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Abstract

The mechanism of heating of electron plasmas by high-power microwaves
in a magnetic mirror is investigated theoretically, in reference to the
experiments in a device named TP-M. A microwave mode propagating perpen-
dicular to the magnetic field is assumed to be responsible for heating, as
there exist higher harmonic resonances, the main features of the experiments.,
The heating mechanism can be interpreted in terms of a stochastic process,
a random walk in velocity space.

It is numerically confirmed that the localized resonance zones of - -
finite width exist and electrons are effectively heated only in the reso-
nance zones, and that the presence of a randomization process of the rela-
tive phase relation between the wave and the electron gyration is essential
to heating. On the basis of the numerical aﬂélysis the heating process is
analytically treated. Electrons are supposed to pass the resonance zones
repeatedly in the course of oscillatory motions between turning points,
and the relative phase relation is assumed to be random at each passage
through the resonance zone. The heating rate is calculated and is found
to be in agreement with the experimental value. The causes of phase ran-
domization and the observed staturation of electron temperature are also

discussed.



§ 1. Introduction

From experiments on hot-electron plasmas produced in magnetic mirrors
by high-power microwaves we obtain much informations about heating mechanism
of electrons. An interesting experiment was carried out in the device
named TP-M [1n3]. The characteristic features of this experiment are as
follows. The discharge is produced by a microwave pulse ét 6.4 GHz with
20 msec duration and 5 kW power. The microwave power is introduced radial-
ly through the wave guide ports in the cavity wall surrounding a magnetic
mirror. The plasma consists of hot electrons, cold electrons and ions.
The density is about 102 ~ 1010 hot electrons/cm® and 1010 1012 cold
electrons/cm3. The average energy is about 150 keV for the hot electrons
and about 10 eV for the cold electrons. The device seems to have the
fundamental resonance zone, where the microwave frequency is equal to the
local electron cyclotron frequency, as well as the second harmonic one
(see Fig.(1)). The hot electrons have a shell-structure and are situated
along the magnetic lines of force passing through the second harmonic
resonance zone. This fact indicates the possibility that the harmonic
resonance makes an important contribution to heating [3]. The purpose of
this paper is to reveal the heating mechanism of the hot electrons in the
magnetic mirror on the basis of a stochastic model.
| Previous theoretical works [4 ~ 9] treated the heating process by
microwaves which propagate along the mirror field. Here we are concerned
with the heating by microwaves propagating perpendicular to the magnetic
lines of force, since higher harmonic resonances appear only when a micro-
wave has the perpendicular component of the wave vector.

In this paper it is demonstrated that the electrons are accelerated
or decelerated only in the resonance zones of certain width, and that the

heating mechanism is interpreted in terms of a stochastic process.
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Namely, the change in an electron velocity component perpendicular to the
magnetic lines of force is assumed to be stochastic, because it depends on
the difference between the phases of the electric field and the electron
gyration, and because the phase should be modulated randomly by fluctua-
tions in the cold-electron density.

We first work out a numerical study in order to examine the validity
of the model, of which the partial results are given in the reference [10].
The computation is carried out on a simplified magnetic mirror. The
essential features of heating mechanism come from the fact that the heating
electric field has a component perpendicular to the magnetic field besides
perpendicular propagation, so that for simplicity we assume a longitudinal
wave for it. The results of numerical study are described in §2. Second-
ly, on the basis of this numerical study we treat the problems analytical-
ly to some extent in §3. The heating rate is calculated and is found to be
consistent with the experimental result.

In the subsequent section the discussions are given for the causes of
phase randomization. The saturation of the electron mean energy is also

discussed.

§ 2, Numerical Computations

We here numerically track the electron orbits in the following

electric and magnetic fields:

F = Eysin(ke - ot + ), 0, 0 }, (1)
3 z 5B, g_a 5, 2,2 2
=-S5 % " 973 » By = By - BLE@ - 117, (2)



where the 2z - coordinate is taken along the magnetic line of force, k and
w are the wave number and the frequency of the electric field, respectively.
And BM and Bm are the field strengths at the end of the magnetic mirror,
z = ¥, and at the midplane, z=0, respectively. These quantities, except
the amplitude of the electric field, E,, are assigned to the appropriate

values refered to the TP-M experiment. The value of E; is taken to be

somewhat large to make computed results distinct.

§ 2.1. Single Particle Motion

In order to assure the presence of the resonance zones we track the
orbits of those electrons, which start at the midplane with the identical
initial condition except the value of y. The assignment of the various
values of Uy corresponds to that of the various initial phase differences
between the phases of the electric field and the electron gyration., 1In
Fig.2 we show the computed results of the total energy and the magnetic
moment of the electrons. One sees that the changes in total energy depend
on the values of ¢, or on the initial phase differences, and also sees
that the changes are remarkable only in the vicinity of the fundamental
and the second harmonic resonance points. The result confirms the existence
of the localized resonance zones of finite width, only in which electrons
effectively interchange their energies with the electric field.

In Fig.2 we see that the magnetic moment changes similarly as the
total energy changes. Analyzing the computed results, we also find that
for the change in total energy AW, = AW, + AW, = OW, (&W, = A(mVi/Z),

AW, = A(mV%/Z)) and the parallel velocity V¥, does not change apprecia-
Ely in the resonance 2zone.

We have carried out the computations for k = 2 ~ 200 em~!. Fig.2 -
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{a), (b) and (c) are some examples corresponding to the various values of
wave number, k. The widths of the resonance zones are estimated from the
numerical results and found to be almost independent of k, while the
absolute values of AW depend on it. Therefore one needs not solve the
dispersion equation in order to determine the resonance width of the mode

of interest.

§ 2.2. Statistical Treatment

Here we present numerical calculations of heating process of an
electron plasma based on the statistical method. We have numerically track-
ed the orbits of test electrons with the same procedure as in the above.
Here trackings are continued over a number of turnings between the mirrors.
The phase angle, Y, 1is treated as a random variable and is assigned to
a random number at each turning point. So that the test electron randomly
walks in velocity space and one step of random walk is the velocity change
after a travelling between two subsequent turning points.

The numerically computed values of < VE > are shown in Fig.3, where
the abscissa is the number of turnings, N. The average is taken over a
group of test electrons. The values of < Vi > fluctuate for small W,
however, they less fluctuate as N increases and are in agreement with
the analytical prediction of the random walk theory as will be shown in
§3. The distribution of V, should become broad as N increases. The
distribution of V; obtained for N = 20 is shown in Fig.4, which is
almost Maxwellian. The solid curve indicates fv,) = Cc-P(V,, N=20),
where P(V,, N), is the Gaussian distribution achieved as a result of
random walk, given by Eq.(23) below, and C is a normalization factor.
This indicates that the velocity distribution becomes Maxwellian after a
number of turnings as a result of phase randomization, and that the
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heating results.

§ 3. Analytical Treatments

We treat the heating process analytically on the basis of the results
of the numerical study. First, the equation of motion of an electron in
the inhomogenous magnetic field is solved under some approximations, and
the expressions for the changes in velocity of the electron in the resonance
zones are obtained. Secondly, the heating process is treated as a stochas-

tic process, and the expression of heating rate is obtained.

§ 3.1. Solution of Single-Particle Motion

In the vicinity of the resonance point we are interested only in the
change of the electron velocity perpendicular to the magnetic lines of force,
because the change of the parallel component of the electron velocity is
little and so it is assumed constant. The motion of an electron on the
plane perpendicular to the magnetic field is governed by

v

-, -1 %—Q‘vng = - %—El, (3)
where the dot means the differentiation by time, the prime does the one by
the coordinate 2z along the line of force, and the complex velocity v, =
v, t ivy and the complex position & = x + 7y are introduced. Q =
eBz(z)/mc is the local electron cyclotron frequency and E, 1is the assum-
ed electric field.

Let the electron pass the resonance point zr at t = 0, then Q(2)

in Eq.(3) is approximated by Q = Qr + Q;v"t, substituting 2z = 2, + v,t,
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The subscript » means the value at z = 2 0 The electron is assumed to

stay in the resonance zone longer than I/Qr .
Then, under the condition that Zﬂé/ﬂgv" >> Itl >> l/ﬂr » Eq.(3) is reduced

to

. (4)

. . . e
v, - znrvl - zn;v"tvl = - E-E

1

The solution of this equation becomes

.y . t ) '
Ul(t) = e'lae(t){vl(to)e—‘be(t()) - ?_i_[ dt'E'l(m(t'),t')e'ze(t )}’

to
(5)
with
= l ' 2
o(t) = Qrt + 3 va"t . (6)
Introducing a new variable &,(t) = vl(t)e_te(t), we have
Ui(2) = D,(ty) + A(¢, tg), (7)
where
e [* ~2o(t") (8)
A(t, tg) = - E-J dt'E, (x(t'),t")e .
to
26 18

When we put 4 = |4]e A and 9, (%)) = V,(tg)e s the change in energy

for one passage through the resonance zone becomes

AW = mV,(tg) |A|cos(e, -~ 0,0 » (9)



where V,(%g) >> |A| is assumed. This formula expresses the behaviour of

the change in electron energy near the resonance, as is shown in Fig.2.
We substitute the assumed electric field given in Eq.(1) into Eq.(8).

Within accuracy of the present approximation, & 1s replaced by the value

of the unperturbed orbit:

x # pg sin (th + dg) s Py = Vl(O)/QT . (10

Then we have

At tg) = - S By | £ (¢, t)d (keg) (11)
\)=—oo
where
19 t
- 1 AY ] . 1 l_ \ l2
fv(t’ ty) = 27 {e J dt'exp 7 (Av-lt -3 ﬂrv"t )
to
_$¢v t 1 2
- ' y - o= ' ]
e J dt'exp © (- A, t'- 5 Q. )}, (12)
to
Av = er -w @V = vy + ¥ (13)

and Jv(z) is the v-th order Bessel function of the first kind.
In Eq.(11l) the terms with Av+l = 0 dominate over other terms. The
leading terms include the integral estimated as
T
A

te 1
J dt'exp(- 7 E-Q;v"t'z) = tre .

i1

2
t, oo

¢ 1
J dt'EXP(_ S Q;v,,t'z)

where



» =~ Lan) (14)
r"

is considered to be the effective resonance time. Consequently the . °
effective width of the resonance zone along the magnetic lines of force

is given by

1/2
21V
Azr = U"tr = ( —ﬁ;-u' .

(15)

Essentially the same result is given by Kuckes [6]. With use of these
relations A in Eq.(11) for the fundamental resonance (w = tﬂr) is
approximated to be

ek, Fiog- i I

0
t 5= tJo(kege (16)

e

A

and for the second harmonic resonance (w = + ZQr)

QEO ;i(b'f'l-i{-
A=+ iaz-trJl(kpo)e = . (17)
Finally the general form of 4 in the n-th harmonic resonance is approxi-
mately given by

ek, ixn
Ass—td (ko) ee (18)

2m
and X, depends on the phases of the field oscillation and the electron
gyration.
Strictly speaking, X, becomes a function of time in an inhomogeneous
magnetic field and the exact expression of X, is very complicated.

However, if any stochastic phenomenon like collisions or Fluctuations. takes
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part in the motion of the electron, X, becomes a random variable and the
acceleration process becomes stochastic. Namely the process of heating
electrons essentially becomes a random walk in two-dimensional velocity

space owing to Eq.(7) and Eq.(18) with the random phase X,

§ 3.2. Stochastic Process

The change of the electron velocity perpendicular to the magnetic
> %
field, v, , 1is governed by the probability law if any random process
takes part in its motion. Suppose that the phase randomization takes
place at intervals of time and Zi is the change of ;l between two
-> > -> >

successive occurences of randomization, we have (vl)N = Vot Uyt Uyt oo
+ Zﬁ where 610 is the initial value of 31. If the transition from the
(N-1)-th process to the N-th process is a Markoffian, the probability

P(gl, N) with which the electron has ;1 in the N-th process, can be

defined and obeys
PG, N+1) = f P(G,- 4, Mg~ 4, Wdu , (19)
> > ->
where g(v,, u)du 1is the transition probability of the change of v, .

From this we obtain the Fokker-Planck equation, which is for |31|>>|Z| and

N> 1,

Iw

{ << 22 > P@,, M}, (20)

Q
<Y
=1

* The velocity is treated not as a complex variable but as a vector
in this subsection.
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where
<72 >>m j 229Gy, Ddl L [ ¢@,, D=1 . (21)

Here we have assumed << u; >> = << ué >> = %~<< 22 >> and << Z >> =0
for simplicity. Examples of the g-function are given in the Appendix.
When Z is sufficiently small as compared with ;i ,» the dependence
> > >
of v, 1in << u® >> will be weak and << y? >> is taken to be constant
>
in Eq.(20), say << u? >> = 2g2, If the probability distribution at N = 0

is the delta function, P(gl, 0) = 6(31 - 510), the solution of Eq.(20) in

this case is

P(D,, N) = exp { - (3, - 3,,)2/2a2N}. (22)

2na?N

The probability that an electron has a speed vV, = |;1| is calculated as

e

p(vy, W) = (2ma20) 2w, /v, ) 2expl-(v,- Vy0)2/202m), (23)
where V,, is the initial value of V,. From this we know that the
Gaussian distribution is achieved as a result of randomization. When we
consider a group of electrons which have same speeds but different gyration
phases at the initial moment, we conclude that their distribution function
becomes a Maxwellian after a number of passages of resonances, and the

heating results. The heating rate is given by

3% > = ma? Y, (24)

dr,
-

TR

d
—d?<
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where

<2 > = f %3P (5, MdD, = D3+ 2420, (25)

and dN/dt is the frequency of occurence of randomization.

If a phase randomization process certainly occurs between two succes-
sive passages of the resonance zones, the phase Xy, in Eq.(18) becomes a
random variable, and << Zz >> at the n~th harmonic resonance is obtained

by averaging the square of 4 in Eq.(18) over X, as

<< 22 >> - 22 g 2 K 14 26
U (5=t J, 47 ( 5;' 1) (26)
where V, = I;ll and Q = w/n. The g-function defined in Eq.(19) is

now g(gl, %) = (2w|A(Vl)|)—16(|Z|;- lacv) ).

In order to obtain the heating rate including the effects of the
higher harmonic resonances, one must solve Eq.(ég) with Eq.(ég). However
we treat briefly this problem as follows. We can reasonably expect that

the probability P(;L, N) tends to a Gaussian for N >> 1 and |$l| >>

EAN
10!, That is,

3 I BN -
P(v,, M) onT, exp ( 2T, ) (27)
where
T, = 'zﬁj 0P, MV, . (28)

Then the heating rate is obtained as
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L. . %%-%—f < ¥2 > PG, MdD,. (29)

Substituting Eqs.(26) and (27) into Eq.(29) we have

ar, ek
todm 0.2, -
b =ac2 (o )t T We ™, (30)
where

T, .2
A = E—-ﬁ— (31)

QZ

n

and Iﬁ(k) is the modified Bessel function of the #n-th order. Usually

A >> 1, then we finally obtain the heating rate as

dTl i 1
i " (32)
/T,
with
a,dﬂ(ﬂ):s/z(ﬂ)zt.?ﬁﬁ
dt 2 2m rk
= 7 2-.1 For
& 3,7 x 10/ - Eok . Qn/ZQn , (33)

where tr is already given in Eq.(14) and T, 1is in units of keV, E; 1in
esu and k in cm~!. We have assumed dN/dt = v"/i where i is the dis-
tance which an electron travels between two successive passages of the
resonance zones. Qn/zﬂé is a number with the same order of a mirror

ratio. For the TP-M experiment we may assign these value as: Qn/Zﬂé =3,
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-1
E, = 0.1 esu (30 V/cm) and k = 10 ecm , then we have o = 1.1 x 105(keV)3/2
gec” ', and dT,/dt = 11 MeV/sec at T, = 100 keV. This is in agreement
with the experimental value. The time dependence of the heating rate is

obtained as dT,/dt = 2.0 x 103¢t~1/3 kevV/sec.

§ 4. Discussions

In the foregoing sections it is shown that the heating of electrons
by high-power microwaves in the magnetic mirror can be interpreted in
terms of the stochastic process. However it remains to examine the posible
causes of the phase randomization which is essential to the stgchastic
process. Another problem is to explain the observed saturation of the
heating process. We will discuss these problems in the following.

In view of the experimental conditions, we have two possible mechanism
for phase randomization. One is the collisions of hot electrons, and the
other is the fluctuations in density of the medium. The collisions of hot
electrons are possibly with contaminated neutral atoms and with cold
electrons. However the mean free paths for both processes are found to be
very long and collisions are not effective for phase randomization.

Another possible cause of the phase randomization is due to the fluc-
tuations in density of the cold plasma which supports the wave. The vari-
ation of the wave number, &k, and that of the refractive index, N, are
related with the variation of the electron number density, #, in the cold
plasma as AK/k = AN/N = k*AMn/n, where k 1is determined by the dispersion
relation of the wave, and in practice |K| is of the order of unity. The
density fluctuation is supposed to be somewhat larger than: the thermal

level, say, a few percent. Consequently we may take «k2 < (An/n)2 > ~ 1073,
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where < > means the ensemble average.

After the electron travels by the length L along the magnetic lines
of force, the mean square value of change of the wave phase will be esti-
mated as

- Ak (2
<(5¢)2>_<(—7€) >Lw/'l)",
where v, 1s the mean parallel velocity of hot electrons. For <(6¢)2>1/2
v 1 radian, the phase seen from electron will be randomized. Therefore

we can define the effective length of phase randomization as
M |2
= 2 2 -1
Le £ { «% < ( ” ) > ¥,

where £ = v,w~! and is of the order of the pitch length of the electron
gyration.

The effect of the fluctuating electric field parallel to the magnetic
field is also expected. Due to the scatterings of the wave by the density
fluctuations, we expect its mean value as E" *E, < (AN/N)?2 >1/2, where
E, 1is the amplitude of the wave. For E, ~ 30 V/em(0.1 esu) we have
Eﬁ ~ 1 V/em. If the correlation time of the fluctuating field is of the

order of w~!, then, the average value of the change in gyration pitch
g

over the length I along field lines is estimated to be

K

L dz e = '
8z J @z m E.,u)“l(2:cu/7.J.,)1/2

n
0

<

1

2 Bw/2(0/,)3/2
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For 6z = £, the phase difference between the hot electron and the wave
will be randomized. The effective length of the phase randomization in

this case is
L) = & { mi/etL y2/3

For (1/2)mv?% = 10 keV and w = 27 x 6.4 GHz, we have £ = 107 lem
and Le = Lé = 102cm. Comparing these values with the length between
mirrors of the device ( = 40 cm), we know that the relative phase relation
between the electron and the wave will be effectively randomized in the
course of the electron oscillatory motions between turning points.

The heating rate obtained above does not show saturation by itself,
although it decreases as the temperature increases. The heating rate is
reduced more or less by cooling. However, the obserbed temperature satura-
tion cannot be explained only by radiation loss.

We may attribute the temperature saturation to the spatial shift of
the electron cyclotron resonance zones in the magnetic mirror field, due
to the relativistic effect. Although the formulae given so far hold only
for non-relativistic regium, we discuss qualitatively the relativistic
effect. The value of the magnetic field for the n-th resonance point is
B(z) = y(moc/e)(w/n), where m, 1is the rest mass of the electron and
vy = (1 - 1)_2,_/02)‘1/2 . As vy Dbecomes large, the resonance zones shift
toward the place of stronger magnetic field, that is, toward the ends of
the mirror. The value of Yy corresponding to the maximum field strength
inside the cavity (4 x 103G) is 1.75 for n=l. Therefore, the heating
rate will be much reduced at 300 v 400 keV. Also, the maximum value of
the electron energies will be limited by the finiteness of the device
because of large gyration radii, and by finite lifetimes in the mirror
trap.
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§ 5. Conclusions

We summarize our conclusions as follows.
i) By numerical computation, the presence of the localized heating zones,
the resonance zones, is confirmed, in which the electrons are accelerated
or decelerated resonantly. Outside the resonance zones the electrons
behave almost adiabatically.
ii) The widths of the resonance zones are almost independent of the wave
number of the heating field, while the acceleration efficiency of the
electrons depends on it.
iii) The heating mechanism can be interpreted in terms of the stochastic
process with the phase randomization which is possibly caused by fluctua=
tions of the cold-electron density.
iv) Based on this stochastic model, the expression for the heating rate
including the effect of the higher harmonic resonances is obtained. By
reasonable assignment of the physical parameters, the value of the heating
rate is found to be in agreement with the experimental value.
v) The observed saturation of the hot-electron temperature is attributed
to relativistic effect rather than to cooling. As the energies of the
electrons increase to relativistic regium, their resonance zones will

shift to the ends of the magnetic mirror and finally disappear.
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Appendix

We present some examples of the transition probability distributions
g(Z) (g-function). First, in the case of one step with a constant length
A and a random direction angle ¥, the g-function of u, = A cos X

becomes
Gu) = ("ML - (u /4)2}71/2, (A1)
The g-function of 2-dimentional vector Z is, in the polar coordinates,
gL = g(u) u du dy (A2)
with
gw) = (2ma)~1s(u - 4). (a3)
The g-function of this form is of the most fundamental one.
Secondly, we consider the case of U, = A(cosyx) + cosxp). If X1

and x, are independent random angles, the probability distribution of

U is

A
é(z) () = J é(ux - w)g W)dw
-4
- % 1+ 2 k@), (A4)

k2 = (1 - 2)2/(1 + 2)2: 3 = |ux|/2A,
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where K(k) 1is the complete elliptic integral of the first kind. However
this is not the genuine g-function, because the randomization is already
applied through the above convolution procedure. When the angles Xy and

X, are mutually involved in, it is very difficult to obtain the expression

of the g-function.
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Fig.l. The magnetic mirror field of the TP-M device. The
hyperbola-like lines vertically crossing the flux lines
indicate the fundamental electron cyclotron resonance
zones. The other hyperbola-like lines at the top and the
bottom of the cavity denote the second harmonic electron

cyclotron resonance zones.
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Fig.2. The computed results of the total energy and the
magnetic moment of the test electrons. The solid lines
indicate the numerical solutions of the equation of
motion in the external electric and magnetic fields
with the values of parameters: Wog = 1.0 keV, V,,/V, =
0.708, E, = 300V/em and w = 6.34:10'%/sec. The
broken lines correspond to the cases without the external
electric field.
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Fig.4. A distribution of V, for N = 20. The solid curve
indicates f(V,) = C-P(V,, N), where P(V,, N) 1is the
Gaussian distribution given by Eq.(23) and ¢ is a

normalization factor.
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