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Abstract

A direct derivation of the nonlinear Schrddinger equa-
tion for Langmuir waves is presented, based upon the non-
lineér wave packet ansatz of Karpman and Krushkal. Both
fluid and Vlasov equation formulations are used. The re-
sults obtained are essentially equivalent to those found
earlier by Taniuti, et al. using reductive perturbation
theory, including the importance of wave particle reso-
nances at the group velocity for the long time behavior
of the amplitude of modulated waves. Separating the wave
packet considerations from the calculation of the nonlinear
frequency shift makes it possible to attack the :latter
with whatever method facilitates the analysis ofithat part
of the problem. 1In addition, certain ambiguities concerning
singularities in velocity integrations are resolved, and
the connection with a well-posed initial value probleﬁ is
made somewhat clearer. This method can be used equally
well for other waves, and may be of help particularly in
situations where it is not clear, a priori, what scaling

to adopt in applying reductive perturbation theory.



I. Introducticn

Weakly nonlinear plasma waves, in regimes where the
linear dispersion relation gives a phase velocity nearly
independent of the wave number, k, can be described by the
Kortweg—-deVries (KdV) equation} whose mathematical and
physical properties have been rather thoroughly investi-
gated. For dispersive regimes — e.g. ion acoustic waves,
wheré k is an appreciable fraction of the Debye wavenumber,

k or waves, such as electrostatic electron plasma

D’
(Langmuir) waves, which have non-zero frequency, w, for
k - 0 —— the amplitude can be described by a ncalinear

Schrddinger (NLS) equation% provided the amplitude varia-
tion in x and t is slow compared to k and w.

The general problem of slow amplitude variations due
to nonlinear effects has been approached from several, ap?
parently disparate, points of view. Whitham and Lighthill3
start with the exact, nonlinear periodic solution (often
referred to as "uniform wave trains") which can readily be
obtained for typical nonlinear wave equations and, assum-
ing the amplitude, wave number, etc. to be slowly varying
functions of x and t, derive equations for these quanti-
ties, using rather elegant Lagragian techniques. A quite
different point of view was adopted by Taniuti4 and co-
workers, who introduced a consistent scaling of the ampli-
tude, wave number spread and space-time variables which is
known as "reductive perturbation theory" and used it to
derive both the KAV and NLS equations for the appropriate

situations. Finally, Karpman and Krushkal5 used a simple,



albeit heuristic,nonlinear generalization of the familiar
wave-packet formalism, again obtaining the NLS equation.

Each of these pointsiof view has its advantages and
drawbacks. In the examples treated by Whitham and Lighthill,
the amplitude is found to obey not the NLS equation but,
rather, a hyperbolic equation, with the usual consequences
as regards steepening (of the envelope, rather than the
wave -itself) at large times. This is somewhat disturbing,
since in all of these theories it is precisely the long
time behavior which is allegedly described, and the physical
significance of this aspéct is still not clear. Reductive
perturbation theory is elegant and, for the most part,
fairly rigorous, but involves a good deal of formal manipu-
lation in the course of which the physics is not always
easy to follow. In addition, the use of multiple time
variables introduces some questions regarding the relation
to a well-posed initial value problem, a difficulty common
to most theories of the behavior of systems at large times.
The Karpman and Krushkal approach is short, sweet and gen-
eral, but does not lead to specific expressions for the
coefficients in the NLS equation, as does reductive pertur-
bation theory, for example.

We present here a simple derivation of the NLS equa-
tion for electron plasma (Langmuir) waves which, in essence,
follows through on the Karpman-Krushkal paper by actually
calculating the coefficients for a particular case of in-
terest. The results obtained are in agreement with those

obtained earlier by Asano, Taniuti and Yajima6 for the



fluid equations and by Ichikawa and Taniuti7 for the kinetic
formulation (Vlasov equation), using reductive perturbation
theory. Although less elegant, our approach has the vir-
tue of exhibiting more clearly the "inner workings", so

to speak,and of being more closely related, in the kinetic
case, to the conventional perturbation analysis? In addi-
tion, the point of view adoéted here breaks the theory into
two, nearly disjoint parts: one is concerned with wave
packet ideas and leads, in a simple and general (albeit
non-rigorous) way to the NLS equation; the other is con-
cerned only with the calculation, for any particular case
of interest, of the lowest order nonlinear corrections to
the dispersion relation.

In section II, we derive the NLS equaticn a la Karpman
and Krushkal? generalizing their discussion and that of
Brinca9 to allow for a non-local structure in the nonlinear
term, In section III we present what we believe to be the
least laborious way of calculating the nonlinear
dielectric function ENL for the case of Langmuir waves
treated in the fluid approximation, and in section IV we

carry out a calculation of € for Langmuir waves using

NL

the Vlasov equation. Conclusions and discussion of the

results are given in section V.



I1. General Derivation of the Nonlinear Schrddinger

Eguation

As already noted, we divide the calculation into two
parts. In the first, treated in this section, we assume

the existence of a suitable nonlinear dispersion equation,
e(k,w,A) =0 , (1)

where A is the wave amplitude, and derive the NLS equation;
the explicit calculation of € is carried out in the next two
sections. In deriving the NLS equation, we follow here the
slightly tidier version of the original Karpman-Krushkal
formulation given recently by Brinca? If initially (t = 0)
the wave amplitude (in our example, the electrostatic po-

tential) is
$(x,0) = J dkcbk exp[ikx] + c.c.,

with ¢k peaked around k = ko; then in linear theory, the
long time behavior of the system (after the various tran-

sient effects have died away) is given by
d(x,t) = J dk¢k exp[i(kx - wt)] + c.c. (2)

where w=w (k) is the least damped solution of the linear disper-
sion relation. (In the case of Langmuir waves, for example,
the exact temporal behavior is given by a superposition of

decaying exponentials, corresponding to the Landau poles.



All but one of these will become negligible after a few
electron plasma periods, while, for a suitable zero order
distribution function (with small slope at the phase veloc-
ity), the least damped term can have a time constant of
many plasma periods. This is the case of interest, of
course, and is the one we shall assume here.) Our "deriva-
tion" of the NLS rests on the assumption that we can con-
tinue to use (2), simply substituting for w the correspond-
ing solution of the nonlinear dispersion relation (1). Of
course, this superposition is not valid for a nonlinear
problem, and could be justified only by a careful ordering
procedure in which it is shown that the errors involved
are of higher order. (We eschew this step, since rigor is
not our aim, but note that the agreement of our results with
those of reductive perturbation theory, where a systematic
ordering procedure is in fact carried through, suggests
that such a proof could be constructed.)

We consider the case where both the amplitude and the
spread of k values, defined by (1), are small, so that an
expansion of the dispersion relation, first in A2 and then

in k = k - ko is appropriate. Thus, solving

e(k,w,A) = e(k,w,0) + A?(3e/3A%) + +++ =0 (3)

for w we have

w=Q(k) + pA2 = w_ + v



where v = ng + VéKz/z + UAZ 4+ oo (4)

and Q(k) is the solution of the linear dispersion relation
elk,Q(k),0] =0

with w_ = Q(k)); vy = Q' (k) ;s vé = Q"(k)); and u = dw/dA2

= - (ae/aAz)(Be/aw)_l evaluated at k = ko' w =0 A =0,

(A trivial generalization of the formalism is required if

we wish to expand about a non-zero amplitude, A = Ao' rather
than A = 0. For simplicity, we treat only the case of A0= 0.)

Substituting (4) into (2) we have, as a consequence of per-

fectly straightforward algebra,

d(x,t) = exp[i(kox —wot)]fdn¢k+Kexp[i(Kx - vt)] + c.c.
= w(x,t)exp[i(kox - wot)] + c.c. (5)

with
1(3y/3t + v _00/0%) + (vi/2)9%/0x* - ul¥|*y = 0 (6)

identifying |¢| as the amplitude A of (1). This is conven-

tionally written in the frame moving with the group velocity,

v _:
g

iye + Py, *+ aly|?y =0 - (7)
where |
p = 75/2 = (azwo/akz)/z
(8)
g=-u=- dw/dA?



The calculation of p is, of course, quite simple, re-
quiring only the linear dispersion relation. Finding q is
more difficult — and also more interesting, since its
sign, relative to that of p, determines whether or not plane
wave solutions of (7) will be stable or unstable% Before
considering the actual calculation of the coefficients,
however, we note that assuming € to be linear in A2
for small A does not guarantee that the dependance on A
will be as given in (3). A more general expression for such

a linear dependance would involve a convolution,
J dx's(x - x")A%?(x")

where s(x) is a kernel to be determined by nonlinear analy-
sis, just as we must determine the coefficient 3e/3A?% in
the special case where (3) is appropriate. More explicitly,

whereas the linear analysis gives as an equation for ¢
Eo(klw)d)(klw) =®0(klw); Eo(k:w) = E(klwlo) ) (9)

the inhomogeneous term, @é, arising from the initial value

conditions, the nonlinear analysis may be expected to give
EO(k,w)¢(k,w) - @O

- J dk'dk"§(k - kF &K' - k") k"G K,k k") (10)

30 = o lk,u (k)]



where the right hand side has the most general form con-
sistent with the circhmstance that the nonlinear interac-
tion originates as a product in configuration space, and
hence a convolution in k space. Given that ¢ is peaked
around ko’ ¢(ko + gq) = Y(g) = 0 unless g g 0, we might ex-

pect that we could replace G(k,k',k") in (10) by

Go = G(kO,O,kO)

[plus similar terms to account for the necessary symmetry

under kO > —ko] obtaining expressions of the form
Goqu'dq"w(q - a)vlg' - g")Y*(-q") (11)
This is just the Fourier transform of
Gow(x)|¢(x)12 (12)

in which case (10) reduces essentially to the\;orm (3),
with €p2 = Go' However, as we shall see in thé example
treated in section III, G(k,k',k") may be singular for
k' - 0, in which case we can only reduce the right side

of (10) to the form

[aaraamv (@ - a2vtar - qv*aMs @) (13)
where

s(a') = Gk ,a'/k) + Gl ,a's—k,)



(plus terms with appropriate perturbations of the arguments,
as explained in detail in Section IV.) Since (13) is the

Fourier transform of
w(X)de'S(x - x") | p(x")|?

where s(x) is the Fourier transform of S(k), we replace our

former ansatz (3) by the more general form

elk,w,a) = e(k,w,0) + de‘s(x - X')AZ(X"Y) + eo- (14)

|v(x)|. Then (4) is replaced by

with A(x)
v = VgK + véKz/z - fdx'Q(x - x')A%(x") . (15)
Q(x) = s(x) /e,

and the nonlinear term in the NLS equation becomes non-

local, giving an equation of the form
iy, + P, WJdX'Q(x - x|y |2 =0 (16)

Of course, Q(x) may have a part proportional to §(x), cor-
responding to a non-singular part of G(ko,O,ko) in (10),
which then gives a local term like that in (7).

This completes the first portion of the calculation,
the "derivation"™ of the nonlinear and nonlocal Schrédinger

equation (16). For any particular kind of wave, it remains

- 10 -



only to calculate the coefficients. Singularities in G,
which can give rise to the nonlocal character seen in (16),
can arise from wave-particle resonances. In a fluid theory
these cannot occur, so we need only calculate the scalar
coefficients, p and q, of (17). This is illustrated in
section III, using a fluid model (isothermal electrons in
fluid approximation, moving in a background of cold, mass-
ive ions). The more general case of a kinetic treatment,
requiring the calculation of the kernel, Q(x), is illus-

trated, again for Langmuir waves, in section IV.

- 11 -



ITI. Nonlinear Langmuir Waves ; in the Fl1id Theory
Choosing k;l = (T/4nne2)l/2, w;l = (kéT/m)—l/z, and

T/e as units of space, time and potential, respectively,

we have as our basic equations the continuity equation,

the momentum equation and Poisson's equation:
du/3x + 3v/3t + udv/3x =0

du/at + dv/ax + 3d/9x + 3/9x (u?/2) =0 (17)
32¢/9x% + e’ = 1 = 0
where

v = log n/no , (18)

n, being the density of the infinitely massive background
ions. Linearizing these equations gives the well-

known dispersion relation
w2 =1 + k? (19)
O N

To obtain the nonlinear corrections to this, and hence the
coefficient u = 3w/9A%, we could use either of the follow-
ing approaches: 1) Carry out a perturbation analysis of the
original equations (17); 2) Work in the wave frame, moving
with velocity V relative to the lab frame, in which case
there is no time dependance and the first two equations
become conservation laws which can be used to eliminate u

and express v as a function of ¢. Substituting this into

- 12 -



Poisson's equation gives a nonlinear ordinary equation
¢" = F(¢, V)

from which we can find the dependance of w = kV on the am-
plitude of ¢ using either simple perturbation theory or
the Bogolyubov-Krylov techn‘ique%0

As might be expected, the wave-frame approach is the
simpler one and has the additional virtue of providing a link
with the Whitham approach,which is based on such uniform
wave train solutions. In the wave frame (3/3t = 0) the

first two equations of (17) give

ue =1V (20)
and

u?/2 + ¢ + v = V2/2 (21)

if we assume u = V where n = n_. Since ¢ is a potential,
we can always choose it to vanish at the point where u =

V, n=n,. From (20) and (21) we have
v = log V/u (22)
and so

u?/2 - log u = V2/2 - logV - ¢ (23)

which (implicitly) defines u as a function of V and ¢, and

hence also

- 13 -



F(¢,V) =1 - e’ =1 - V/u (24)

Thus, everything is reduced to the single nonlinear (Poisson)

equation
" — j— 2 3 o s 0
o" = F(¢,V) = Fl¢ + F2¢ + F3¢ + (25)

where the coefficients Fn are known explicit functions
of V.
In the linear (small amplitude) approximation, we have

simply
LL I

$" = F 0 - (26)
giving sinusoidal oscillations with wave number

- (- y1/2

kO = Fl) ' (27)

independent of amplitude, and hence a frequency
w_ = kOV . (28)

Including higher order terms in (25) we find that, of course,
higher harmonics give non-sinusoidal, albeit still purely
harmonic, solutions. (When V < 1, soliton solutions are
also possible, but these are not of interest here, since

we just want the change in the dispersion relation and that

_14_



involves only periodic waves.) More significantly, they

also give a shift in the wave number,
k - k_ + Ak
o
where Ak is proportional to the square of the wave amplitude,
Ak = g(V)A? (24)
Thus, for given V, which is the phase velocity of the wave
in the lab frame, there is a shift in k. Conversely, if we
keep k fixed, then V must change,
V>V + AV =V + h(k)A? (30)
Since this implies
w = kV > kV + kh(k)A?Z, (31)
we have the desired coefficient needed for the NLS equation
(7),

g =-u = - dw/3A% = =kh(k) . (32)

There remain only the formal calculations of Fl, Fz,

F3 and of h(k). For the former, we introduce

N(¢) = 1/u

- 15 -



which satisfies

log N + 1/2N? + ¢ = V?/2 - log V . (33)
Then
dN/dé = N' = N°(1 - N?2) %
N" = NS(N %- 3)(N% - 1) (34)
' 7 el 2 -5
N = N’ (N* - 4N? + 15) (1 - N?) .
Since
— XNV = =UN" - UN'"
F, = -VN', F, VN"/2 , Fy = -VN /3 , (35)

with all of the derivatives evaluated at ¢ = 0, where N =

V~l, we have

-1
- - w2
Fl——(l ve)
F,= (3V2 - 1) (1 - V3) /2 (36)
Fy o= (15V% - 4v% + 1) (1 - V) 7°/6 .
From (27) we have
k= (vz - 1)"1/2 (37)
o
which gives
2 _ 2 2 _ 2.2
v o= (k2 + 1)/k2 = wl/k? (38)
and hence the usual dispersion relation (19). To find Ak,

it would seem easiest to use the method of Bogolyubov and

- 16 -



Krylov%0 In fact, however, to lowest order this gives a

contribution to Ak proportional to F3A2. To get the full

A2 contribution to Ak, we must go to second order in the
Bogolyubou-Krylov expansion, thereby picking up an addition-
al term proportional to (FzA)z. However, this is a lengthy
calculation, and while it gives the correct answer],'l we
shall follow here the easiér path of simply solving (25) by
stréightforward harmonic analysis and perturbation theory.

We look for a periodic solution of (25)

6 = ) ¢nexp(inkx) (39)
with

*

6 = ¢o_, -

n -n
To third order, we then have from (25)
2124 =
n°k ¢n Fl¢n + F22¢n'¢n“ + F3Z¢nl¢nu¢nlu (40)

with n' + n" = n in the first sum and n' + n" + n'" = n in
the second. We next make a perturbation expansion in the

amplitude of ¢,

_ 5 (P p
o, =) by € (41)
1
and also in the wave number,
A= -k? =7 €ePx (42)
. L p



with

(1)
6,, =1 6 =0, nxo (43)

Substituting (41) and (42) into (40) , we find to first

order

— _ _ y2y—1
AO = Fl = (1 ve) (44)

as expected. In second order, we find that

(2) (2)

¢o = =2 F2/Fl ¢i2 = F2/3Fl
(45)
$(2) = o In| > 2
while ¢£i) is undetermined. In third order, we find
- (2) (2)
Az = 2F2[¢2 + ¢O ] + 3F3
= - 2
= 10F2/3Fl + 3F3 (46)

(1 - 9v2%)/3(Vv2 - 1)5

Since

L4 oe2(9v2 - 1)/3(v2 - 1)°8

k? = =1 = (V% - 1)
(47)

We have, to order e2, for fixed k

- 18 -



w? = k2v2 = (k2 + 1) + e2(9V? - 1)/3(vV* - 1)*
(48)
= wé + €2k® (8w? + 1)/3
Thus,
u = dw/de? = k®(8w? + 1)/6uw
SO
g = -n = -k®(8w? } 1) /6w (49).

This agrees with the Asano-Taniuti-Yajima result4 obtained via

reductive perturbation theory. They £ind (in our units)
g = -k?(8w? + 1)/6w , (50)
ATY

but this is the coefficient for a NLS equation in
f=n-1=Kk% + *°°

If q¢ if the coefficient for a NLS equation in ¢ and q, the

corresponding quantity for n, we should have q¢ = k4qn which

just accounts for the difference of k4 between (49) and (50).

- 19 -



IV. Nonlinear Langmuir Waves; Kinetic Theory

We continue to assume a uniform background of massive

ions, but use the Vlasov equations
[0/0t + v3/3x + (3¢/3x)3/3vIf = 0 (51)
82¢/ax2 = fdvf(x,v,t) -1 (52)

where the units of x,t,¢ are the same as in section III.

8,12

Following the standard technique, we Fourier transform the

space dependance and Laplace transform the time dependence:

f(x,v,t) = F(v) +fdp expli(kx - wt)]1f(p,v)

(53)
d(x,t) = Jdp expl[i(kx - wt)ld¢(p)
where p = (k,w) and dp = dkdw/(2m)2. Then (51) gives
£(p,v) = (w - kv) T{if (k,v,£=0) + k¢ (p)F"' (V)
(54)

+ jdp'¢(p')k'Df(p -p',v)}
with

D = 3/3v

(In the Laplace convolution integral in (54) we must choose
the w' contour to lie above all singularities of ¢ (k,w")
while w - w' lies above all singularities of f(k,v,w-w').

As usual, w must lie above all singularities of f (k,v,w).

- 20 -



From these initial locations, of course, we can deform
the w' contour in the usual ways. Similar remarks apply
to all of the convolution integrals which arise in the sub-

sequent analysis.) Iterating (54) through the third order

in ¢ gives
£(p,v) = I(p,v) + (0 - kv) 1{k¢ (p)
+ fdp-kwp-m(k - X" - plw - o
- (x - k9vITh o+ Jdp'dp"k'qa(p')Dk"¢(p") [w -
w' - (k - k)vI7ID(k - k' - kMé(p - p' - p")
(o - o' =o' - (k - k' - kmvI~hEr (55)

where I consists of all the inhomogeneous terms, i.e. those
linear in the initial perturbation f(k,v,t=0) and each D
operates on all functions of v to its right. Substituting
(55) into the transform of (52) gives the basic integral

equation

~k?e(p) ¢ (p) =¢_(p) + Idp'Mz(p,p')¢(p')¢(p - p')
(56)
* IdP'dP“M3(p,p',p")¢(p')¢(p“)¢(p - p' -P")
with
¢o(p) = Idv I(p,v)

(57)
e(p) =1 - JdvF'/kz(v - w/k)

- 21 -



M, (p,p') = -kk'(k - k')Jdv(w - kv) %P /o - o
- (k - k")v] (58)
My (p,p',p",) = -Kk'k"(k - k' - k“)[dv(w - kv) 2
o - w' - (k - k")vI™L DF'/[u (59)
- ' = " = (k - k' - k")v]

(We have eliminated one D from (58) and from (59) by partial
integration.)

We use (56) to find the nonlinear frequency shift.
Since we cannot solve (56) directly, we again resor£ to a
perturbation theory, iterative approach. From the resulting
solution we will later, in Eq. (94), find the second order
frequency shift. The analysis between this point and Eqg.
(91) involves simply the iterative solution of (56) three

terms of third order in ¢,

o = o 4+ 62 4 4 3) (60)
We find immediately
2 (p) = —fdp'M2<p,p')¢‘1’ (oM (o - prI/k2e(p)  (61)

- 22 -



63 (p) = —[dp'dp"{M:;(p.p',p") - M, (p,p")
C+ My (p,p-p") My (p - p', PNk = k') 2 (62)
e - p' e P e e (e - pr - p") /K26 (p)

For the case of interest here, namely ¢(k,w) peaked around
k = tko, the second order term (61) makes no direct contri-
bution, since we cannot have, simultaneously, fpl, |p'| and
lp - p'] all equal to ko' However, it does contribute to
(62) wvia the M2 M2 terms. The w' and w" integrations in
(62) can be easily carried out if we assume that for each

k there is a single (least damped) root, Q(k), i.e.,vthat
on the right side of (61) we can set

1 Im[w - Q(k)] > 0 (63)

d(p) = i (k) [w - (k)1
If we close the w' and w" contours in (62) on an infinite
semi-circle in the lower half plane, then we enclose poles
at w' = Q(k") = Q' and " = Q(k") = Q" from the ¢ plus

one at w' = k'v in Mz(p, p - p'). Define

e(k) = e(k,n(k))

Rz(k,k') Mz(k,Q; k',Q') (64)

Il

R3(k,k',k") M3(k,Q; k',Q'; k",Q")



and similarly for R Then (62) becomes

3"
x2e(p)o ) (p) = _(2m) 2 ink'dk"R(k,k',k")
P(k')P(k")P(k - k' - k") (65)
where
{R(k,k' k") = Ry(k,k',k") - [R,(k,k') + Ry(k, k = k)]

Rz(k - kl’ k")/(k - k')zﬁ(k _ k')}[w - Q' - qQm -

1

Qk - k' - k")1 © + T(k,k',k") (66)

The term

T(k,k',k") = kk'(k - k')fdez(k - k'y w - k'v; k",
Q"IF'/(w - kv)?[w - k'v = Q" - Q(k - k'
- k") 1[k'v - Q' + ie)(k - k')?2 (67)
ek - k', w - k'v)]
arises from the aforementioned w' = kv pole in M2, but makes

no contributions to the final result since, unlike the
other terms in (65), it does not have a factor of (w - Q)—l.
However, we carry it thru the intermediate analysis to
ensure that it gives rise to no singular terms. [To avoid
notational ambiguities, we should emphasize that R coeffi-

cients in (66) with arguments like k - k' are to be inter-

preted as



R2(k - k', k¥x") =z M(k - k', @ - Q'; k", Q"),

etc., and similarly for e(k - k'). Somewhat later, we shall
find it convenient to express k, k', k" in terms of small

deviations g, q', gq" from ko. In that case, we will write

Rz(k,k') R2(k, ko+q') =M[k,Q; ko+q', Q(ko+q')]
etc.]

.As already indicated, we assume the initial perturba-
tion, f£(k,v,t = 0) to be different from zero only for k v
+ ko' Then ¢ (k,Q),the inhomogeneous term in (56), will
have a similar character, and so will $ (k). We make this

explicit by writing
§) = [p(k + k) + y*(-k = k)]
where ¥ (q) is non-zero only for q % 0. Since (63)

and (68) imply a contribution to (53) having a wave-packet-

like form,

o(x,t) Iw(x,t)exp[i(kox - wot)] + c.c.] (68)

with

bx,t) = (2m 7 [ag v expli(ax - Vo]
v =k, +q) - 2k)
there is a formal similarity to the considerations of sec-

tion I. However, we emphasize again that here we are sim-

ply concerned with finding the nonlinear corrections to
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the dispersion relation, not primarily with wave packet
considerations, and are obliged to keep Y(g) as a peaked
function of non-zero width only in order to treat properly
the singularities which arise in the delta function limit
for Y (g).

The integrand in (65) is non-zero only if the magnitudes
of k', k", and (k - k' - k") are all near ko' This happens
when: two of them are near ko and the third is near —ko,

which allows three possibilities. Thus (65) becomes
2 (3) — -2, ] " t * u v
-k*e(p) ¢ (p) = (2m) “ijdg'dg"v(gq*)y*(-g")v(q'"'")
] - n [

[R(kO + q, kO + q', kO + gq") + R(kO + q, ko + q', kO +

T - n ' - -2, | u
q )+R(kO + q, kO + q", ko + g')] = (2m) 1qu dg

1

S(a,g',ga") V(g v*(-g")v(g - q' - g") [w - Q(k)]~ (69)

with g =qg-q' -q".

Insofar as the matrix elements R are non-singular at
qg' = g" = 0, we evaluate them there. Inspection of (58),
(59), (64), (66) and (67) shows that singularities occur
only in R3(ko + q, kO + gq', k"), in R2(kO + q, kO + q'),
and in R2(q - gq', k"). These all have terms proportional to
(g - q')—l. We must also deal with the (k - k')ze(k - k")
in the denominator of the second term of (66). Everywhere

else, we can set g = q' = q" = 0 in the matrix elements

without encountering any difficulty. Of course, there are
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many denominators of the (w - kv) type involving resonance
of particles at the phase velocity, but there are handled
by the usual Landau prescription, since in this part of
the calculation we are simply solving for the (nonlinear)
dispersion relation which is, by definition, an initial
value probleﬁ, with all resonant integrals defined via
analytic continuation from the upper half w plane. It is
just'the fact that the (g - q')_l type singularities can
not be dealt with in this canonical fashion which neces-
sitates a more careful treatment of them.

Consider first
Rz(k,k') =4—kk'(k—k')JdvF‘/[w - Q" )yv]l(w - kv)“2 (70)

(Actually, we want this for w = Q(k), but the use of w ré—
minds us that, by the usual Laplace transform rules, we
must have Im w above any singularities of the integrand,
which in the present case simply requires Imw > 0. Thus,
we can replace w by @ + in, where n > 0+.) The matrix
element (70) is finite at k' = k, since the factor (k‘ - k)
in the numerator compensates the singular denominator. 1In

the velocity integration, we will have resonances at the

phase velocity

<
1l

u(k) = Q(k)/k
and in the limit k' » k, also at the group velocity

v = vg(k) = 3Q/3k
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The former resonance, at the phase velocity, is of a famil-
iar sort and hence not particularly interesting, being just
responsible for linear Landau damping. If F and its deriva-
tives are much smaller at v = u then at v = v_, as will be

the case for a Maxwellian with k << k then the effects

D’
associated with the phase velocity resonance will be neg-
ligible. We assume this to be the case here, in order to
focus attention on the less familiar effects of the reso-
nance at vg. If it is not, then linear Landau damping
effects are likely to dominate all of the modulational
terms considered here, which are third order in ¢. In
any case, the correct evaluation of (70) and the other
coefficients taking into account the v = u resonance is an
entirely straightforward extension of the analysis pre-
sented here, provided there is some dispersion, i.e; that
u # v .

g9
Neglect of the phase velocity resonance implies treating

kv)‘l

as a principal value integral or, in a more approxi-
mate but simpler rein, replacing (w - kv)-2 by just w_z
in integrals like (70). For the resonance at vg, we have,

for any non-singular function, h(v)

lim (k - k')Jdv h(v)/[(k = k"'")v = w - Q']

k+k"'
= 1lim Jdv h(v)/[v - v_ - in(k - k') "1
k|+k g
= PJdv h(v) (v - vg)"l + sgn(k - k')rwi h(vg) (71)
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with

sgn x = x/|x| (72)

Consequently, we can let k, k' »> kO in R2, but the result is

still a function of (k' - k). With

k =k, + k! ko + q) (d€,9'rq-q)q")+> 0 (73)
we find

Rz(k,k') > W(kO, qg-a') (74)

where

11

w(k,q) Jdv F'/(v - u)2(v - Vg T ie/q)

I

Wl(k) + i sgn g Wz(k) | (75)

W, = P[dv F'(v)/(v - u)?(v - vg)

(76)

=
1

= ﬂF'(vg)/(vg - u)?

We consider next the R3 terms for which k - k' -~ 0.

These diverge, as (k - k')-l, but the combination which

occurs in (69) is convergent, irrespective of the order in

which we allow g-q' and g" to approach zero. That is, in

the limit (73),

Ry (k,k_+q' k +a' ') + Ryl k+a',—k +q") > Clkyra-q') (77)
with ‘
- -2 . -1__, -2_ .
C(kq) = —-|dv(v-u) (v—vg—ln/q) DF (v—vg)(v—u) —Cl+1czsgn(q),
(78)
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and

1

“C, = —Pfdv(v—u)—l(v-Vg)- DF'/(v—vg)(v—u)2

(79)

0
i

4
-mF' (v v_-u
( g)/( g )
Similarly, we find in the limit (73)

'Rz(k—k',ko+q"') + R k—k',—ko+q“) = W(ko,q—q') (80)

5 (
where W is defined in (75).

The last of the (k - k') singularities arises from
the (k - k')ze(k - k') denominator of (66). We have, in

the 1limit (73),

(k - k') ?%e[k-k', 9-02'] > -A(k, g-k') (81)
with
Ak,q) = fdv P /(v - v - in/a)
(82)
= 4, (k) + i sgn(q)h, (k)
Al = Pfdv F'(v) /(v - vg) (83)
A, = ﬂF'(Vg) (84)

Since it is the reciprocal of (82) which occurs in (66) we

note that

A7hq) = (A - 1osgn (@A) (42 + a)TH (85



We now list the remaining, non-singular coefficients.

R3(kr"krk) = (l/Z)JdV(V - u)_3DF'(V - u)-]‘ = "B/Z

R, (k,~k) = -A = -Jdv F'(v - u)"3

R2(k,2k) = 2A | (86)
R2(2k,k) = A/2

R2(k,k—k') =0

T(k,k,tk) = 0 (87)

Substituting these and the singular terms (74), (77), (86)

and (81) into S, eq.(69) we have

S(g,q',q") = Sl(k) - Sz(k)i sgn(q - gq') (88)
with
2,02 2_ 2 2,,2
Sl = -(A“/6k“+B/2) + Cl +[(W1 W2)Al + 2W1W2A2]/[A1+A2]
(89)
_ _ _ 2_..2 2,.,2
82 = C2 [2A1W1W2 A2(W1 WZ)]/[A1+A2] (90)

We are now ready to return to our basic integral equa-
tion (56) for ¢ and find the frequency shift. 1In the ap-
proximation that ¢ is peaked around ko’ we have shown that

(56) becomes



~k*e(p)¢(p) = ¢(p) + i(27r)—2qu'dq"s(q')

Y(a-g") P (g =g") p* (-q") [w-2(k) 1~ L  (91)

where we have changed the integration variable from gq' to

qg - q' so that
S(q') = 8(0, g-q*, 0) = 8§, (k) - is, (k) sgn(q") (92)

If we assume for ¢(p) on the left side of (91) the same
form,

$(p) = ily(k=k,) + y*(-k-k )] [w-02(k)] "

(93)
used to reduce the right hand side, then for k near ko' i.e.,

k = ko + g, (91) gives
e(p)y(q) + (2nk)'2qu'dq“8(q')W(q-q')w(q'—q“)w*(-q“)
. 2 :
= -i(w-2)e_/k (94)

If the second term on the left side of (94) were proportional
to Y(q), then the coefficient of Y(gq) would just give us the
nonlinear shift in € from which we obtain the frequency

shift needed for (15) and (16). Although this term is not
proportional to Y(q), its Fourier transform is proportional
to Y(x). That is, if we Fourier transform (94) with re-

spect to g, treating p = [k,Q(k)] as constant, then we have



for the left side of (94)
[e(p) + de's(x-x')lw(X')Iz/kzlw(x) (95)

This has the form (14) if we identify |v| with A and S(x)/k>
with s(x), where S(x) is the Fourier transform of the S(q')
given by (92),

S(x) = Sld(x) + (Sz/ﬂ)P(l/x) (96)

The kernel, Q(x) which appears in the NLS equation (16) is

therefore

Q(x) = [5,8(x) + (S,/MP(1/x)1k%e (97)

To summarize, we find that the nonlinear dielectric
function for Langmuir waves, treated with the Vlasov equé—
tion, has the form postulated in section I, Egq. (14), and
hence that the NLS equation for this case has the form (16),

that is,

iy + Py, * Q,vlw|® + (Qz/ﬂ)wPIdX'|w(x“)IZ/(x-xi) =0
(98)
with

— 2 _— - -
Q = Sl/k €y = (vg u)8,/2k

I

Q, = - (v ~w)S,/2k (99)

where S1 and 82 are functions of k given by (89) and (90).

As before, p is given by (8). Explicit evaluation of these



for the case of k << kD’ when our neglect of phase velocity
resonance effects is certainly justified, has been carried
out by Ichikawa and Taniutiz who obtained equivalent results

using reductive perturbation theory.



V. Conclusions and Discussion of Results

As compared with reductive perturbation theory, the
method of derivation presented here is rather pedestrian,
lacking the elegance of the former and its property of being
rigorous and completely consistent, once a set of assump-
tions about the scaling have been made. As in any formu-
lation involving multiple time or space scales, the reduc-
tive .perturbation theory eliminates such philosophically
troubling points as the appearance, in the same equation,
of complementary variables like k and x. At the same time,
the scaling makes it difficult to treat the problem as a
straightforward initial value problem, which is, of course,
the surest way to remove ambiguities concerned with reso-
nant singularities. From a purely pragmatic point of view,
the present method deals with these questions quite éasily,
since computation of the dielectric function involves, by
definition, the solution of an initial value probelm, so
that all velocity singularities are unambiguously defined.

Taking a broader point of view, however, we note that
there is generally lacking a derivation relating an equation
like the NLS equation, which describes the long time asym-
ptotic behavior, to a well-posed initial value problem.
Presumably, if at the initial time, t = 0, a weakly modu-
lated wave is present in the system, then the long time
behavior of the amplitude is correctly described by the NLS
equation, but no clear demonstration of this has been given.
If one approaches it using standard perturbation theory
(with nd scaling), then it seems likely that summation of

an infinite subset of terms to remove secularities would be



necessary, after which the amplitude could be shown to
satisfy the NLS equation at large times. The present ap-
proach provides some guidance towards the development of
such a demonstration, since we can at least see fairly
clearly just how the connection of the initial and asymptotic
behaviors comes about. One crucial step consists in the
initial Karpman-Krushkal ansatz, (2). As we have already
noted, this use of superposition for a nonlinear solution
requires justification. In addition, we see that as-
suming only one, least-damped, pole in the w plane for each
k, eliminates the transient behavior, something
which could presumably be shown in a formal way by the
summation of terms referred to earlier. 1In addition, in
evaluating the w',w" integrals in (62), we again neglected
the other Landau poles, this time with less justification
than in the case of (2), where at least the exp(-iwt) makes
this a plausible step.

Aside from these more theoretical questions, we feel
that the present approach has the virtue of disentangling
the sometimes onerous algebra required to find the nonlinear
frequency shift from the wave-packet considerations, making
it possible to use for the former whatever method is most
convenient, e.g., in the example treated in section III,
the use of uniform wave train solutions. 1In this connection,
it might be supposed that the analogous exact large ampli-
tude solutions of the Vlasov equation13 should provide an
easier way to obtain the results of section IV, but so far

we have not succeeded in demonstrating this.



Finally, by exposing the admittendly messy details of
the calculation, which are meré¢ifully somewhat hidden in
the elegant formalism of the reductive perturbation theory,
it becomes somewhat easier to assess the difficulties, e.g.,
the connection between initial and asymptotic properties,
discussed above, and to extgnd the calculation to cases
which do not fit the rather stringent scaling requirements
of that theory. For example, if linear Landau damping
becomes comparable in magnitude with the effects treated
here, then it appears very naturally in the formalism,
since there is no restriction that W, = Q(ko) be real. Of
course, one must then consider also the phase velocity
resonance contributions in evaluating the velocity integrals

involved in the kernel, Q(x).
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