jNSTI{TUTE @F' E»LASMA PHYSECS

NAGC}YA UN%VERSITY : _'

T T N A GO A, TIAPAN L i



Enhanced Particle Losses
due to Electron Cyclotron Wave Instability

in Magnetic Mirrors

H. Momota and Y. Terashima

IPPJI-79 December 1¢68

Further communication about this report is to be sent to the
Research Information Center, Institute of Plasma Physics, Nagoya

University, Nagoya, JAPAN.



The electron cyclotron wave instability of non-uniform plasmas in
magnetic mirrors is investigated. First, the most unstable mode of the
instability is studied by the WKB method under an appropriate boundary
condition. The non-linear development of the instability is then
discussed in terms of the diffusion equation in velocity space for the
resonant particles. The particle loss along the magnetic lines of

force is found to be appreciable. In aid of the discussions, some

numerical examples are presented.



I. INTRODUCTION

Instabilities due to anisotropic velocity distributions have been
studied extensively in the literature.l One of the subjects is the
electron cyclotron wave instability, that is, the electromagnetic
instability near the electron gyration frequency. Most of the work
done so far treats uniform plasmas with bi-maxwellian distributions by
linear theory.2 On the other hand, we see today many experiments in
which the energetic electrons are produced in magnetic mirror configu-
rations. A study of the loss-cone distribution is therefore necessary.
In general, in mirror devices cyclotron instabilities of electrostatic
nature or loss-cone instabilities3 can possibly take place. However,
the electron cyclotron wave instability is believed to be of primary
importance in some experiments4~6 with which we are concerned.

The purpose of this paper is to study this kind of instability
for a non-uniform plasma with loss—cone distribution. Spatial varia-
tion of the plasma density as well as of external magnetic field are
taken into account. A linear theory of a similar problem has been
treated by Scharer7 in his treatment, however, plasma density and
external magnetic field are assumed to be uniform.

In Sec.Il, preliminary remarks on a spatially uniform plasma with
loss-cone distribution are presented. The diffusion equation in
velocity space for the resonant electrons is derived from the quasi-
linear theory. Numerical examples are given to compare the growth rate
of the instability with the diffusion rate of the resonant particles.
In Sec.III, we treat an inhomogeneous system in a magnetic mirror
configuration. The mode with maximum growth rate is found by the WKB

approximation. Enhanced particle losses along the magnetic lines of
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force are estimated from the asymptotic form of the velocity distri~

bution.

II. PHENOMENA IN HOMOGENEOUS PLASMAS

In this section we study the electron cyclotron wave instability
and the associated particle diffusion in velocity space in a spatially
uniform plasma. For the present‘investigation, ions are assumed to
constitute only a fixed and uniform background for charge neutraliza-
tion. We neglect both collisional ana felativistic effects.8 The
" distribution function of the electrons f(?:ggt) then obeys the colli-
sionless Vlasov eqdation.

v
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e =2 x B 3
-7(E+ - )'~——‘§=Os (1)
¢ v
where m and -e¢ are the mass and the charge of an electron, respective-

ly. The electric field ET?;t) and the magnetic fieldlﬁf;;t) are

determined by Maxwell's equations

= 1 3B

rot £ - c 3t = 0, (2)
= _ 1 8E 4re [ =, 3

rot B = T 3% S f vf dv. (3)

Let the external uniform magnetic fieldlgo be along the z-axis

and consider perturbation propagating along E;. We apply Fourier

analysis in space and time according to

FEB ) = £,G,0) = Ty Fi, @) FEE 70D, “
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where fb(?,t) is the unperturbed distribution. The symbol Em denotes
the summation over non-zero m. Similar expressions result for the

electric and magnetic fields. Eq.(l) can then be written as

-

Qe @ty =25 B +Z x @ x R
32f0(”'t) T om Zk,w [bk,w + w & ‘Ek,w)] Jﬁjik,w(v) ()

and
—» 9 — R - —> e . -.Z:-(_; —s
SV X g O - L KD 6 - 2A - SEOE
—;;4k w 9
+ — 2= K] Eﬁjfb(v,t) =0, (6)

where E; is defined as éﬁ;/Mc. In Eq.(6), we have neglected the terms
corresponding to the mode-mode coupling (quasilinear treatment).

Together with the following equation derived from Eqs.(2) and (3)

c2k2

( 2
w

- 4re
- 1) Ek,w T 1w

J?fk’w W) dv, (7)

we have the set of equations (Eqs.(5) ~ (7)) describing the phenomena

we are interested in.

ITI - A. LINEAR INSTABILITY

We summarize briefly the results of the linear theory. Eqgs.(6)
and (7) are a set of linear equations for f. (;) and j7 . If the
k,w kyw
external magnetic field is strong enough, the mean distribution func-

.
tion f,(v,t) may be expressed as a function of v; and v, , which are

. - . . . .
defined by v = (v, cos ¢, v, sin ¢, vn) in Cartesian coordinates.
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The temporal variation of f, if assumed to be very small compared to

the frequencies of the perturbation and is neglected.

For a growing transverse wave (E% w §>and Im(w) > 0), Eq.(6)

leads to
E?é (D '.'f."l«(i) kU“ a kv,
T @ =1 L o= [ - )+ — ]fo(v),
20 U+(JJ —k?)”
(8)
where Efk " is defined as ——(E K, 4 Ey % w)' A wave of righthand

polarization corresponds to E k. w with a positive value of k and E+k

> L]

with negative k. Without loss in generality, we shall henceforth

restrict ourselves to the case k > 0.

—_
Substituting (v) into Eq.(7), one obtains the following
k,w
3

dispersion relation

2
2.2 2 2 (o [ v kv
c kT _ 4n”e )
2“1t T [d” o L2 == %,
w o - w—wc-kv“
kv
+T = 1fo@. (9

After integration with respect to v we have

%2 i’é = dyy 1 d
wz =1 + wz I B:a—:zai'{ E'z;‘[w(vn)F(Un)] - (w‘kvu)F(Un)}
(10)
1
2

where wp = (Aﬂnez/m) is the electron plasma frequency, and F(v,) and

W(v,) are defined as

[=2]

F(vy) = —2’7“— [ Ffolvy, v v, dy (11)

(2]
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and

00

* 2
W(oy) = j v fov v v dvy / Jfo(u,, o,V )v dvy . (12)
o o
In order to express Eq.(10) in a more convenient form, let us
replace the complex w by w_ + iy with real w_ and Yy and assume that
r r

Iwrl >> ¥ . One then obtains for a real value of k

2
P
czkz 1+ wI’(wC—mr’)
= : (13)
w2 2 2 z
r w <vT> w <@Hf>
1+ £ 1 - —=
(w ~w )2 2 c2 W —w c2
c r c r
and
2
m “p 1 d .
y = — 5 7 [E T W(v”)F(v“) - —Z}F(Uu)]
2 w tw w /2(w ~w )
r cp c r
(14)

where the resonant velocity Ur(k’ wr) is defined as v, = (wr—wc)/k.

It should be noted that the wave is supported by the electrons as a
whole the growth rate, however, is governed only by the resonant
electrons.9 Our sign convention is that w_ as well as k are taken to
be positive. Eq.(1l3) gives a solution wr(k) < w.s then v, is negative

so that the resonant electrons counterstream the wave of wr(k)/k > 0.



II - B. DIFFUSION IN VELOCITY SPACE

We shall consider a nonlinear property of this instability by
extending the usual l-dimensional quasilinear method to 2-dimensional
one. The mean distribution function fb must be a function of ¢, and
consequently the growth rate y depends on time. The basic equation
governing the evolution of the instability is Eq.(5) and an instantane-
ous property of a wave can be described by Eq.(8) -~ (14).

The substitution of Eq.(8) into Eq.(5) gives immediately the

following diffusion equation in the vi - v, space:

w
—a%fo(vl,v“,t) = ( -ki —l;ﬁ%: + 3—2—; )D(k,wr,TJ, t)
(15)
“c1 3 3
G o 3oy a0 Te s vis ) ,
k=k(v )
where k(vy) is the root of the equation w, =W, = kv, = 0, together

with the dispersion equation (13). D(k,wr;g,t) is a non-negative

quantity defined by

. L2 vt 2 2
D(k,wr,v,t) = éﬂL(EO T;]T l B; | |Ek,wr(t)l . (16)

Introducing new variables £ and n defined by

w
_ _ c
E=37% J Koo
and
n = U" s (17)



one can rewrite Eq.(15) simply as

A o(Esns ) = 5= D(E,n, ) = £oe,n, 1) (18)

The fact that D is non negative leads to the conclusion that fb
diffuses in the region D > O (hereafter named 'resonant region') in
the £ - n plane along the lines { = constant (hereafter named "Diffus-
ion lines").

It is natural to assume that fb tends to a stationary value as

t > . We then have from Eq.(18)

n

2
J D(&,n,t) |§%fo(€,n,t)[2dn
N

P nzl
= - EE'J gfo(g,n,t)dn+0 as toeo (19)

i

where ny and n, are supposed to satisfy the conditions

D(g,n,t » =)

Il
(@]

r < i <
fo n<mn; and n, n,

it
o

D(E,n,t > =) for Ny <n<n, .

This implies that as a result of the diffusion, fb should be constant
on a diffusion line within the resonant region.lo The diffusion in
velocity space is illustrated schematically in Fig.l, where the wvari-
ables are restored to v and vy . It must be noted that since wc/k(vu)
is larger than |v,|, the kinetic energy of a particle generally
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decreases as |n| increases along a diffusion line.

A temporal evolution of the mean distribution function will be
traced, in principle, on the basis of Eqs.(13), (14), (16) and (18).
Instead we here prefer to give a crude but simple estimation of the

diffusion rate. Integrating Eq.(1l5) multiplied by 2w /n with respect

to v, , one obtains

k() 2 2
) e.2 9 1 -
S Wy,t) = 41(C) 55—'| 5]'1| —;—*—'| lEk(v“),wr(t) |

d c
x { m [ W(U”,t)F(U“,t)] - m—”_)_F(v”’t) }

k(vg) 2w w
e.2 9 1 # r c
=4l g oo 15 2t 7]
r (.Up U)c U.)P
d - 2
@ Prop ., O (20

If the initial electric field E(t = 0) is negligible small, this

equation yields

2 -1
- 2 1l,e. 2 z(wc—mr) wc
| Py OV =@ o L5 —+5- )
r wp r
3 X
x X J { F(q,,O) - F(yy,t) } dyy (21)
0

where X = (wC - wp)/k.



From Eq.(16) we thus obtain

n 2 2 2 2Ky -1
D@,y t) = k") vy vy { 1+ —5— [w k@) |v,]]}
C w_w
p c
0, |
x J { P(vy,0) - F(y,,t) } dv, (22)

0

In Eqs.(21) and (22), the function F(v,,t) is still unknown. The
asymptotic form of the distribution, F(vy,t>~) can be found by the
consideration that fo may be constant in the resonant region along the
£ = constant lines as t»>« ., Such estimation will be done for some
typical examples in the next section.

We may add the remark that the above discussions, except for Egs.
(21) and (22), hold even for the development of externmally or initially

applied electron cyclotron waves in a stable plasma.

ITI - C. EXAMPLES

Let us consider the case in which the electrons initially have

the following loss-~cone distribution:

2, 2
Vo 1 3 2 2 Yy )
fo(v—l-’v") = 7__'—2" 0 h(2v_L-v") exp (-~ 5 ). (23)

mYymT O a

This means that a maxwellian plasma with temperature Te = (m/2)o¢.2 is
initially immersed in a magnetic mirror field of infinite length and
the mirror ratio of 3. The function A(x) equals unity if x is non-

negative and h(x) = 0 if & < 0, then Eq.(14) yields

- 10 -



Wp 2 y? We 2
y=7yrme@dl-2 [¥Y(5 +1) - %o | exp(=Y7) , (24)
Cc

where Y = (wc - wr)/ku,and k is the solution of Eq.(13).
The numerical values of y and k are demonstrated schematically
in Fig.2, where the parameters are: B = 2 kG, the number density

N = lO12 c:m—3 and Te = 20 keV. The characteristic growing time of

o
the instability is faster than 1 nsec. Lower temperature will give
smaller growth rate.
Next, we elucidate the diffusion phenomenon in this case.
From Fig.2, one finds the spread of the frequency spectrum to extend

from 0 to 0.68 W, where the growth rate is positive.11 Then the

resonant region in the v, - v, space is
9
| ) “| > 4x10° cm/sec. (25)

” .
The diffusion lines (%vl? - J (wc/k(v”))dvH = const.) are approximately

~ 2
g %—vi"+ v%,= const. (26)

In order to obtain F(v t»>~), we follow the discussions given

In?

previously. Integration of Eq.(18) gives

a (M2 ~
_a—t" fo(€3nst) dn = 0. (27)

n
1 E=const.

where ng = -v, and Ny > ==, Recalling Eq.(19), one obtains
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n

) 2
fo(E,n,tr=) = J fol&,n, =0)dn J dn. (28)
" 5]
Then %
CTE 2 a2
[ E) epZEE g
£l , N, 3%, -5 o
o v ’v St—)m = Y T s
- m/FoP\/ 2 (VE e+e’ 5
= ds
y &8
[od
(29)

and therefore one can obtain F(v,t»>=) = (l/N ) J f(qL,v”,t+w) 2wvldbL.
o
0

The asymptotic function F(vj,t>~) calculated numerically is shown in
Fig.3 together with the function F(v,,¢ = 0). Particles which are
resonant with the waves amount to about one half of the total particles,
and the value j [F(vy, 0) - Fyy,t>>)] dv is estimated to be of the
order of 0.01. gutting v) ~ vy ~ o into Eq.(22), one can finally find
the numerical value of the coefficient D to be about 108, and the
characteristic time of diffusions to be about lO”7 sec (about lO2 times
the characteristic growth time).

From these values, we expect that as the electron cyclotron wave
instability develops, the particles suffer rapid diffusion in velocity
space, which results in an enhancement of mirror losses in actual

finite mirror systems.

III. PHENOMENA IN MIRROR TRAPPED PLASMAS

We now extend our discussions to non-uniform plasmas contained
in a mirror machine. Since we are interested mainly in enhanced
particle losses along the lines of force due to electron cyclotron wave
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instability, we consistently ignor the variations across the lines of

force. The externally applied magnetic field is assumed to be

B +B, B -B,
B(z) = (—5—) - (Tx)cos(FD), (L <3z <) (30)

The unperturbed distribution function is taken to be

No 4 Bo gl B -B(z) , ,
Fold 0y ,2,8=0) = — —>— (1 + £y nlems—vi-o)
LYy e ole B -Bo 2 B(2) i
1 B(2)-Bo 5 1 Bo ,
e O YT 7 B@Y 1

P
(31)
where No means the number density of the electrons at 2 = 0 (the center
of the mirror) and A(x) is the step function introduced previously.
A distribution function really depends on the method of ﬁlasma produc-
tion. This distribution function is chosen so that the bi-maxwellian
electrons with the temperatures Iy = (m/2) 32 and 7', = (m/2) o? are
produced at the center of the mirror and behave adiabatically inside
the mirror. Particle losses inside the loss-cone, however, are taken
into account.
Further more we assume that the external magnetic field and the
unperturbed distribution change very slowly in space and that the
local behavior of the perturbation can be described in terms of that

in a homogeneous system (WKB approximation).
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III - A. LINEAR INSTABILITY

We aim to predict correctly the frequency for maximum growth rate

of the instability. Let us consider a perturbation of the form
<
E(z, t) « exp [ij k(z)dz - 1wt 1 ,

where k(z) is the locally defined complex wave number and w the complex

angular frequency. Then the real part of k(2) is related to the real

part of w by

X
2

2
w w_(2)
£ -, (32)

= L
kr(z) T {1+ wr[wc(z)—wr]

which is obtained immediately from Eq.(13) as a local solution. We
set w=w, + iwi and also k(z) = kr(z) + iki(z) .

Since the equation governing the perturbation is a partial
differential equation, the growth rate of the perturbation must be
obtained under a suitable boundary condition. By considerations of
symmetry we postulate as such a boundary condition that the amplitudes
of the perturbed electric field at both the ends of the mirror are

equal. Then, by making use of the relation (see Appendix)
ki(2) = Lo, -y 1/ Qu,l/ok) , (33)

we obtain12

L dw -1
f dzy(2) (7
YI T L Bw, il (34)
J dz ( EY
r
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Here yv(z) is the local growth rate which is obtained by solving the

local dispersion equation under the condition ki = 0. Namely from

Eq.(14),
_ /;'.2 OJc(z) wp(z) 2 -1 2
’Y(Z) = _2' “’p(z) { wl” + 2 [ wc(z)_wr ] } exP(°X )
B(2) B(z) w, (2)
x { X[ X + 1 -57/—~—1,
BB ' 5 5 (alsdyl K@

(35)

where X = (wc(z) ;.wr)/K(z) and K(2) = kr(z) B{[Bm - B(z)1/2[B(=2)

- Bo(l - 82/a2)]}2. The local group velocity Bwr/akp is obtained from

Eq.(32) as

2 1
{1- “p®) }2

. dw w [w (3)-w_ ]

_ r‘c r (36)
ok ¢ w (2) w_(2) )
r C p
1+ —5— 1

w w (8)-w
r c r

A typical example is illustrated schematically in Fig.4.
The plasma parameters are chosen as T | = T||= 20 kev, NO = 1012 cmm3

and Bm/Bo = 3 with BO = 2 kG. The growing mode has the maximum growth

rate at the frequency w, = 0.62wC (z = 0).

III - B. DIFFUSION IN VELOCITY SPACE AND MIRROR LOSS

As is shown in II - B, the cyclotron wave instability gives rise
to particle diffusions in velocity space. In a mirror this diffusion
causes particle losses along the lines of force. Let us take as
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variables the kinetic energy e = (m/2)(v,2 + v!f) and the magnetic
moment u =-mvi?/2B(z), instead of vy and vy - Then the unperturbed

distribution function (31) becomes in the u - ¢ space

1

NO BO 2 h(B U'E)
Folesua,t=0) = — ZEL (14— M
iy & [e-uB(3)1?
1 T”
x expl- 7y [ + G - DuBol} . (37)

Particles whose kinetic energy & is greater than uBm disapear because
they are lost through the mirror ends, and particles whose kinetic
energy € is less than pB(3) have turning points inside the interval
(-z, 2), therefore these particles do not contribute to Eq.(37).

As was stated before, the unperturbed state changes so slowly
that for diffusions in velocity space the scheme described previously
for the uniform plasma still holds locally in the nonuniform plasma.
The frequency spectrum of the perturbation is thought to be extremely
sharp around, say, W, = wo. The local resonant region in velocity
space is then reduced to a narrow bhand

e = uB(2) + 2 V2 (uo,2), (38)
2 'r
where V&(wo,z) is the locally defined resonant velocity [wo - wc(z)]

/k(wo,z) and is determined by Eq.(32) as

w2 (2) -

LOO[UOC(2")"‘*’0] }

rNof

V,(wo,2) = o= [wo = w ()] { 1+ (39)
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The local diffusion lines are

Wo

- —_—_ZGT'UBO = const. (40)

€
2
wc(

Let the turning point of the particle with u and € be By which

is determined by € = pB(z Zt)' Consider a particle which satisfies
m .2
€>uBo+ 5V (wo, 2=0). (41)
This particle will satisfy the resonance condition (38) at some place

=3 -2, < < . i
2 o £ S B, <&y From the fact that wc(z) increases as |z|

while wp(z) decreases, V%(wo, z) is found to be an increasing function

of Iz . In the resonant region, the particles really suffer from
changes in energy and magnetic moment by interaction with waves. 1In
the p - € space, the resonant particles diffuse along the diffusion
lines and are, on the average, directed to smaller value of u. Once
the particles enter into the resonant region, they continue to keep
the resonance condition with their decreasing p values (Fig.5).

Finally they fall into the loss-cone and escape from the confined field.

As a result, the distribution function finally tends to

fO(E:Uszst"‘”) = fo(€,u,2,t=0) x hluB, + %‘Vi(wg,2=0) -e].

(42)

Actually we have a finite spread in the frequency spectrum of the
excited waves. For a particle with given u and €, the finite spread
of the spectrum gives some width to the resonant line. This effect

can be incorporated into our considerations that the resonant particles
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diffuse within the resonant region. The other effect of the finite
spectrum is to make a little vague the edge of the resonant region
which correspbnds to the resonant velocity at 3 = 0 (see Fig.5).
These considerations lead to the conclusion that the finite spread in
the frequency spectrum has little influence on the asymptotic distri-
bution in Eq.(42).

We estimate the particle loss for the example presented above by
Eq.(42). The linear theory (Fig.4) suggests to assume that the spect-
rum is very sharp around wy = O.62wc. Consequently we have lVf(wo,z=0)[

= 5.4 x 109 cm/sec. From Eq.(42) with Eq.(37), we have

N(z,tro) = f de J du fo(e,u,tro)
0 0 1 1
3 Bm—B(z) 2 B(z)-B, 2
=3 Vo { 0.4240 —5—1] - 0.608[ ——5—]
1
B -B(z) =
m 2
x D{[0.206 m] Y},
(43)
where
_xz x t2
D(x) = e J e’ dt. (44)
o

At the middle point of the mirror (z = 0), this is evaluated immediate-
ly to be N(z = 0, t + ) = 0.734 NO. The value N(z,t - «) is shown as
a function of z, in Fig.6.

The enhanced mirror loss caused by the instability is estimated
in this case to be about 30 7Z of the initially contained particles.

The characteristic time of the particle loss can be assumed to be
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2 . . . . . .
about 10~ times of the growing time as inferred from the example given
in IT - C. We conclude that the electron cyclotron wave instability
is serious to the plasma containment in mirror fields, though the

instability is of electromagnetic nature.

IV. CONCLUSIONS

In the discussisvns above, we see that by the development of
electron cyclotron wave instability, the resonant electrons promptly
diffuse along the diffusion lines in velocity space. Energyflow in
the uniform plasma is an follows: The perpendicular energies of the
resonant electrons are converted partially into the field energy and
also partially into their parallel energies. The diffusion equation
in velocity space, Eq.(18), will be applicable even to the problem of
electron cyclotron heating.

For the non-uniform plasma produced in mirror devices, it is
shown that the diffusion in velocity space results in an enhanced
particle loss. The conclusion is based upon the knowledge of the mode
with the maximum growth rate. Our arguments are, however, valid only
so far as the medium which supports the waves does not change appreci-
able during the diffusion of the resonant electrons. In some experi-
ments we have much contamination of cold electrons. The cold electrons
support the waves, while the hot electrons are in resonance. Our
analysis will be applicable to this case in a good approximation
especially when the diffusion time of the resonant particles is faster
than the flight times between mirror ends of the cold electrons.

It should be noted that the velocity distribution of the electrons
remaining in the mirrors after some electrons are lost by the instabili-
ty, has larger anisotropy than that of the initial state. This
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implies that the regenerated plasma is still unstable for perturbation
of the same kind.

The ions are thought to be the uniform background. As long as
the ion temperature is low, the ion loss is mainly determined by the
loss of the energetic electrons. If the ion temperature becomes high,
the ion dynamics comes into problem.

Throughout our discussions, the variations across the magnetic
field are ignored because we are interested only in the electromagnetic
mode propagating along the magnetic field. For other kinds of instabi-
lities such as electrostatic cyclotron instability or drift instability,

the radial variations must be taken into account.
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APPENDIX

We here show that the relation (33) holds under certain conditions.

Let a local dispersion relation be
k(z) = Q(z,w), (A1)

where we take the perturbation of the form exp[ijzk(z)dz - Zwt] with
complex k(z) and w, and characteristic lengths of unperturbed quantities
are assumed to be much larger than k_l. The function § is also assumed
to be analytic function of w. Let w, k(2) and @(z,w) decompose into

the real and imaginary parts, w = w, + iwi.etc. We also assume that

lwrl >> Iwil Ikr| >> lkil and EQPI >> lQi]- Then Eq.(Al) leads

K (5) = @ (2,0) (A2)

and

BQP
4;(Ew) + w{g;;(zswr) . (A3)

ki(z)

Note that @(z,w) does not depend on boundary conditions but only on
the local properties of plasma of interest. Let us consider a local
perturbation with a boundary condition of ki(z) = 0. The temporal
growth rate of this perturbation, y(28), is found to be

2
Y(z,0,) = =Q (z,0) / 55i<z,wp) : (A%)
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From Eq.(A2) we have

3QP Bwr -1
EZT{Z,MP) = [ gz*(zswr) ] . (A5)
r r

Then Eq.(A3) can be written as
Bwr
k(2,0 = L (u) - v(z,0)] /@(za%) : (46)
In order to determine the wvalues ki(z) and W, we must ask for the

boundary condition for the perturbation. A periodic boundary condi-

tion, for example, yields

ow
. r
dz Y(°’wr)/a—z;<z’wr)

w.(w,) = (A7)

Bwr
J dz / @(z,wr)

This relation is Eq.(34), in III - A.

Another example of fixed boundary condition (wi = Q) gives
)
ko (2,0) = =y(z,0) [ 57(2,0) . (A8)
r

The equation used in III - A (Eq.(34)) is just the same as the above

equation (A7).
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Diffusions in velocity space. The resonant region is

the interval of |v,| = lwc - wr(k) | /k where k and wr(k)
are the quantities of the non-vanishing E—k o The

» Wr
diffusion lines are the & = const. lines where § is

defined by Eq.(17).
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The asymptotic distribution F(v,, t+) and the initial
distribution F(v,, t = 0) which is obtained by integrat-
ing Eq.(23) times 2nv”/NO over v, .
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The solid line denotes the true growth rate ws defined
by Eq.(34) for the case of Eqs.(30) and (31) with 7. =
T, = 20 keV, I = 10%cn™>, B_ = 2 k¢ and B /B_ = 3.

Weo is the electron gyration frequency at B = Bo' The
corresponding growth rate of the local solution at z =

0 is shown by the dotted line for comparison.
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Diffusion in the p - ¢ space where € is the kinetic energy

and p the magnetic moment. The frequency spectrum of the

unstable waves is assumed to be very sharp around w_ = W
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Fig.6 The change of the electron density distribution

and the profile of the magnetic field.
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