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SYNOPSIS: Relations between gauge invariance and the con-
servation laws are discussed in relevant to Korteweg-deVries'
and its concerning equations. The technics employed here is
conventional in the realm of field theory; the canonical
formalism related to the invariant variation problem. The
function of constants of motion, when represented in terms

of canonical variables is to generate infinitesimal partial
gauge transformations of any order, under which the variation
problem is invariant. On this point of view, one more example

is presented together with the general theory.



1. Introduction

The equation derived from the invariant variation problem
5 Sdt Li¢] =0 | (1)
- _ ¢ da¢ . 1,de, > ,d2¢, 2 *
Lol = | axlgp e+ 3@ - G2 ) (2)
: dax

is known as the Korteweg-deVries equation, which yields a
number of conservation laws. Whitham investigated this kind

(1)

of variation problem, and Gardner succeedingly discussed on

this problem along the Hamiltonian form related to this
Lagrangian for a limited case.(z)
Main advantages of the theory of invariant variation,

however, exist in the facilitation in demonstrating the re-
lation between the invariance and the conservation laws;
(Noether; 1918).(3) For example, the Lagrangian (2) is
Galilean-invariant. The invariance of this kind was discussed
by Kruskal and his group.(4) Another invariance to be pointed
out here is a kind of gauge invariance. The quantity d(x,t)

in (2) is unphysical but a "potential". That is, only its

gradient, namely "strength",
u = dé¢/dx (3)

is "physical". This circumstance implies the gauge invariance
of the variation problem; just as in the Maxwell electromagnetic
theory.(s)

The purpose of the work is to show the relation of the

gauge invariance to such conservation laws just as contained



in the K4V equation in-the canonical f;ame.(s)

The potential
¢ and the strength d¢/dx are treated as field quantities, here.
Except for ¢ the quantitieS'are assumed to vanish on the bounda-

ry of the space region, so also their independent small vari-

ations 6¢, 6(d¢), .. eetc.

Throughout this article, the differential operators with

P
respect to space-time are denoted by E% E% instead of 5% 5%
14 14 14

while ones with respect to the "quantities" and their derivatives

are denoted by —% -5% #*+++ etc. The functional defined by
14
X

: J 1 -
the "density" G(¢, g% Q_% *e*) is
. S ' dx .

Glo] = de G(9, 391 _i....) ]

In partlcular, a point function can be regarded as a functional

when it is represented in terms of Dirac's delta function as in

Cplx) = 8 dx'¢(x') 8 (x'-x) .
d¢ _ dx ( -x)
Ix = p(x') 6" (x'-x) '

where §' (x) stands for dé/dx.

2. Lagrangian and Hamiltonian;

The independent variation problem

s S Dlglat =0 5 = . o Y
: _"’ N Pre | d 1 Py ‘d2¢2 7
Ll¢] = S dx{ag a% + 3 32 36( x) - (dxz)} (5)



with respect to ¢(x,t) under fixed boundary values, leads to

|

o 2 2 4
@) + (224 a2 @y S48 $_ o , (6)

Qi

t

which is referred from the work of Miura and his group.(7)
(This equation tends to KAV equation as a —+ 0.) The variation
problem (4) and the equation are both invariant under the

gauge transformation

$ — Cb(X,t) + A(t) [ (7)

where A(t) stands for an arbitrary function of t independent
of x. 1In fact, (7) adds on the right-hand side of (5) a term
dependent only on the boundary values of ¢, alien to the vari-
ation problem. .

Because of the linear dependence of L{¢] on d¢ the

dt,
Legendre transformation %% to p (the canonical momentum conju-
gate to ¢) is not unique. The situation yields many possibilities
of Hamiltonian. They are formally different from each other,
and have different functions in the frame work of canonical
theory, although they give equal values of "energy" under a

certain compatible condition as is seen shortly. A choice for

the Hamiltonian

Hip,¢] = S dx H ' (8)
H = -(3p? + Qo 4 Qiﬂqéi + ip 4 gip" (9)
2P 18P PUELE:E: 13 3P

(See Appendix I), leads to the proper forms of canonical

field equations,



dp _ _SH _ _ 41, o’ 43  d’p
d¢ _ ESL—{. = - (p + .O".? ’)d(b a’e + 12 + 9_‘.2 3 (11) *
it - §p 6 Plax = 5 7 2P g P -

Eq. (10) is essentially identified to the KAV equation at

a = 0, while Eq. (11), after x-differentiation, gives

. d _ d¢ d a? ., a2 _déyy _
It (p a;g) + d_>—{—{ (p + g Pt dxz) (p a—x-)} =0 (12)
with the aid of (10). Thus, the quantity (p - g%) itself

is a conserved density of egs. (15), (16), but, if we put at

a time, (e,g, t=0)

P - d(b/dX =0 ’ (13)

then (13) holds forever. At a sight, the choice of the
Hamiltoniah is different from the kind of Gardner's. The
functions of these Hamiltonians are different, while these

two have equal values of the "energy" under the condition (13).

The functional derivatives are defined by

(See Ref. 5) .




3. Poisson Bracket:

The Poisson Bracket, defined by

= = _ §F G _  8G . &F
[F,Gl = de pm e T SBe s (1)
leads to
[p(x,t), ¢(x',t)] = S(x-x") ’
(15)
[p(x,t), px',t)] = [o(x,t), ¢o(x',t)] =0 .
Also, we have
g‘% = _[p(xrt): ﬁ] ’
(16)
d¢ _ _ -
a‘E - [¢(X’t)r H] ’

the canonical equations in the P.B. form just as in the usual

analytical dynamics. For any well-defined functional Glp,¢],

= -[G,H] | (17)

gives the time-development of the dynamical variable G, and
implies that G is a constant of motion if G "commutes" with H.
Of course, other properties of the Poisson bracket such as
Jacobi's identity hold also in our case.

A dynamical variable F[p,¢] is displaced by an appropriate

functional G[p,¢] according to
8F = ¢[F,G] . (18)

where ¢ stands for an infinitesimal parameter of a continuous



transformation, (See Appendix II). Eq. (7) implies Flp,¢] to
be invariant under the G-transformation, if F commutes with G,
vice versa. The functional containing many linearly independent

parameters O v

Glp,¢1 = Jo G [p,¢] (19)

does ‘similar r6le for a certain displacement on the variables.
In particular, any an[p,¢] makes a "partial" displacement on

the variables, if all éﬁs are compatible:

[ém, én] =0 . for all n, m (20)

and then [én, fi] = 0, if [G,H] = 0. In other words, H is

invariant also under the partial displacement.

4. Gauge Transformation:
The functional
ex(t)p = er(t) S‘dx p(x,t) (21)
generates4the infinitesimal gauge transformation on ¢(x,t)

S = ex(t) [¢(x,t) ,p]l = eX(t) . (22)

The Hamiltonian (8) is evidently gauge-invariant. This in-

variance implies
[51 I-'i] =0 ’ (23)

i.e. p stands for a constant of motion.



Now, suppose a generator

$lpso'] = S ax(p + ioG2 + ga®p)o’ . (24)

The old pair (p,¢) turns into the new pair (p',¢') by the time-

independent, finite canonical transformation generated by $;

p'(x,t) = p(x,t) + iua% p(x,t) + %ﬂzp(xft)z (25)
o(x,t) = (1 - iuéé + faZp(x t)) o' (x,t)
' ax T 3% Py ’
The new momentum p' satisfies the proper KdV—équation,(7) i.e.

a=0.. Thus, we can regard this canonical transformation as the
one to make o vanish. 1In terms of the new variables, consequent-

ly, the Hamiltonian is written as

ﬁl[pl,¢I] = S dxy" ,
(26)
v - (L, @&%p' ag' 1l 43
H' = (2p + d——-———xz )dx + eP .

The new momentum p' can be considered as the generator of infini-
tesimal gauge transformation on the new ¢', since P.B. relations
do not change themselves under canonical transformations. More-
over, time-independent canonical transformations do not change

the canonical equations. This fact yields

(p, B [p',0'1] . (27)

48
il
o
i

The old momentum p has been formally solved in terms of p'

stepwisely

p = p' - ia%%' + zanTn(p', ggl y oceeee) . (28)



1
The densities Tn(p', %5 «+++.) are given as linearly inde-
’

pendent polynomials (See Ref. 7). Thus, (27) and (28) lead to

g = [T H'1 =0 . (29)

It is essential that all of Tn[p'] are the functionals of

p' only, not dependent on ¢'. It implies the compatibility
relation
[Tn[p'], Em[p']] =0 for all n, m (30)

to be a truism. Since p generates an infinitesimal gauge
transformation on ¢, Tn[p'] generates the infinitesimal partial
gauge transformation of an order n also on ¢{¢',p'l. The
Hamiltonian is, therefore, invariant under the partial gauge
transformation of any order. This invariance thus yields many
constants of motion of KdV equation.

The parameter o, running over all real non-negative values,
makes a class of equations, any element of which turns into
another by means of a canonical transformation. This class is
hereafter called "KdV class" for short, since the class contains

the KdV equation as its element a=0.
5. General Remarks;

So much for the KAV class, but now for general schemes. The

Lagrangian functional of general form

L{¢] = \J dx

F[d¢/dx] = j ax r (32,

IQ-:
e
{

F[d¢/dx] ' (31) *

Q-IIQu
wle

where

d2¢
dx? ,

ce o, (32)
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contains (2) and (5) as special cases. The variation problem
of (31) is certainly invariant under the transformation (7);

linear dependence of (31) on 3% leads to non-uniqueness of

Legendre transformation, and consequently to many possibilities
of the Hamiltonian formalism. As is seen in Appendix I, how-

ever, the Hamiltonian

dfb

Hlp,¢] = Flpl - % S ax ——(p - ) (33)

is a reasonable choice among them, and (33) leads to canonical

equations
dp _ _ 8 _ 1 4 ¢F
dt §o 2 dx op ' ©(34)
dg _ o _ _ 8%F (, _d¢ 1 & =
dt = &p - P-x T - : (35)

Eq. (35) is equivalent to eq. (34) only under the condition

p = d¢/dx, which should be given as an initial coﬁdition. On
the other hand, Eg. (34) is formally similar to Gardner's
representation of KdV équation (Cf. Ref. 2, eq.(5) and Eg. (31)).
However, the concrete functional form of F[p] noﬁ remains free.
Thus, the gauge invariant variation problem with respect to

(31), in general, yields the Gardner-type eqﬁation (34) , which

naturally implies [ﬁ,.ﬁ] = 0.

In general, the Lagrangian may be in the form

G(‘f __ﬁ e e e . -F[d%
" dx

which gives a gauge-invariant variation problem, but this general

form can be modified into (33) by means of an appropriéte canonical

transformation.
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** §2F

Sp?
right member. (See App. I)

in (35) must be regarded as an operator to the immediate

Next, suppose a one-parametric canonical transformation

by the generator

3lp,9'l = de ¢' S(p, gﬁ- cee; o) ’ (36)
14
where o stands for the parameter of the transformation, and
p=S( g'_E. PP 0) (37)
Pr 3x, d

is assumed for simplicity. Evidently this transformation
p' ='6—Zi' = S(p 'd-E e ooy Ol.) (38)
(Sq)' 14 dx’ 4
preserves the gauge properties. In terms of new canonical

variables (p',¢'), therefore, another Gardner-type canonical

equation

dp' _ 1 d sF

dt 2 dx &p' (39)
comes out, where the identity

B p'] = f‘[p] (40)

defines new F'[p']. So, egs. (34) and (39) imply respectively
dp _ , %E' =0 . (41)
dt t

On the other hand, p can be expressed in terms of p' in the

formal power series of o

p=op'+ zanAn(p-, %5 ' cees) | (42)
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by solving (38). It is concluded that

d = [ —

IF Aplp'l =0 (43)
holds for all n, because (34), (39) and (41) must be correct
for all values of o. In other words, every An is a conserved

density of eg. (39).

_The compatibility condition

is also a triviality, and the variables p and p' give rise to
the infinitesimal gauge transformations on ¢ and ¢', respective-
ly. So, every ﬁn[p'] gives rise to partial gauge transformation

on ¢'.

6 Another Example

The KAV class is an example for the consideration. We now
intend to show another. Let us look for the properties of a

class of nonlinear equation,

du . du, du : d2u du, ?
T exp (2iagy) [ + 21&{(l-u)g—; (3
X
2 8 2.0 2
- az(u%§ du , d g) + 4io’ (B ]=0 ' - (44)
dx? dx dx?

where o runs over all real values. Eg. (44) is of course an
artificial one, and appears somewhat complicated, but it is
employed as a simple in investigating the similar properties
as occurred in the KAV class. Egq. (44) is derived from the

invariant variation problem of
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_ | 2 2
Li¢] = S dx{%§ . %% - (g%) exp(ZiQS;%)} , (45)

where u = d¢/dx. Consequently, by putting
Flpl = X dx p? exp(ZiQ%E) (46)

in the Gardner-type equation (34), we get eq. (44); (there u
must.be replaced by p).

Next, suppose the canonical transformation

L e . d
p' = 83/8¢' = p exP(laag) (47)
o = g-g (48)

generated from
5[p, $'] = 5\ dx p exp(ia%§)¢' (49)

The second expression (48) is no longer referred in detail,
because it has less important roles. After the transformation

(47) F[p] turns into
Flp']l = S dx p'? (50)

and the equation turns into

dp' _ d
d' - EE (51)

dp' _
vE% =0 , (52)
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for all real values of a. The old momentum p can be expressed
in terms of the new momentum p' in the formal power series of «

p=p' + ah) +a’A, + oo (53)

where

(54)

4

A, = %p'(%EL)Z + % ggé {p-(gEL)Z} y ceccocs
pe

The conserving property of Ay is trivial; i.e. dil/dt = 0 holds

without eg. (51), while that of A, is essential; dﬁz/dt =0

holds if and only if p' is a solution of eq. (51). Thus, we

have two explicit examples to show the relation between the gauge

invariance and the conservation laws of a class of nonlinear

equations; one KdV class, the other shown above.
7. Concluding Remarks

The conclusion of this work is that;
the existence of a number of conserved densiries originates in
the gauge invariance of variation problem.

The gauge transformation (7) contains an arbitrary function

(t). According to Noether, if any transformation, under which

the variation problem remains invariant, possesses r parameters,
then the Euler equations have r conserved density. An arbitrary
function, as in our case, behaves as a set of infinite number
of parameters, and correspondingly results derivation of many

conserved densities.
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It is possible to construct arbitrarily more examples by
employing appropriate concrete F[p]. Moreover, similar
situations are expected when the field variable ¢ has a number
of components. That may motivate wider examinations for
classes of nonlinear differential equation.
This work had been carried out under the cooperation of

the Institute of Plasma Physics, Nagoya University (1971).

Appendix I Many Faces of Hamiltonian;

Two propositions from classical variation calculus are
mainly relied in the following arguments:
(i) Results of variation problem remain unaltered after Euler
equations are partially brought into the original problem.
(ii) The relations among variables, if any, must be considered
as subsidiary conditions, and can be taken into the calculatidn
by means of indefinite multipliers.

Let's rename g% to $ in (31), and consider %% = é as a
subsidiary condition of the independent variables ¢ and &.
By using a multiplier p, the variation problem turns into

s Sdt [de(g—‘ﬂ ¢) - FIg - %de 6 -1 -0 @

X

which is performed with respect to ¢, ¢ and p independently.

One of the Euler equations derived from (A.l)

_ 8L _ d¢ (A.2)
p=—=gx ' .
56 dx ’

usually regarded as the Legendre transformation, (¢, ¢) to

(¢, p), does not contain ¢ in this case. So, the equation,

an imposed relation between p and ¢, must be considered as a new
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subsidiary condition.
The lack of relation p to é leads to multiplicity of the
related Hamiltonians. One of tentative choices among them is

Hip,¢,v] = %dx% ¢ - i[%;%] + de v (p - g—;%)

f‘[%%]+\dxv(p—g% , (A.3)

where v stand for the indefinite multiplier. This Hamiltonian
yields p = d¢/dx as one of the Euler equations, which may be

put into F. Another tentative Hamiltonian is, then,

Hip,¢,v] = Flpl + de v (p - g{% , (A.3)

the last term of which is necessary to derive that condition5
In the next step, what we have to do is to eliminaté v

so as to get the proper form of H, which must be alien to the

additional variable other than the canonical variables (p,9¢).

The Euler equations from (A.3) are

_— = s = = 4+ Vv ’ (A-4)
p = d¢/dx ’
which yield

v = - % ) (A.5)

S

By putting (A.5) into (A.3), we obtain
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Hip,¢] Sggm-%dx : (8.6)

Flp] -

-

which leads to the canonical equation

dp _ 1 _dSF
dt = 2 dx §p !
(A.7)
d¢ _ _ 1. 8%F _d¢ 1 6F
k- " P 3 :

Sp?
The first equation has obviously:the general Gardner-type,
while the second together with the first is deformed into

§2F d

d (p- e-5Hi=0 (A.8)
Sp?

4 p-9% 1 d,
at ‘P T 3x 7 dx

where by the notation GZF/SpZ we understand an operator to the

2=

immediate right member: e.g. provide F =-%(%§)2 ’ §°F

2 8p?

tions as the differential operater d_ . Eq. (A.8) implies
dx

(p - g%) itself being a conserved density; if it is valued to

func-

2

zero at an initial moment, then it vanishes forever. This
statement is never triviality, although p = d¢/dx is partially
used in the way of traversing from the Lagrangian to the
Hamiltonian formalism, since p and ¢ have to be treated as
independent variables in the canonical frame of work.

Thus, by (A.6) we understand the terminal choice of
Hamiltonian; which must be alien to v, and yields the canonical
equations equivalent to the original equation if p - %% =0

is given as an initial condition.
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Appendix II Canonical Transformation.

A canonical transformation (p,¢) - (p',¢') must be obtained

from a functional W([p,¢'] by

SW/8¢" (x,t) ,

(A.9)

b = SW/8p(x,t) .

Clearly the transformation (A.9) does not alter the Poisson
Bracket (14); and also it does not change the canonical
equations of motion if W does not explicitly contain t.

In particular,
Wip,9'] = & dx p¢' + eGlp, ¢'] ,e€: infinitesimal (A.10)
gives rise to the infinitesimal displacement on p and ¢;

S¢ eld, é[plcb]] r

Il
©
I
©-
I

(A.11)

Sp = p' - p = elp, Glp,¢]] ,

up to the first order in e. ©Note that ¢' in the last members
is replaced by ¢. That is, a functional Glp,¢] plays the role
of the infinitesimal displacement operator on p and ¢ in the

sense of P. B.
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