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Abstract

An approximate expression for the damping coefficient of an electron

plasma wave with a finite amplitude is obtained. It is given in the form,
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where Y and Yar stand for '"the linear and the non-linear Landau

damping coefficients". Here 1t and E(t) are adequately stretched

time and electric field, and Eb = E£(0).
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for T << wp where Wp is the bouncing frequency of electrons trapped

The above expression is valid

in a potential trough of the wave.
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In a previous paper ', a set of simultaneous equations which
represent a non-linear Landau damping are presented. These equations,
in contrast to Ref. (2) and Ref. (3), are obtained in the form that
every quantity included can be determined self-consistently: The reac-
tion of the distribution function to the field as well as the inverse
reaction is included correctly.

Though it is desirable to solve the equations analytically for a
general case, it is difficult so that only a limiting case is solved
explicitly, that is, the paper I shows that a sufficiently strong
initial field does not damp and that its amplitude oscillates over several
periods of the oscillation.

In this paper we use dimensionless quantities: namely the time Z,
the velocity v and the position & are normalized in terms of the

inverse of the plasma frequency, wp'l

, the thermal velocity Ven? and the
Debye length LD, respectively; then the normalization of the electric
field £ is given by 4nenoLD (charge -e, density np). We show that when
the time considered is small compared with the oscillation period of
trapped electrons. We are able to solve the set of equations to find how
the damping deviates from the usual Landau value.

The equations which describe the amplitude oscillation are given,

following the previous paper I, by

dv(l)
dr

+ El(l) exp 1ke(®) + El(l)*e@(-ikx(o)) =0 D
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Here ev(l)) are the phase space coordinates of a resonant particle

as measured from the wave frame moving with the phase velocity A and ¢

is the expansion parameter defined by YL/upe ,» Landau damping coefficient

(l)(r)

divided by the plasma frequency. The quantity E; is the lowest

order term in the expansion of the electric field E(x, t),
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and the perturbation is applied like exp ikx(0) at T = 0 where 1 is the
stretched time defined by 1t = et. The quantity v(l)(O) appeared in (2)
is the initial wvalue of v<l)(r) and must be represented in terms of
U(l)(T) and x(o)(t) at time T1; i.e., v(l>(0) = V(x(o)(T), v(l)(r), T).
Notice that the upper and the lower limits R and -R of the integral in
(2) are sufficiently large and the final result does not depend on them,

so that we may take the range of integration as [-», =],

(0) (1)

The integral variables & and v in eq.(2) can be transformed
into x(o)(O) and v(l)(O) and this transformation makes the integration
simpler. The Jacobian of this transformation is easily seen to be unity

(0)

and the range of integration over can be taken as same as before due
to the fact that the kx(o) has the period of 27 owing to eq.(1l) (Appen-
dix). According to this transformation, x(o)(r) and U(l)(T) are

expressed in terms of x(o)(O) and v(l)(O).



As a variation of the phase ¢ of F;
is much smaller than that of |E1(l)|
constant or

The smallness of the variation of ¢

described below.
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Here we have employed the following transformations:

El(l) = (1/2ik)E, Eg = E0), y = kx(o), u = koD

We try to solve eqs. (4) and (5) approximately.

motion (4) is formally solved and is given by

y = yo + ugt + Ay

T
[ dt'(t' - T)f(‘r')sin(y0 + ugt' + Ay(t'))
0

Ay =

Noting that
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in a unit time

itself, we regard the phase as a
-m/2 for convenience in the time scale under consideration.
can be proved in the same manner as

Now we rewrite the eqs.(l) and (2) in the form

(4)

(5)

s Yo= y(0), ug= u(0).

The equation of

(6)

(6"

we can expand the right hand side of eq.(7) with respect to Ay(t') when

Egt2/2 << 1 (which is sufficient for the validity of the expansion).

After iteration we get
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S(a,B) sin(y, + uy8)
= —(a - B)E(B) x
C(a,B) /[ cos(yS + uyB)

Likewise sin y on the right hand side of (5) is expanded with respect to

Ay after replacing y by yg + upgt + Ay. Eq.(5) then becomes
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where we have used the orthogonality of trigonometric functions. Integra-
tions in the first term on the right hand side of eq.(7) can be carried
out and we get -E which gives the Landau damping. The other terms are
integrated over yy and wup. The integrations over t', t" and <t'",
however, are almost impossible unless an explicit form of E(T) is
assumed. We solve eq.(7) by the procedure of iteration; Noting that the
first term yields -F , we have E'==Ebe_T as the first order approxima-

tion and we put this into S(a,B) and C((a,8) in the higher order terms.

we get finally
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where YrL stands for '"non-linear Landau damping coefficient".
Let us examine the above equation. When EB is getting larger, Eq.(8)
holds only for a small T as we see from eqs.(6) and (6'). In the limit of

T >0 Eq.(8) becomes

— .2
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or in the scale of the bouncing time wB—l = (V & ).-1
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These show the correction term of Landau damping is proportional to t*

or n‘*

in an early stage of time 7t1. Eq.(9) says that the deviation from
the usual Landau damped waves becomes outstanding at a time, which is
independent of Ej3 in the scale of n, because E; does not appear
explicitly in the curely bracket. Also the field hardly damps due to the

factor (Eb)-llz as E; becomes large. This tendency coincides with the

experiment(4).
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Appendix
The original form of eq.(5) is
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Suppose that we choose u(t') and y(t') as the integral variables,

where 0 < t' <1

. Noting that the Jacobian of this transformation is

unity and that the periodicity with respect to y gilves

y(t"), y@")=-2mr, ', 1] = ylut"), y@"), ', tl-27
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we have
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Suppose t' =0 , then we get eq.(5).



