAl a Z a ’
S (3.16)
A -2 (aw.) + Aw, + vaw, =0
1 da 1 11 1 )
For small a, we can put w; = 0 and eq.(3.15) reduces to
2
2y awdEon2(q-2403) (3.17)
dtz dt 4

Thus we can visualize the behavior of a(t) as a motion of a particle,
which moves in the potential ¢(a) given by eq.(3.14), suffering a
resistance. The particle will gradually "lose the energy', reflex at
Ay, Ay, "°** and finally approach the bottom B. This corresponds to an
amplitude oscillation, whose amplitude gradually damps away, and a(t)
approaches to a constant 2/¥ 3 . (Fig. 2)

Finally we shall give a brief discussion on the solution of
eq.(3.1) for the case a? > 4/3. When a? < 4/3 the expression (3.8)
and the one corresponding to eq.(3.12) are the only reasonable solutions

of eq.(3.7). But if a? > 4/3 , another solution is possible. The

solution is

(3.18)

Especially, when a? > 8/3, eq.(3.18) gives the only reasonable

- 15 -



Solutions of eq.(3.7).

Accordingly, if we start with a wave with a

sufficiently large amplitude, the amplitude remains constant and the

frequency shifts from that of the linear theory by

eq.(3.18).

§ 4. A Special Case

A system of two

set of equations:

oN.
ot ox j 3

ML, M e
dt j Ix m
3E _ .,

- e ( Na + N

where the two beams are specified by suffixes a and b, and j =

w, given in

of Two-Beam Instability

cold electron beam is governed by the following

(4.1)

-y ) .

b

a or b.

We have taken a special case, in which the two beams have the same

density N;.

Then the dispersion equation can be solved analytically

8)

and the system is shown to be unstable when the relative velocity V

is smaller than a critical velocity Vc =

and k

is the prescribed wave number.

, = v 87e2N./m
2wp/k, where wp 8rme No/m

We shall study the behavior of

the system near the marginal state V = Vc'

We consider a state in which the beam a is at rest and introduce

dimensionless variables as follows:

- 16 -



Nj = N, (1+ ﬁj ) ; j=a,b ,

v, = (v J/2) v, oo,

v, =V, 1 -uw + (vc/z) Gb 9 S (4.2)
E = ( 8meN,/k) E

t = t/o , x = x/k s

where u is a small parameter which indicates the degree of departure
of the relative velocity from the critical value; the system is un-

stable for u > 0 and stable for up < 0. Then eq.(4.1) reduces to

am,  av, 5 h
5t T3 C 7 3w (M) >
an ov on

b b b _ 9
5t toaw T2 - i Mo (v
ov v L
24 E=-wv —2> (4.3)
ot a 9ox
oV, AV, oV

b b = - 1
3T + 2(1 - ) = + E = )\vb e ,

3E _
2 P + (n + n ) 0 ,

- 17 -



where we have omitted tildes over the variables and introduced a small
parameter X , which indicates the level of the wave.

The dispersion relation of the linearized system is

1 1
w2 T T - 20-m12

= 2 R (4.4)
which can be solved for |u| << 1 as

1 -puti %-ul/z for pu >0 R

w =9 (4.5)

1+ Jul * /% lu[1/2 for w<o0 .
.

This is a typical example of the exceptional case.

In solving the system of equations (4.3), it is more convenient
to handle eq.(4.3) as it stands, than to transform it to the form of
eq.(2.1). We choose A2 as |u|, since then the contribution of the
nonlinearity is the same order as that of .

We assume the solution of eq.(4.3) in the form:

{V N 4 ~, e ~

n, 1 W fnal n_,

1
" = acos ¢ + A "1 + A2 b2 + e s
- (4.6

va 1 Val v32 ( )

Vb -1 Vb1 J Vb2
L = asin ¢ + AE; + AZE, + c°° ]

- 18 -



where ¢ = x - t - ¢ and
da _ 2
it Al(a) + A Az(a) +
%% = A (@) + A2w,(@) + +e-

" (4.7)

We substitute these expressions into eq.(4.3) and equate the coeffici-

ents of the same power of A

The coefficients of A

\
M Ve >
—sz—-+ S - " Al cos ¢ - awl sin ¢ + a“< sin 2¢ ,
anb ov an
1 bl bl _ , 2 .
T + S + 2 e Al cos ¢ awl sin ¢ ac sin 2¢,
oV,
al + E, = -A, cos ¢ -~ aw, sin ¢ + = a? sgin 2¢
dt 1 1 1 2 ’
V. av
bl bl _ , 1 - .
At + 2 e + El = A1 cos ¢ + awl sin ¢ + 5 a‘ sin 2¢ ,
3E
2 P + no, + n, = 0

- 19 -

on both side.

gives the following set of equations:

( (4.8)




Apparently eq.(4.8) has source terms which can resonate with the
lefthand side. But at this stage the requirement of nonsecularity,
i.e. thé requirement that the solution should have only terms periodic
in ¢ , does set no restriction on A, or w,. The solution of eq.(4.8)

1 1

is obtained as follows:

) ~ - W N
n_4 2
1 -2
= (A, sin ¢ - aw, cos ¢ )
v 1 1 1
al
vbl 1
~ e A -
- ) N o (4.9)
1 2
+ 2 a? cos 2¢. s
1
- -1
= 1 2
El = > as sin 2¢ s )

where A1 and w, are arbitrary at this stage, and the first harmonic
terms of El has been taken to be zero.

Using these results we proceed to the order of AZ.
The calculation is straightforward but tedius. At this stage the

nonsecularity condition yields equations for A and

1 1

N
dA;
N, — - 2 2 + 2 1 3
Ay aa Awy - 3 a + 3 a s
> (4.10)
A, [ 2 + = 0
1 [da(awl) w]_ 1 =

- 20 -



where the double signe corresponds to the same signes of u . It

should be noted that this set of equations has just the form predicted

in § 2.

i) The case when u > 0

In this case the solution of eq.(4.10), which is compatible with

the linear dispersion relation (4.5), is

-/ 2 2.1 4
A *\// 3 a< + 6 a , &

wy = 0

(4.11)

The second term in the square root in the expression for Al is the
contribution from the nonlinearity. Thus we see that the nonlinearity
in this case does not suppress but enhance the instability and that

we must seek for other mechanism to get a finite-amplitude, stationary

wave,

ii) The case when u < 0.

In this case the solution of eq.(4.10) is

(4.12)

€
]
1+
win
1
W=
2
N

for small a. Accordingly when a is small, we have a constant-
amplitude solution with a frequency shift, which decreases in
magnitude as the amplitude increases. When a > v 2 , the constant-

amplitude solution (4.12) is not possible. The solution should be

- 21 -



determined by equations

dA )

~t _ _3 1 3
Al aa = - ) a + 3 a ,

> (4.13)
wl = 0 9
whence we have

- _Z 2 .1 1

Ay —J C 3 @ + c & (4.14)

As for the integration constant C, we have no rule to determin it.

A reasonable choice of C may be 2/3, which makes Al =0 ata=7V 2.
We can summarize the results in this case as follows. When the

amplitude is small, there is a stable oscillation with the frequency

shift due to nonlinearity. The frequency shift decreases as the

amplitude increases until the shift becomes zero at the amplitude

| 2u ]1/2. Further increase of the amplitude makes the wave unstable,

and the amplitude grows up according to the equation

a 2 2 1

—S-E- = |u|1/2J§——a2+—a” (4.15)
(It should be noted that we deals with a wave with an amplitude
Iull/z a ). This is a typical example of the wave which is stable in
the linear theory but is unstable against finite amplitude perturba-

tionss).
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§ 5. Conclusions

In this paper it has been shown that we should distinguish the
exceptional case from the normal case in the discussion of the effect
of nonlinearity on the behaviors of a wave, which is monochromatic and
stationary in the first approximation. Since the normal cases have
been discussed already by many authers, we have given no concrete
example. 1In this paper the emphasis is laid upon the characteristic
behaviors of nonlinear waves in the exceptional cases.

In a dissipationless plasma, H and o, vanish. Accordingly
we see that A2 = 0 1in the normal case. It can be also shown that
all An = 0, so that in a normal case a stationary wave in the linear
approximation remains stationary in nonlinear theory. In an exceptional
case this is not always true. As we have seen, the nonlinearity can
change the growth rate of the wave. But consulting to eq.(2.23) and
considering that v = 0 in a dissipationless system, we may conclude
that either Al or w, must be zero; i.e. we have either non-zero
growth rate or non-zero frequency shift, but not both, in an exceptional
case in a dissipationless plasma.

Two-stream instabilities are typical examples of the exceptional
case. We .can also show that in a fluid description the instability
can be either suppressed or enhanced depending on the choice of
parameteré characterizing the two-stream system. When we discuss the
instability in the kinetic theory, we will have to take account of the
Landau damping and collisions, too. Particle trapping may also become
important. But even in that case, the two-stream instability near its

threshold should be discussed as an exceptional case in our sense.
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Detailed discussions of the two-stream instability will be given in

papers to follow.
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o (a) /A2
0.51

0.3

0.4

-0.5L
Fig. 1: The Shape of the "potential" ¢®(a) given by eq.(3.14).
The points A;, Ay, ... indicate the "reflection points
and B is the '"bottom'" of the potential.
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Fig. 2.: An example of the amplitude of the waves obtained through
the numerical solution of eq.(3.15). The values of
parameters are V=1, £ =1, A = 0.1, v = 0.5,,k = 1.0.
: The solution due tao the linear theory.
b : The amplitude of the fundamental mode obtained through
the numerical solution of eq.(3.15).
¢ ¢ The amplitude of the second harmonic.
a, = 2/Y¥3 : The asymptotic value of g predicted by the theory.
a, = v¥8/3 : The maximum value which would be attained if v

were zero.

- 27 -



