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Abstract

Growth of two types of sideband waves has been observed
experimentally when a relatively large-amplitude ion-acoustic
wave propagates in a collisionless plasma having the electron
to ion temperature ratio Te/Ti ~ 20. The theory of the trap-
ped-particle instability well accounts for the frequency
spectrum and the frequency and the amplitude\ranges of the
large-amplitude wave, where the sideband waves grow, and also
their growth rates. The sidebands extract the energy from

the large-amplitude wave and cause its heavy damping.



1. Introduction

The stability of a nonlinear stationary electrostatic
wavel (B-G-K wave) has been received considerable attention
in recent years. Since Wharton, Malmberg and O'Neil2 ob-
served the growth of a sideband wave to a large-amplitude
electron plasma wave, the theoretical worksB“7 pointed out
that the particles trapped in the potential troughs of a
large-amplitude wave induce the instability. Though many
theoretical works and computer simulationss’9 have been re-
ported, no relevant experiments have been done except for
Ref.2. Compared to the time when Ref.2 appeared, we are now
at a position to perform more detailed experiments of the
trapped-particle instability. In addition to the theoretical
progress, the method to excite the ion-acoustic wave, devel-

10,11 makes us

oped for the collisionless shock wave studies,
possible to carry out the large-amplitude wave experiments.
Physically, the trapped-particle instability can be
viewed as a parametric instability between upper and lower
sideband of a large-amplitude wave through the bouncing mo-
tion of the trapped-particles in the electric potential
troughs of the large-amplitude wave (hereafter to be referred
to as the carrier wave). The coupling is strengthened when
the bouncing motion is resonant with the sideband wave (w,k),
i.e. when the sideband frequency in the reference frame
moving with the carrier wave, Q = w - kwo/ko, equals the

bounce frequency *w Here w, and k0 are the frequency and

B.
the wavenumber of the carrier wave. Let us look at the be-

havior of the particle distribution function in the presence



of the carrier wave. The theory of Al'tsul and Karpman12
which is based on the collisionless Boltzman equation shows
that the distribution near the phase velocity of the carrier

wave has resonances at V2N + 1 w
13

B’ where N is a non-negative

integer. Therefore, the coupling of the sideband to the
carrier wave is considered to be strong when Q is equal to
+/2N + T Wy If the wave amplitudes are not very large so
that the dispersion relation of the wave is well described

by the linear theory, the frequency of the unstable wave is
determined by the above resonance condition together with the
dispersion relation. Indeed Ref.7 predicts that, in the
weak-coupling limit, i.e. when the trapped-particle density
is sufficiently low, a couple of modes specified by (w,k)

and (w - 2w0, k - 2k0), (k < ko), grow when one of the follow-
ing conditions is satisfied:

W w - V2N+1 Wy

(i) — = T and elk,w) = 0, (la)

w w = V2N+1 Wy

(11i) T i and E(k—ZkO, w-2w,) = 0,

(1b)
where e(k,w) is the dielectric function. In addition to

these, another type of instability is predicted when

(i1i) e(k,w) = 0 and e(k—Zko, w-2w, ) = 0. (2)

In the case of ion-acoustic wave, we are interested in

the dynamics of the ions. Under the present experimental

conditions, the e-e collision free-path of the electrons which



are resonant with the wave is typically of order of magnitude
102 cm, which is much shorter than the wavelength, so that
the electron bouncing effects can be neglected. The dielec-

tric function for the ion-acoustic wave can then be written

approximately asl4

k? T
D e ' W

elk,w) = 1 +‘~——2- (1 - T Z (T{_\-f-.—)]' (3)
k i i

with the approximation including the neglect of nonlinear
effects. The standard notations are used. We are interested
in the situation in which both the carrier and the sideband
waves approximately satisfy the above ion-acoustic wave dis-
persion relation. The two mutually conjugate modes, (w,k)
and (w - 2wy, k - 2ko), grow with the same growth rate and

their amplitude ratio is given by [ww/w | = [e(k-Zko,

w—Zwo

w—ZwO)/s(k,w) . Then if the mode (w,k) is a lower sideband

which satisfies (la), its conjugate mode (w—ZwO, k—2ko) be-
comes a small-amplitude upper sideband. Note that the latter
one should not be confused with the mode which satisfies (1b).
Besides the necessary condition Egs.(l) and (2), the growth
rate of the wave is determined mainly by the details of the
trapped-ion distribution.7 |

Experiment was carried out to observe growth of the
sideband waves in the presence of a relatively large-amplitude
ion~-acoustic wave in a DP plasma.lO The results are in reason-
able agreement with the above theory. Details of the experi-
ment and comparison with the theory developed by two of the

present authors are described below.



2. Plasma and Wave Excitation

A plasma with a relatively high electron-to-ion temper-
ature ratio, Te/Ti ~ 20, is employed for the following reasons:
(a) The ions are trapped only when the linear spatial Landau
damping rate kL is smaller than k°wB/w0' (b) The wave has
to be dispersive, otherwise Eq.(l) cannot be satisfied.

The experiment was carried out in the DP-Machine repre-
sented in Fig.l. The apparatus consists of two identical but
electrically independent conducting vacuum chambers, made of
50 cm diameter cylinders of length 40 cm each. A fine mesh
grid (40 wires/cm) partitions the space into two regions.

The filaments near to the inside walls of the chambers serve
as the source of the primary electrons (30 - 60 eV) that pro-
duce a plasma by electron bomberdment of a neutral argon gas.
The presence of primary electron currents has no adverse ef-
fect on the plasma production; they do not cause intolerable
instabilities. The spontaneous density fluctuations amount
to 10™% of the average density. The plasma is uniform over
the chamber, The plasma parameters are as follows: The
plasma density n ~ 10° cm™%; the electron temperature Te =

3 eV; the ion temperature Ti ¥ 0.1 - 0.2 eV; the argon gas
pressure, (2-5) x 10™"* Torr. For these values of the param-
eters, ion-ion and ion-neutral collisions can be neglected.
The plasma diameter (50 cm) is much greater than the charac-
teristic length of the wave, so that we can excite a plane
wave.

The wave excitation scheme is as follows. The two plasma

regions are separated by a negatively biased mesh grid such



that the electrons are prevented from short circuiting the
plasma. The application of a potential difference between
the plasmas introduces a fraction of the driver plasma into
the target plasma. Figure 2 shows the DC characteristic of

the system which reveals how the driver plasma potential Vex!

X

respect to the target plasma potential, changes the target

plasma parameters. Both the ion energy analyzer15 [Fig.2(b)]
and the Langmuir probe [Fig.2(a)] curves show that the plasma
potential and the density are increased when Vex is positive

(and vice versa) without forming any ion beams, if |v__| < 1

ex
volt ~ KTe/e. The Langmuir probe curves show that the change
of the plasma potential is half of vex within this range of
VeX. If [Vexl is larger than 1 volt, an ion-beam is formed as
shown in curve d. The ion flux from the driver plasma is lim-
ited by the ion thermal velocity, so that the driver plasma
cannot supply enough ions for the target plasma potential to
follow the applied potential difference.

The wave is excited by a sinusoidal voltage instead of
a DC potential difference. Within the range [Vex| < 1 volt,
system excites the wave efficiently without forming any

16,17

chopped ion beam. In the low frequency range, w << w

pi
half of the applied voltage transferred into the potential of
the wave, propagates in one direction from the grid, and the
other half goes to another wave propagating in the opposite

direction. In the high frequency range, w Vv w the coupling

pi’
efficiency is decreased because of the finite transit time
of the ions in the sheath around the grid.

A small plane Langmuir probe which is biased slightly



above the plasma potential is employed for the wave detection.
The probe detects the electron saturation current which is
proportional to the electron density. The spatial resolution
of the detector is much better than the detector which col-
lects the ion saturation current, since the probe electron
sheath is thin.

A typical experimental dispersion curve for a small
amplitude wave (perturbed to unperturbed density ratio r~1/n0 v
107°%) is shown in Fig.3. In the higher frequency range, the
phase velocity is small. The solid curve shows the theoreti-

cal linear dispersion relation e(k,w) = 0 for Te/Ti = 20.

3. Ixperimental Results

When the wave amplitude is increased, and ﬂ/n0 reaches
several percent, the following nonlinear effects appear
depending on the frequency, if the wave is nomochromatic.
The received wave signals are shown in Fig.4 together with
the excitation signal at three different frequencies.
(1) In the low frequency range (w << wpi), the wave steepens
and breaks into soliton peaksll (see upper two traces). As
the frequency is increased, the number of peaks in one fun-
damental period is decreased.
(ii) Around the frequency where the dispersion curve starts
deviating from a linear proportionality between w and k
(middle frequency range), the waveform is sinusoidal (see
middle two traces). The measurements of spatial amplitude
variation showed that the wave with large-amplitude continued

propagating over a longer distance than a small amplitude



Wave of the same frequency, being accompanied by the ampli-
tude oscillation.2 The depth of the amplitude oscillation,
¢n, is up to one fifth of n in the present experiment. The
depth damps away as the wave propagates after two or three
oscillation periods as shown in Fig.5. Note that the ampli-
tude oscillation is not due to the interference between the
ion-acoustic wave and the chopped ion stream18 because the
wave excitation is different from the conventional grid ex-
ciattion. Even when we assume that the ions are accelerated
by the amount corresponding to the excitation voltage, such

an acceleration is insufficient to generate fast enough ions;
i.e. the wave velocity is larger than /55?;;7@.

(iii) The primary interest of the present report is in the
high frequency range where the phase velocity is significantly
smaller than the ion-acoustic velocity. As seen on the bottom
trace in Fig.4, a significant noise is observed to grow. Be-
fore describing the characters of the noise, let us examine
the evolution of the ion distribution function in the presence

of the large-amplitude wave.

A, Evolution of the Ion Distribution

The space and time resolved ion energy distribution is
measured by an electrostatic energy analyzer combined with
the sampling technique. Though it is favorable to measure
the ion distribution in the high frequency range where the
noise grows, the evolution of the ion distribution has been
measured only in ﬁhe middle frequency range, since the energy

analyzer does not have a good enough spatial resolution to



measure the short scale length perturbations. Nevertheless
the situation will not be different from that in the high
frequency range. The interferometer output, plotted in Fig.6,
shows that the wave amplitude oscillates in space initially,
and then continues to propagate without damping. The ion
energy analyzer curves (integrated energy distribution
j ___ vf(v)dv vs. V) measured at each position (a, b, ¢ and

/2eV"

M

d) and at each phase of the wave (o, B, y and §), as specified
in the sub-diagram, are presented at the bottom of the figure.
In order to emphasize the tail of the distribution, only low-
er parts of the curves are shown.

At the stage where the wave amplitude decreases (posi-
tion a), a group of ions is reflected by the wave potential
and begins to form a bump in the distribution near the phase
velocity (phase &8). At the position b where the wave ampli-
tude grows, the bump is seen at phase B and y; this fact
means that the reflected ions eventually overtake the poten-
tial hill ahead of them. At the position where the wave am-
plitude is maximum (between b and c) no bump was observed
(this is not shown in the diagram). This fact implies that
the ions bounce back and the bump merges into the main body
of the distribution. This cycle is observed also between the
wave exciter and the first maximum point of the wave ampli-
tude. After the second maximum, no clear bump is observed,
but the distribution is slightly different from the exponen-
tial curve. The experimental results indicate that the main
part of the trapped ions does not stay at the bottom of the

wave potential but is near its top. Some part of the ions



may not bounce back but get over the potential hill. However,
our analyzer system is unable to measure the amount of these
ions.

In the case shown in Fig.6, the trapped-ion density is
5 x 103 n . The difference of the kinetic energy density of
the trapped ions between the case when the ions are most ac-
celerated and the case when they are most decelerated are
estimated to be 2 x 1073 KT no. On the other hand, the dif-
ference of the wave energy density, w(de/5w) |E|2/8m, between
the case when the amplitude is maximum and the case when it

3

is minimum is 3 x 10~ KTeno. These two values are quite

comparable.

B. Properties of the Sidebands

The frequency spectra of the signals received for sever-
al different carrier wave frequencies are displayed in Fig.7.
In order to emphasize the sidebands, only lower amplitude
parts of the spectra are shown. The wave excitation voltage
is 1 volt from peak to peak and the distance from the grid to
the receiver probe is 5 cm. Two types of sidebands are ob-
served: the first is a group of distinct peaks separate from
the carrier wave (type A), and the other consists of the
structure around the foot of the carrier wave line (type B).
If the carrier wave amplitude is increased starting from a
very small value, growing type B sideband appears first, then
the type A sidebands start growing when ﬁ/nO exceeds about
0.02. The frequency range, in which the type B sideband grows,

starts from a lower frequency value respect to that where the



type A sideband is found.

Type A sidebands: As seen from Fig.7, the upper side-

bands have a much smaller amplitude than the lower sidebands.
Figure 8 shows the frequency spectra for various carrier am-
plitudes. As the amplitude is increased, the frequency sepa-
ration between the sidebands and the carrier is increased.
At larger amplitudes, the second lower sidebénd disappears
first, then no sideband is observed except for the type B.
The equation (la) accounts for the above properties of
the lower sidebands. First of all, the ratio between the
observed values of (w/k) - (wo/ko) for the second and the
first lower sidebands is in a range from 1.4 to 1.7. If we
assume that the first and the second lower sidebands corre-
spond to N = 0 and N = 1, respectively, the above ratio
should be ¢¥3. By using the experimental dispersion curve
and Eq. (la), the bounce frequency is estimated. The esti-

mated values of w, are plotted in Fig.9 as a function of ﬁ/n0

B

(open circle). We have another two methods to obtain the

value of Wy (1) from the period of the amplitude oscilla-
tions, and (2) from the relation,19 wg = 2‘1/“k0/e¢07M. If we

neglect the wave dispersion, this relation can be written as
wB/w0 = 2'1/“/ﬁ/ﬁg, which is shown in Fig.9 by the solid
curve. Here we have used the relation ﬁ/n0 = e¢o/kTe. The

values of y, obtained from the first method (dots) are sig-

B
nificantly smaller than those obtained from the second method,
but larger than the values from the sideband spectra. The

discrepancy between the values found from the first and the

second method may be due to the fact that the trapped-parti-
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cles are not at the bottom of the wave.potential trough. It
should be mentioned that the condition (la) and the disper-
sion relation (3) cannot be satisfied, if /2N+1 Wy is so
large that v/2N+1 wB/k0 > Cg - wo/ko, where Cg is the ion-
acoustic velocity. This fact explains why the sideband dis-
appears when the carrier wave amplitude (and hence wB) is too

large, as well as when w, (and hence CS - w,/k,) is too small.

0
Note that the frequency difference between the first
lower sideband and the carrier is not the same as that between

the first upper sideband and the carrier itself (Fig.7);
therefore, the upper sideband is not the conjugate mode of
the lower sideband but it is the one which satisfies (1lb).
However, the condition (lb) by itself does not account for
the fact that no upper sideband grows when W, is small.

The wavelength of the sideband is measured in the follow-
ing way. Two probes are inserted in the plasma. The signals
picked up from the probes are fed into a correlator through
two independent narrow band filters (Q value = 100) tuned to
the sideband frequency. The cross-correlation function is
measured as a function of the position of one of the probes.
The results of the measurements show that the sideband waves
propagate along the direction of the carrier wave and that
the wavelength of the lower sideband is shorter by a few per-
cent than that of an externally excited ion-acoustic wave at
the same frequency in the absence of the carrier. The amount
of the shift in wavelength is comparable to the experimental
errors mainly due to the finite filter width and to the slow

drift of the voltage of the power supply feeding the machine.

- 12 -



But the shift is systematic.

The spatial growth of the first lower sideband is shown
in Fig.10 (curve c¢). The band width of the receiver is nar-
rower than the spectral line width of the sideband, therefore
the total power in the sideband is larger than the one corre-
sponding to the amplitude shown in the figure. The sideband
grows initially and saturates in the most unstable case at a
level comparable to that of the carrier wave. The initial
spatial growth rate is observed to be approximately propor-
tional to the square root of the carrier wave amplitude and
can be expressed as ki = (0.1 ~ O.Z)kao/wo. This dependence
of ki on the wave amplitude excludes the possibility of other
nonlinear processes such as nonlinear Landau damping.zo The
damping rate of the carrier wave is observed to be much
greater when the sideband exists (curve a) than when it is
absent, i.e. when the carrier wave amplitude is small (curve
b) or when w, is too small to excite sidebands (Fig.6).

In order to disturb the ordered motion of the trapped-
ions, a wave, which is called perturbing wave, is excited in
addition to the large-amplitude carrier wave. Since the wave
is dispersive, it is expected that the two waves will pro-
pagate at different velocities, as a result the waveform de-
forms in a complicated way. Experiment shows that the type
A sidebands are eliminated when the perturbing wave amplitude
is comparable to that of the carrier. This fact may account
for the saturation of the sideband. When the sidebands grow
to an amplitude comparable to that of the carrier, the side-

bands play the same role as the perturbing wave.

- 13 -



Type B sideband: The sideband of this type is observed

in a wider range in w, and in the carrier wave amplitude.

The growth rate is approximately proportional to Wy and almost
the same as that of type A sidebands. This type of sideband
is not destroyed by the perturbing wave. Low frequency noise,
which corresponds to the difference frequency between the
sideband and the carrier, is observed; however, the amplitude
of the low frequency noise is very small compared to the side-
band, so that it is attributed to the simple nonlinear mixing
of the sideband and the carrier. These sidebands may reason-
ably be interpreted as those which satisfy the matching con-

dition (2).

4., Discussion

We compare the experimental frequency spectra to the
result predicted by Ref.7. Though Ref.7 has treated the
electroﬁ plasma wave, its results can be applied to the ion-
acoustic instability.

In order to know the explicit dispersion relation for
the sideband, the particle distributions have to be given.
‘We assume that the electrons follow the Boltzman relation

and the carrier wave is stationary in the wave frame:
o (x) = ¢0 cos(kox - wot), (4)
i.e. we neglect the amplitude oscillation. The ion distribu-

tion, ¢ (x,v), when no sideband presents, can then be sepa-

rated into the trapped-ion part, @t(x,v), and the untrapped-



ion part, ¢ (x,v):
for v-v > A(x
| PI (x)

) for |v-vp| < A(x)

1
ax) = (221, - 6 (x)132 (5)

Since the carrier wave amplitude (8/n, < 0.1) is not very
large, we choose the expression obtained by the linear theory

for the distribution of the untrapped-ions:

1 df (v)
-V dv r
p

o, (x,v) = £(v) - 2 ¢ (x)

where f(v) is the spatial average of the distribution. It

has to be assumed that f(v) is constant in the entire trapped

region:
f = f(v for v - < A 7
(v) ( p) or | vpl u (7
where
_ ,ded 3

Without this assumption, the second term on the RHS of Eq. (6)

becomes greater than the first in the region |v—vp| < Dy

- 15 -



and then the linear approximation cannot be accepted.
Using @u(x,v) and ¢ (x) specified above, one can now

1
uniquely determine @t(x,v). To the order ¢02, we have:

1
_ 2 - -
o, (x,v) = f(vp) + al[A?(x) (v vp)2]2 . (8)

Note that (8) is similar to the trapped-particle distribution
introduced by Bohm and Gross.21 We define the excess trapped-

ion density, Ant, by

vp+A(x)
Ant = <[ dv@t(x,v)> - ng o (9)
vp—A(x)
where
vp+A(x)
n, = <j dvf(vp)>=:%AMf(vp) .
vp—A(x)

The angular bracket denotes the spatial average over a wave-

length of the carrier, The quantity, a, can be written as

a = An, . (10)

Having specified the distribution f(v) near v = v_ as

{ (v—vp-—AM)a+ for v - v. > A
f — =
(v) f(vp) t

(V—vp—AM)a_ for v - vp < AM

- 16 -



where

n v (v iAM)2
a, = - —%: ;B expl[- -2 = ,
- v2m i vi
and
n V. v? v Ay
f(v.)) i 5 z exp (- -E—)51nh( P = ’
P VZmr Tp™M ZVi vi

we can now derive the parameters appearing in the dispersion
relation (34) in Ref.7. The final form of the dispersion

relation is given as

o 2 + -
1= “pi °B Tt 'w . 'y :
- ’ - — ’
N=0 92-(2N+l)w§ ft o, e (k,w) e (k=-2k,,w-2w,)
(11)
where
N Ant
FN = UN(Q> —‘ﬁ‘t— + VN(Q) * YN(Q) ’ (12)
and
Q= w - kv_, and wé = kﬁ Eﬂi
P MV?2

Choosing k < k0 (i.e. @ > 0), we find the coefficients My
VN and Yy are positive. We also find vy to be much smaller

than My and Yy and hence we neglect Yy hereafter.
If nt/nO is very small, as in the case of the present
experiment, the sideband waves are unstable when two of the

denominators in (1l1) are nearly equal to zero.
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We now discuss the sidebands which have discrete fre-

quency spectra (type A). Depending on the value of Ant/nt,

we have three cases;

An Y
(a) r*>0 and TL > 0, when t, XN ,
N - N nt UN
- Y An Y
(b) F; > 0 and TN < 0, when EE > nt > - HE (13)
N t N
An Y
(c) F+ < 0 and ', < 0, when —_t . _ X .
N N n, My

It can easily be seen that a couple of waves, (w,k) and
(w—Zwo, k—2ko), are unstable at the frequencies which satisfy

the following conditions:

Q = V2N+1 Wy and e (k-2k;, w-2w;) = 0, for case (a),

(14)
and

vV 2N+1 wg and e(k,w) = 0, for case (c). (15)

O
2

In the case (b) no instability occurs. Note that no sideband
grows4 when Ant = 0 though n, # 0. The condition (15) corre-
sponds to (la).

As pointed out in Section 3, the experimental results
indicate that the type A lower sidebands are those which
satisfy (la). Therefore, the observed instability belongs

to the case (¢) in which An, < 0 and not to the case (a).

t
This conclusion may be consistent with the fact that the main
part of the trapped—-ions 1is not at the bottom of the potential

well of the carrier. Recent theory by Bud'ka et al?3 also

- 18 -



indicates that the distribution which was initially Maxwellian
evolves to form holes in the trapped region.

The growth rate is calculated numerically from (11) by
putting w real and k complex for realistic values of *the
parameters. An example of the results is plotted in Fig.1ll
together with the experimentally observed spectrum which 1is
obtained for parameters similar to those used in the calcula-
tion. The growth rate of the instability which satisfies (2)
is not shown. Two sidebands corresponding to N = 0 and N = 1
grow and those corresponding to N > 1 do not grow both in the
theory and the experiment.

The computed values of kiwo/kowB are around 0.l1l. The
theoretical growth rate and frequency of the type A sideband,
calculated by using a rather simplified ion distribution
model, well account for the experimental results.

Equation (11) suggests that the wave which satisfies
condition (2) is unstable in the case (c) in Eg.(13), there-
fore the presence of both type A and B sidebands under the
same experimental conditions does not contradict Eg. (11).
Differently from the type A, the wave has not necessarily
to be dispersive to have the type B sideband. Since the
condition (2) does not include Wy the type B instability can
grow even when the perturbing wave disturbs the regular bounce

motion of the trapped-ions.
5. Conclusion

Growth of the sideband waves is observed when a rela-

tively large-amplitude monochromatic wave propagates in a

- 19 -



plasma having Te/Ti ~ 20. The cénditions (1) and (2) well
account for the frequency spectrum and for the range of the
frequency and of the amplitude of the carrier wave in which
the sideband waves grow. The sidebands extract the energy
from the carrier and this in fturn causes heavy damping of

the carrier wave. Though the carrier wave in the present ex-
periment is not perfectly the nonlinear stationary wave, the
experimental results suggest that the B-G-K wave, which is

accompanied with the trapped-ions, is unstable.
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Fig.1l Layout of DP-machine. The potential profile is shown

at the bottom.,
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Fig.2

Probe Current

0] —

1 | 1 L | 1 1 | 1

Probe Potential (2V/div)

(b)

Ion Current

Energy selector Potential (1 V/div)

(a) Langmuir probe curves and (b) ion energy analyzer

curves, when DC potential difference is applied be-

tween two plasmas. aj VeX = 1 volt, b; Vex = 0,

c; V = - 1 volt, and d; V = 5 volts.
eXxX ex
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Fig.3 Dispersion relation of ion-acoustic waves. Dots are

experimental points; curve shows Eq. (3) for Te/Ti = 20.
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Excitation voltage &

Fig.4

Electron density

Time (2us/div)

Excitation voltages Vex' labeled by a (2 volts/div.)
and perturbed electron density i, labeled by B (fi/n

= 0.1/div.), as a function of time. Excitation fre-
quencies are 0.1 MHz for (al, 8,), 0.5 MHz for (0, s

B,) and 0.8 MHz for (a,, B,) . wpi/2w = 1.1 MHz.

Distance from the wave excitation point, x, is 7 cm.
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Fig.5 Wave amplitude, ﬁ/no, as a function of distance.

w/2% = 0.7 MHz. wpi/2ﬂ = 1,2 MHz. a; vex = 0.1 volt

p-p, b; 0.3 volt p-p, c; 0.5 volt p-p, and d;

1 volt p-p.
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i
([

Energy selector potential (volts)

Ion energy analyzer curves at various positions (a, b,
c and d), specified on the interferometer curve, and
at various phase (o, B8,y and §) of the wave specified
in upper right sub-diagram. /2w = 0.5 MHz. wpi/Zﬂ
= 1.2 MHz. Vex = 1.2 volt p-p. The energy selector
voltage ordinate, which is proportional to V2, has the

effect of making the bumb on the distribution seem

broader than it is.
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Fig.7 Frequency spectra of received wave signals at various
W, . Only lower amplitude parts of the spectra are
shown in order to emphasize the sidebands. wpi/ZN =

1.3 MHz. x = 5 cm. Vex = 1 volt p-p.
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Fig.8 Frequency spectra of the sideband waves at various
excitation voltage (peak to peak values are written).
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0.05

Fig.9 Bounce frequency as a function of wave amplitude.
Solid line shows the relation (wg/w,)? = /2 #/n.
Dots are experimental points from the period of the
amplitude oscillation. Open circles show wg obtained

from the frequency of the sideband via Eq. (la) and

the experimental dispersion curve.
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Fig.10

Amplitude(arb. unit)

Distance, X (cm)

Amplitude of the carrier waves (a and b) and of the
first lower sideband (c) as a function of distance.

\Y = 1 volt for curve a and c. V = 0.3 volt for
ex ex .

b. No sidebands grow in the case of curve c. Gain

of the receiver is increased by 5 times for curve c.

wo/zn = 0.8 MHz. wpi = 1.1 MHz.
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Amplitude

Fig.11

a5 | -

Upper diagram: Theoretical growth rate of the side-
band as a function of frequency. Parameters are as
follows; wpi/w0 = 1.75, wB/wO = 0.05, Ant/nt = -0.36,
and Te/Ti = 20. The arrow indicates the frequency
predicted from (la) for N = 0. Lower diagram: Ex-
perimental frequency spectrum. Parameters are as

follows; w,/2m = 0.75 MHz, wpi/ZW = 1.2 MHz, and

wB/wo ~ 0.1,
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