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Abstract

Some comments on the stability of the BGK solutions are given using
idealized models, and a possibility is shown of excitation of an ion

acoustic wave by trapped electrons in a large amplitude potential trough.



Text

The object of this report is to investigate a response of trapped
electrons in a periodic potential trough produced in a plasma to a low
frequency perturbation and to discuss the stability of BGK solutions.1

It is well-known that a stationary large amplitude wave is allowed
to be an exact solution of the Vlasov equation, a BGK solution. We
suppose that this wave is a plasma oscillation with a frequency w( and
a wave number Xkp. The distribution function can be represented with one
variable, the total energy Z 1in the wave frame which moves with the
phase velocity vp (= wp/kg). When the total energy of an electron is
less than the maximum potential energy, the electron is called to be
trapped. Otherwise it is called to be untrapped. Since we are interested
in a response of the trapped particles to a perturbation, it is important
what shape of the distribution of the trapped particles is chosen. The
distribution function for the trapped region may be either concave, convex,
or flat. For convenience of calculation, we choose the following two
extreme distributions displayed in Figs. 1 and 2 for the trapped region.

The regions I, II and III in both Figs.l and 2 represent the trapped
regions corresponding to a deformed, a flat part of the distribution
function, and the untrapped region, respectively. In Fig.l, we suppose
that Nl electrons are distributed in the elliptic-cylindrical portionm,
which is hereafter called A, above the level of the distribution of II and
III. In Fig.2, we have, on the other hand, a cavity of the same volume
as A.

It is not certain whether any periodic potential be possible or not
in such a distribution as is shown in Fig.l. However, a case in which the
particle density in the trapped region is larger than that in the untrapped

region has been'obtained.:in ‘the limit of small amplitude by Kito-and Kéji.z)



It is shown, on the other hand, after a computer experiment by Berk and

Roberts3)

that a distribution of Fig.2 causes a periodic potential.
Let us first consider the case of Fig.i. From the knowledge of
polarizations of dielectrics, it is easily understood that the contribu-
tion to the polarisation arises from the electrons only of the portion A.
Suppose the region I is sufficiently narrower than the region II, then all
the trapped electrons in I oscillate at a roughly equal frequency in the
potential trough, though a frequency of an electron is slightly different
from the others according to its total energy. These electrons, also,
move with the large amplitude wave, with the phase velocity vp. Thus
these electrons should be able to act like a beam composed of a sequence
of lumps of electrons where the period is 2m/kp; each lump includes N

1

electrons oscillating with an eigen frequency wg defined later i.e.

a bouncing frequency in a potential trough. We might expect something
similar to a two-stream instability.4)
We consider an application of a low frequency perturbation like
E(k, w)exp(Zkx-iwt) to our beam-plasma system. We choose the frequency
w and the wave number k to be of the order of those of an ion acoustic
wave. In the wave frame, when the Doppler-shifted frequency, -(w - kvp),

tends to the eigen frequency w, of the trapped electrons, we expect the

B
oscillation with the frequency w to be excited and the the energy of the
beam to be transferred to the plasma. Supposing that w/k:cs(= sound
velocity = V?;Zﬁ ’ Te: electron temperature, M: ion mass) and vp >>
electron thermal velocity >> ey, » we may anticipate that an instability

takes place when Kk I w /v (<< kg) and w I w cs/v
p

>

We shall express the above argument in the form of equations. The

B

perturbation is supposed to cause a deviation &x from an unperturbed
orbit of a trapped electron Ly + Z + vpt. Here Ty denotes the N-th

bottom of the potential trough and & corresponds to the intrinsic
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oscillation without the perturbation. Since the region I has been suppos-—
ed to occupy a very small domain centered on a point of potential minimum,
the potential ¢(&) may be approximated to ¢(0)k%£2/2. The equation

for &x, then, is given by

d? 2

— S = - wg

Sx - (e/mE(k, w)exp{ik(xN+&+6x)—i(m—kv Yt}, (10
dt? p

and mé = e¢(0)k%/m. Note k|é| < mk/ky, << 1 and we neglect the k(x +
8x) in the exponential on the right hand side and also use a continuous
variable x instead of the discrete one Ly It should be noted that

this simplified model of continuous beam may be legitimated since we are

considering a large scale perturbation i.e. k << kj. Now we have a

solution
Sz = (e/m)E(k, w)exp{ikx—i(w—kvp)t}/{(w—kvp)z—wg}, (2)
or in terms of Fourier component

sx(k, w - kvp) = (e/mEk, w)/{(w - kvp)2 - wé}.

Therefore the polarization due to the trapped particles, Pt(k, w), 1is

represented in terms of the polarization Pg(k, w) 1in the wave frame as

PPk, w)

t -
Pb(k, w - kvp) = -en,

sx(k, w - kv
x( w p)

- w% E(k, w)/an{(w -kvp)2 - wg},



= 4m e2/m and n

2 =
where W, 7 P N1k0/2w.

We next examine polarizations due to the untrapped electrons Pu(k, w)
and due to ions Pi(k, w). Their dependence on the large amplitude wave
is not so drastic as the dependence of Pt(k, w), then we assume the
polarizations can be given in the same expressions that yield the disper-

sion relation of an ion acoustic wave, namely

Pk, w) = (R[4nk)E(K, w), ~ PU(k, w) = - (u/4mD)E(K, o),
where ke and w, are the electron Debye constant and the ion plasma
frequency, respectively.

Now we have the dispersion relation to our system as follows:

1- w%/wz + kg/k2 = w%/{(w - kvp)2 - wg}. (3)

This form of equation can be obtained after some simplifications of the

treatment by Kruer et alé) and also of the more precise formulation by
Goldman.s) It should be noted that the definition of the trapped electron
density N is different from that of the Ref.4. The dispersion relation

(3) is schematically displayed in Fig.3. The width of the region of %k
in which w has complex values is denoted by &k and the center of this

region is named with kM. We obtain in the form

= \ 2 =
8k = (2wTwB/kevp)Vcs/vp s kM (wB/Up)(l + wi/kevp) .
} ()
Max(Im(w)/kos) = (wT/Zwi)Vcs/vp .



The Im(w) takes a maximum value at k = kM' Let us estimate the above

6)

quantities by using experimental data by Wharton et al. We have
c 8k 2.6 x 10-2Hz , ek 2 5.7 x 105°Hz, and Max(Im(w) /e k,) = 2.6 x
1072, where we have used the proton mass as the ion one.

Next, we consider the case of Fig.2 where a hole due to a lack of
electrons is present. Recall that the volume of the hole is the same as
that of A of Fig.l. It is easily seen that the situation is the same
as in the case of Fig.l except for the inverse direction of the polariza-
tion. We then have the dispersion relation only by replacing w2 by

T

2 in Eq.(3) and we can conclude after a repetition of the previous

T

=W
procedure that the system becomes unstable. It is worth remarking that
the instability in the case of Fig.l is convective and the one in the
case of Fig.2 is absolute, and then the latter is more dangerous though
every quantity shown in (4) is almost same as those in Fig.l.

Now we may conjecture the followings. When any unevenness of the
distribution function is present in the region of trapped particles
whether it is smooth or not, it casuses a polarization which is resonant
with low frequency oscillations, for example, ion acoustic waves, and
then the system becomes unstable. Therefore, for a BGK solution to be
stable, the distribution of the trapped region must be at least flat and
be smoothly connected with that of the untrapped region.

Experimentally, the above conclusion suggests that when a relatively
strong field is applied to a plasma and an excess or a lack of trapped
electrons is provided, ion acoustic waves may be excited if the parameters

(4) are fit to the experiment.
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Fig.l A distribution function f(F) which has an elliptic-
cylindrical projection, named by A, corresponding to
the region I in the phase space represented in the
wave frame. In the region II, the distribution func-
tion is flat and smoothly connected with that of the
region III. Here is shown only a unit domain of the

whole system with a spacial periodicity of 2w/ko.
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Fig.2 A distribution function which has an elliptic-cylindri-
cal depression, whose volume is identical with that of

A, corresponding to the region I in the phase space.
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Fig.3 The dispersion curves due to Eq.(3) dealing with the
case of Fig.l. Only the relevant branches are drawn for
the positive k - space. The bold dotted line means

the Im(w) in an arbitrary unit.
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ERRATUM

Unstable BGK Solution due to Excitation of

an Ion Acoustic Wave

T. Hatori, R. Sugihara, and T. Watanabe

IPPJ-99 SEPTEMBER 1970

The Fig. 1 on the page 8 should be replaced
with the following figure.
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Fig.1 A distribution function f(E) which has an elliptic-
cylindrical projection, named by A, corresponding to
the region I in the phase space represented in the
wave frame. 1In the region II, the distribution func-
tion is flat and smoothly connected with that of the
region III. Here ig shown only a unit domain of the

whole system with a spacial periodicity of 2w/ko.



