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In a recent paper [N. Sato, Prog. Theor. Exp. Phys. 2021, 6, 063A01 (2021)] we introduced 

a generalization of Hamiltonian mechanics to three-dimensional phase spaces in terms of 
closed 3-forms. This correction addresses an error in the proof of theorem 3, which concerns 
the existence of a coordinate change transforming a closed 3-form into a constant form. 
Indeed, invertibility of a 3-form is not sufficient to ensure the existence of a solution X t to 

eq. (77) when n > 3. The theorem can be corrected by restricting the class of 3-forms to 

those that are relevant to generalized Hamiltonian mechanics. Although the new theorem 

r equir es a stronger hypothesis, the formula tion of d ynamical systems with 2 invariants in 

terms of closed 3-forms, which is the key contribution of the paper, holds. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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1. Correction 

The formulation of theorem 3 at p. 15, Sect. 5 of [ 1 ] is not correct when the dimension of the
manifold � is n > 3. This is because the in vertibility of the 3-f orm w t , i.e. the existence of a
3-tensor Q 

jk� 
t such that w ti jk Q 

jk� 
t = δ� 

i is not sufficient to infer the existence of a solution X t to
eq. (77) therein, which reads 

σt jk = −X 

i 
t w ti jk . (1) 

Indeed, the space of 2-forms σ t , denoted by 

∧ 2 T 

∗� has dimension n ( n − 1)/2. Hence,

dim 

(∧ 2 T 

∗�
)

> dim ( �) = n whene v er n > 3. This means that the map ˆ w t ( X t ) : T � →∧ 2 T 

∗� defined by eq. ( 1 ), which sends vectors into 2-forms, can never be surjective for n > 3,
i.e. there exist 2-forms σ t with no generating vector field X t . Only when σt ∈ Im ( ˆ w t ) we have a
solution X 

i 
t = −Q 

i jk 
t σt jk of ( 1 ). 

In Sect. 2 of this correction we provide an amended version of theorem 3. Relevant text
amendments are listed in Sect. 3 . An additional theorem, which applies to closed 3-forms of 
the type w = ω∧ dG , with ω a 2-form and dG an exact 1-form, is proven in Sect. 4 . A further
result (proposition 1 of Sect. 4 ) is also prov en e xplaining the relevance of this class of 3-forms
for generalized Hamiltonian mechanics, intended as the ideal dynamics of systems with 2 in-
variants. 

Below, we consider a smooth manifold � of dimension n and assume smoothness of the
involved quantities. 
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
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2. Theorem 3 

Theorem 3 . Let w ∈ 

∧ 3 T 

∗� be a closed 3-form. Let w ijk , i , j , k = 1,…, n denote the components
of w with respect to a coordinate system (x 

1 ,…, x 

n ) in �, 

w = 

∑ 

i< j<k 

w i jk d x 

i ∧ d x 

j ∧ d x 

k . (2) 

Suppose that the n × n 

2 matrix w i ( jk ) has rank n. Take a sufficiently small neighborhood U
of any x 0 ∈ �. Let w 0 = w 0 ijk dy 

i ∧ dy 

j ∧ dy 

k denote the constant (flat) 3-form with components
w 0 i jk = w i jk ( x 0 ) in a coordinate system (y 

1 ,…, y 

n ). Further assume that Moser’s 2-form σ t , t ∈
[0, 1], such that d σ t = dw t / dt in U, belongs to the image of the map ˆ w t : T � → 

∧ 2 T 

∗� defined
by ˆ w t ( X t ) = −i X t w t , i.e. σt ∈ Im ( ̂  w t ) for some X t ∈ T �. Then, w t has a right inverse J t in U.
Fur thermor e, ther e exists a coordinate change (x 

1 ,…, x 

n ) → ( y 

1 ,…, y 

n ) g ener ated by the vector
field X t = −J 

jk� 
t σt jk ∂ � such that 

w = w 0 in U. (3) 

Proof. We follow the steps of the classical proof of the Lie-Darboux theorem based on Moser’s
method [6,25]. Let w 0 denote the constant form on R 

n , 

w 0 = 

∑ 

i< j<k 

A i jk d y 

i ∧ d y 

j ∧ d y 

k , (4) 

with A ijk , i , j , k = 1,…, n , real constants. Consider a family of vector fields X t ∈ T �, 0 ≤ t
≤ 1, defined in a neighborhood U of a point x 0 ∈ � that generates a one-parameter group of 
diffeomorphisms g t as follows, 

d 

dt 
g t ( x 0 ) = X t ( g t ( x 0 ) ) , g 0 ( x 0 ) = x 0 . (5) 

Next, define the family of 3-forms 

w t = w 0 + t ( w − w 0 ) . (6) 

We wish to obtain X t , and thus g t , so that the following property is satisfied 

g 

∗
t w t = w 0 . (7) 

Here g 

∗
t w t denotes the pullback of w t by g t . Equation ( 7 ) implies that 

d 

dt 
g 

∗
t w t = g 

∗
t 

(
d w t 

dt 
+ di X t w t 

)
= 0 , (8) 

where we used the fact that w t is a closed differential form. By the Poincaré lemma, in a suffi-
ciently small neighborhood W of x 0 , the closed differential form dw t / dt is exact, i.e. there exists
a 2-form σ t = 

∑ 

j < k σ tjk dx 

j ∧ dx 

k such that 

d w t 

dt 
= dσt in W . (9) 

Hence, equation ( 8 ) can be solved in W by finding a vector field X t satisfying 

σt = −i X t w t . (10) 

In components, Eq. ( 10 ) is equivalent to 

σt jk = −X 

i 
t w ti jk , j, k = 1 , . . . , n. (11) 

Ne xt, observ e that by hypothesis the n × n 

2 matrix w i ( jk ) has r ank n . Similar ly, setting the com-
ponents of w 0 in the variables ( y 

1 ,…, y 

n ) to be gi v en by the constant tensor A i jk = w i jk ( x 0 ) , the
2/6 
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n × n 

2 matrix A i ( jk ) has rank n . Furthermore, at the point x 0 we may assume w ( x 0 ) = w 0 ( x 0 )
because the matrices w ijk and A ijk coincide there. Then, for 0 ≤ t ≤ 1, 

w t ( x 0 ) = w 0 ( x 0 ) . (12) 

This implies that the n × n 

2 matrix w ti ( jk ) ( x 0 ) has rank n at x 0 . By continuity of the tensor w tijk 

it follows that there exists a neighborhood V of x 0 where the rank of the n × n 

2 matrix w ti ( jk ) is n .
Define U = W ∩ V . Then, the matrix w ti ( jk ) has a right-inverse inverse J 

( jk ) � 
t . Since by hypothesis

σt ∈ Im ( ̂  w t ) , in U the solution X t of equation ( 11 ) can be written in terms of the right inverse
as 

X 

� 
t = −J 

jk� 
t σt jk , � = 1 , . . . , n. (13) 

The vector field ( 13 ) gives the desired local change of coordinates. �

3. List of text amendments 
Statements pertaining to the notion of invertibility of 3-forms should be amended as follows: 

(1) At p. 8, after Eq. ( 31 ), remove ‘of rank n (the definition of rank will be given later)’ 
(2) At p. 13, 1st line. After ‘ Then, we say that J is the inverse of w.’ add the sentence: ‘More

g ener ally, w e say that J ∈ 

∧ 3 T � is a w eak inver se of w whenever the solution X of the
equation i X 

w = −dH ∧ dG can be cast in the form X 

i = J 

i jk G j H k (the notion of weak
invertibility will be discussed in detail in a subsequent publication). ’ 

(3) After Eq. (60), correct as ‘ Let us derive necessary conditions …’ 
(4) After Eq. (63), correct as ‘ Ther efor e, the notion of invertibility in Eq. (59) for the tensor

w ijk is related to …’ 
(5) After Eq. (67), remove the sentence ‘Indeed, the only invertibility condition… right

inv erse gi v en by Eq. (59).’ 
(6) Replace the first par agr aph of section 5 with the following: ‘ This section is dedicated to

the proof of Lie-Darboux type theor ems (theor ems 3 and 4) in the g ener alized Hamilto-
nian fr amew ork with a three-dimensional phase space N = 3, n ≥ 3. A direct consequence
of these theorems is the local existence of an invariant (Liouville) measur e. In par ticular,
w e pr ove a Lie-Darboux theor em (theor em 4) for c losed 3-forms of the type w = ω∧ dG,
with ω a 2-form and dG an exact 1-form. A further result (proposition 1) is also proven
explaining the relevance of this class of 3-forms for g ener alized Hamiltonian mechanics,
intended as the ideal dynamics of systems with 2 invariants . Belo w, w e consider a smooth
manifold � of dimension n and assume smoothness of the involv ed quantities. We hav e the
following: ’ 

(7) Replace the old version of theorem 3 with theorem 3 of Sect. 2 of this correction. 
(8) In Sect. 5 of the manuscript, add theorem 4 and proposition 1 of this correction. 
(9) Two lines after Eq. (79): replace ‘ Theorem 3 has a number of consequences . Fir st, any

g ener alized Hamiltonian system possesses an invariant (Liouville) measure ’ with ‘ We
conclude this section with some observation concerning inver tib le 3-forms w that admit a
constant (flat) expression w 0 = 

∑ 

i < j < k A ijk dy 

i ∧ dy 

j ∧ dy 

k , A i jk ∈ R , by a suitable change
of coordinates . Fir st, any suc h f orm induces an invariant (Liouville) measure ’ 

(10) After Eq. (81), correct as ‘Multiplying by the inverse B 

ijk of A ijk …’ 
(11) After Eq. (85), correct ‘ Never theless… intr oduced in Sect. 3 ’ with ‘Fur thermor e, even

if n = 3m with m an integer, for canonical triplets of variables (p 

1 ,…, p 

m , q 

1 ,…, q 

m ,
3/6 
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r 1 ,…, r m ) to locally exist in the neighborhood of all points x 0 ∈ �, it is not sufficient that
w i jk ( x 0 ) can be transformed by a linear change of basis into the g ener alized Levi-Civita
symbol E ijk (the covariant version of the tensor (44) introduced in Sect. 3 ), because the
applicability of theorem 3 also requires that the relevant Moser 2-form ˜ σt belongs to the
image of the map 

ˆ ˜ w t .’ 
(12) In the concluding remarks section, correct as ‘ When the components of w define an n ×

n 

2 matrix of rank n, the form w has a right inverse. If the right-inverse corresponds to an
antisymmetric 3-tensor, it defines a g ener alized Poisson operator J .’ 

(13) In Sect. 6, last par agr aph, replace ‘ the sufficient conditions ’ with ‘ necessary conditions ’ 

4. Addendum 

Theorem 4 . Let ω ∈ 

∧ 2 T 

∗� denote a (not necessarily closed) 2-form of constant rank 2m = n
− s and dG ∈ T 

∗� an e xact 1-f orm suc h that (x 

1 ,…, x 

n ) defines a coordinate system in � with
x 

n = G. Define the 3-form w ∈ 

∧ 3 T 

∗� as w = ω∧ dG and suppose that dw = 0. Then, for every
x 0 ∈ � there exist a neighborhood U of x 0 and a coordinate system (p 

1 ,…, p 

� , q 

1 ,…, q 

� , G 

1 ,…,
G 

τ ) with n = 2 � + τ such that 

w = ω 0 ∧ dG, ω 0 = 

� ∑ 

i=1 

d p 

i ∧ dq 

i in U, (14) 

with � = m if ∂ n ∈ ker( ω) and 2 � ≤ n − 1 if ∂ n 	∈ ker( ω). Fur thermor e,
given a 1-form dH ∈ T 

∗�, linearly independent from dG, the phase space measure
d 
 = dp 

1 ∧ …∧ dp 

� ∧ dq 

1 ∧ …∧ dq 

� ∧ dG 

1 ∧ …∧ dG 

τ is an invariant measure in U for the gener-
alized Hamiltonian system X ∈ TU such that 

i X 

w = −d H ∧ d G, (15) 

provided that such X exists. In addition, 

i X 

ω 0 = − ˜ d H in �G 

, (16) 

w her e �G 

= 

{ x ∈ U : G ( x ) = c ∈ R 

} and 

˜ d denotes the differential operator on �G 

. 

Proof. Since dw = d ω ∧ dG = 0, it follows that ˜ d ω = 0 in any le v el set �G 

. On the other hand, 

ω = 

∑ 

i< j 

ω i j d x 

i ∧ d x 

j = 

n −1 ∑ 

i=1 

ω in d x 

i ∧ d G + 

n −1 ∑ 

i< j 

ω i j d x 

i ∧ d x 

j . (17) 

Define ˜ ω = 

∑ n −1 
i< j ω i j d x 

i ∧ d x 

j . Evidently w = ˜ ω ∧ dG. Since w is closed, this implies ˜ d ̃  ω = 0 .
If ∂ n ∈ ker( ω), from ( 17 ) it follows that ω = ˜ ω and rank ( ̃  ω ) = 2 � = 2 m = n − s . Conversely, if 
∂ n 	∈ ker( ω) the forms ω and ˜ ω are different, with rank ( ̃  ω ) = 2 � = n − 1 − u ≤ n − 1 . In either
case, by the Lie-Darboux theorem for all x 0 ∈ � there exist a neighborhood U of x 0 and n − 1
local coordinates ( p 

1 ,…, p 

� , q 

1 ,…, q 

� , G 

1 ,…, G 

s − 1 ) or ( p 

1 ,…, p 

� , q 

1 ,…, q 

� , G 

1 ,…, G 

u ) such that 

˜ ω = ω 0 = 

� ∑ 

i=1 

˜ d p 

i ∧ 

˜ d q 

i in �G 

. (18) 

By smoothness, the coordinates p 

i , q 

i : C 

∞ ( �G 

) → R also define smooth functions p 

i , q 

i :
 

∞ ( U ) → R . Then, 

w = 

� ∑ 

i=1 

˜ d p 

i ∧ 

˜ d q 

i ∧ dG = 

� ∑ 

i=1 

d p 

i ∧ dq 

i ∧ dG = ω 0 ∧ dG. (19) 
4/6 
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Now consider a solution X ∈ TU of system ( 15 ). Recalling that, by hypothesis, dH and dG
are linearly independent and noting that 0 = i X 

i X 

w = −( i X 

dH ) dG + ( i X 

dG ) dH , it follows that
i X 

dH = i X 

dG = 0. On the other hand, i X 

w = i X 

ω 0 ∧ dG = − ˜ d H ∧ dG, which implies 

i X 

ω 0 = − ˜ d H in �G 

. (20) 

Since ˜ d ˜ ω = 0 , equation ( 20 ) defines a Hamiltonian system with invariant measure(∧ � 
i=1 

˜ d p 

i ∧ 

˜ d q 

i 
)

∧ 

˜ d G 

1 ∧ . . . ∧ 

˜ d G 

s −1 if ∂ n ∈ ker( ω) or 
(∧ � 

i=1 
˜ d p 

i ∧ 

˜ d q 

i 
)

∧ 

˜ d G 

1 ∧ . . . ∧ 

˜ d G 

u if 

∂ n 	∈ ker( ω) on �G 

. Set ( G 

1 ,…, G 

τ ) = ( G 

1 ,…, G 

s − 1 , G ) if ∂ n ∈ ker( ω) and ( G 

1 ,…, G 

τ ) = ( G 

1 ,…,
G 

u , G ) if ∂ n 	∈ ker( ω). It follows that 

d
 = 

( 

� ∧ 

i=1 

d p 

i ∧ dq 

i 

) 

∧ dG 

1 ∧ . . . ∧ dG 

τ , (21) 

defines an invariant measure for X in U . �

Proposition 1. Let w ∈ 

∧ 3 T 

∗� denote a closed 3-form and dG ∈ T 

∗� an exact 1-form such
that (x 

1 ,…, x 

n ) defines a coordinate system in � with x 

n = G. Suppose that for any e xact 1-f orm
dH ∈ T 

∗� such that dH and dG are linearly independent there exists a vector field X ∈ T � solving 

i X 

w = −d H ∧ d G. (22) 

Further assume that the 2-tensor ω ij = w ijn is inver tib le on the level sets �G 

=
{ x ∈ � : G ( x ) = c ∈ R 

} with inverse J ∈ 

∧ 2 T �G 

such that 
n −1 ∑ 

j=1 

ω i j J 

jk = δk 
i , i, k = 1 , . . . , n − 1 . (23) 

Then, on each level set �G 

there exists a closed 2-form ˜ ω ∈ 

∧ 2 T 

∗�G 

such that 

i X 

˜ ω = − ˜ d H, (24) 

w her e ˜ d denotes the differential operator on �G 

. Furthermore, 

w = ˜ ω ∧ dG, (25) 

and 

X = J ( d H, d G ) , (26) 

with J = J ∧ ∂ n . 

Proof. Eq. ( 22 ) implies that 

X 

i w i jk = H k G j − H j G k . (27) 

Since x 

n = G , we have X 

i w ijn = −H j for j = 1,…, n − 1. Hence, 

i X 

ω = − ˜ d H, (28) 

where ω ∈ 

∧ 2 T 

∗� is the 2-form ω = 

∑ 

i < j ω ij dx 

i ∧ dx 

j and 

˜ d is the differential operator on the
le v el sets �G 

. Since i X 

dG = 0, the equations of motion ( 22 ) and ( 28 ) gi v e 

i X 

( w − ω ∧ dG ) = 0 . (29) 

Let ξ ∈ 

∧ 3 T 

∗� denote a 3-form such that 

i X 

ξ = 

∑ 

j<k 

X 

i ξi jk d x 

j ∧ d x 

k = 

∑ 

j<k 

J 

i� H � ξi jk d x 

j ∧ d x 

k = 0 . (30) 

It follows that 

w − ω ∧ dG = ξ . (31) 
5/6 
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On the other hand w , and thus ξ , cannot depend on H by construction. Ther efor e, we must
have 

J 

i� ξi jk = 0 ∀ � = 1 , . . . , n − 1 , j, k = 1 , . . . , n. (32) 

Howe v er, the tensor J is inv ertib le on �G 

by hypothesis (equation ( 23 )). Hence, ξ = 0 must be
the zero 3-form. Then, Eq. ( 29 ) can be expressed in the form 

w = ω ∧ dG. (33) 

Using the closure of w , we therefore arri v e at the equation 

0 = d ω ∧ d G = 

˜ d ω ∧ d G. (34) 

Howe v er, the 3-form 

˜ d ω can be expanded on the basis elements dx 

i ∧ dx 

j ∧ dx 

k with i < j < k and
i , j , k = 1,…, n − 1, which satisfy dx 

i ∧ dx 

j ∧ dx 

k ∧ dG 	 = 0. It follows that 
˜ d ω = 0 , (35) 

i.e. the 2-form ω ∈ 

∧ 2 T 

∗�G 

is closed. The theorem is proven by noting that X = J ( d H, d G )
with J = J ∧ ∂ n and by setting ˜ ω = ω. �

We remark that proposition 1 applies to the case in which n is odd, because the invertibility
of ω implies that n = 2 m + 1 for some m ∈ N . The case in which n is e v en can be handled by a
further integrability assumption on the kernel of ω. 
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