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Abstract

A simple diffused-boundary model is considered for magneto-
hydrodynamic equilibrium in an axisymmetric torus with rectan-
gular cross section. The pressure balance equations are reduced
from the expressions for eigenvalues of the equiliblium equation.
The parameter Bp (ratio of plasma pressure to poloidal magnetic
pressure) 1is closely related to the paramagnetism of plasma
and geometrical factors. The condition of no reversed toroidal

current gives the limitation on the paramagnetism and Bp. The

critical Bp becomes largest for the square plasma cross section.



It is of great interest to study the theoretical aspect of
- magnetohydrodynamic equilibria of the axisymmetric tori like
Tokamaks[1l] and the belt pinch[Z] experiments. 2 number of
researchers[3-6] have pointed our the existence of critical

Bp, studying the magnetohydrodynamic equilibria. In the refer-
ences [3] and [4], it is insisted that Bp is limited to the
order of unity by the appearance of a second magnetic axis.
Recently it has been shown[5] that a plasma with arbitrary Bp
can be contained in a torus with rectangular cross section.
However, there is a critical Bp(of the order of unity) above
which the toroidal reversed current appears in the plasma. On
the other hand, numerical studies[6] have pointed out that there
is no limitations of Bp even when Bp«w(RC/a)2 in the diffused
torcidal pinches with circular cross section. In both pieces

of work[5,6], it is assumed that the pressure vanishes at the
wall but the pressure gradient is finite there. Therefore, there
will be a finite current flowing in the vicinity of the wall
which is undesirable feature for the nuclear fusion reactor.

In the present paper we study the case of a diffused
pressure distribution in a torus with rectangular cross section
in which both the pressure and the pressure gradient vanish
at the wall and also the toroidal current does not flow in the
vicinity of the wall. We treat the equilibrium equation in the
toroidal geometry employing the perturbation method. We obtain
the pressure balance equation which is equivalent to the

expression for the eigenvalues of the equilibrium equation.



The pressure balance equation describes the relation between
Bp and M (plasma paramagnetism) for a given geometry.

We start from the ideal MHD equations,

I xB = cVp, (1)

VB = V3 = o0, (2)
and

V x B = 4r3/c. (3)

As is well known[l] the introduction of a stream function U leads
to the equations for the axisymmetric toroidal configuration

in a cylindrical coordinate system ( R, ¢, Z );

B = (2I/cR)$ + Vi x $/27R, (4)
-+ > >
] = j(p(b + VI x ¢/27mR, (5)
and
g0 1 3y 3%y _ _ iﬁ(zﬂchéﬁ 4 L éﬁ)
R R OR 572 c day c dy
__ 8m?% .
S Rj¢, (6)

where p and I, which are the pressure and the current stream

function respectively, are arbitrary functions of Y only.



We choose trial expressions

(1) (3)

P(y) = C +C 'y +C

and

(3)

12(y) = a o al®ly 4 at?Pyz,

where C(l) and d(l) are arbitrary constants. We assume that

the pressure and the pressure gradient vanish at the surrouding

conducting wall and we denote the value of Y at the wall by v;.

Then we obtain
py) = ¢y - vz, (7)

Substituting Eq. (7) and the expression for I?(y) into Eg. (6),

we have

3, = —ancre @y -9+ @)+ 20y ser. (8)

We assume also that the toroidal current vanishes at the

wall. Then we obtain the following eguation from Eg. (8),
at® v 2ay, = 0.

By introducing the parameters X and u, we can express p(y) and

Iz(w), which satisfy the above assumptions, as follows:



P(y) = Powz/wj = Azwz/(32n3R:), (9)

12 (y) = Itj— + czuwz/(lG'an‘z), (10)

and

where suffixes 0 and 1 indicate the quantities on the magnetic
axis and on the inner edge of the plasma boundary respectively.
By integrating the expression for Bz—component of Eqg. (4)
(BZ=(1/2ﬂR)BW/3R), we can write Y, (the value of y on the

magnetic axis) as
Yo = 2wEZ(R2 - R?), (11)

0 1

where Ez is a mean value of the poloidal field between R,
and Ry, on the median plane Z = 0. The physical meanings of the
parameters A? and p will be understood from
A% = B w2/ (1-R?/R?) 2, (12)
p 170

and

o= Mﬂ2/62(l—Ri/R§)2, (13)



which are derived from Egs.(9), (10) and (11). Here,

ooV ¢ ¢0V)—l and B¢0V is

the vacuum toroidal field on the magnetic axis. We find that

= 5 )2 - % _ 2 /2
Bp = 8mPo/(vB )%, 6 = 7B, /B , M (B . /B
plasma is paramagnetic (diamagnetic) when M is positive (negative).

We rewrite equation (6) using dimensionless coordinates

(r,z) defined by R = Ror and 2 = RoZz,

32y 3%y _ 1 3y 22 _
2 + 5T T 3% + (A °r“+uw)y = 0, (14)
and
2 .2 _ 8Tf2 3.
(Mrs+u)y = _E—Ror]¢' (15)

We can write the differential equation for u(t), setting

¥ = u(t) cosvz and introducing a new variable t = r?2/2,

d?u (t)
dt?

+(£2- yEERY w(e) = o, (16)

where
£2=X2+y, y=(u-v?)/2t, and to=R§/2R2=l/2.
0

Now we consider a toroidal plasma enclosed by a rectangular
ideal conducting wall with width a, height b, and the distance
from axis to the center of the rectangle Rc (see Fig.l). 1In

Fig.l, R, indicates the outer edge of the plasma boundary.



From the boundary condition that y = 0 at the wall (Z = +b/2),

V is determined as

v o= Vo = TRo (2m-1)/b, m = 1, 2, 3, *++- , (17)
Solutions of Eq. (16) are linear combinations of the Coulomb
wave functions. However, we use the‘perturbation method in
order to solve Eqg. (16), which give us solutions much more
convenient for the following discussions as compared with
the Coulomb wave function. We consider the term proportional
to (t - to)/t as a perturbation and expand u(t) in terms of

the normalized and orthogonal functions gn(t), which are the

solutions of the equation dzé;n(t)/dt2 = —fzgn(t) and
f=£f = nn/(t,~-t,), n=1, 2, 3, ««--, (18)
T
) e
gn(t) = {2/t;-t,}*sin fn(t—tl). (19)
The functions £n(t) satisfy the boundary condition En(t) = 0

at t = t, (=R?/2R?*) and t = t, (=R?/2R?). We replace y(t-t,)/t
1 0 2 0

by §y(t-t,) to express the perturbation term explicitly and

express u(t) and f? as power series in §,

u = u, + Su; + §2%u, + *°-, (20)

f2 = Fy + 8F, + §2F, + +-. . (21)



we assume that these two series are analytic for § between
zero and one, and in the final results we set § equal to one.
After we substitute Egs.(20) and (21) into Eq. (16), we have

a set of equations:

dzuc/dt2 + Fouo = 0, (22)
d?u,/dt? + {F,-yv(t-to)/tluy + Fou; = 0, (23)
d2u2/dt2 + Fou, + {Fl—-Y(t"to)/t}ul + Foupg = 0, etc. (24)

The solutions of the zeroth-order equation (22) are unperturbed

eigenfunctions En(t), i.e.,
Uo = in(t) ’ Fo = f;.

According to the usual perturbation method[7] we expand u: and
u, in terms of &. as u; = fa.g.(t) and u, = %b.g.(t). By

i j=1 171 i=1
using the orthogonality of gi(t), we obtain the eigenfunctions

and eigenvalues up to the second order-perturbation as following,

F. &; F..F,
u(t) = En(t) + Z__Hl__i_g_:)__ + s[{ & 17 1n

i#n £ -£] i#gn  Jen(£2-£1) (£2-£3)

n o1 n i’ ''n 7j
FinF F2

- SRR £ - T e (1)1, (25)
2_g£2y2 _
(fn fi) (f; fi)z



and

2
£ = f2 +F 4+ 3Bl (26)
s 2_g2
i=n fn fi
- v/t -
where Foo= v/ {(t to)/t}gi(t)gn(t)dt.

/tl
After some calculations (8], Fin becomes

. i+n
F~n = - 4Yt0 (tZ—tl)ln { 1 - (—l) } + 0{(t2_t1)2}, i;n,
1 ,n.2(i2_n2)2 t? tz t
and
F = v[ 1- to [1- L2ty (tz—t1)2}+ to(t1+t2)(t2—t1)2]

nn £ ty 32 £2£2 (2nm) ?
2

+ ouP—&g%m

(27)
We rewrite the final expressions (25), (26) and (27) in the

real coordinate system (R, ¢, Z), using the original notations

B and M/6? instead of £2? and Y,

p
nm(R2-R?) _
Yo = Yo sin I” cos T(2m-1)z , (28)
n (R?-R2?) b
2 1
and, from eigenvalues,
B 4n2R'+ (2m_l)2R2
2 = 0 - q M - -
(l—R?/Ri)z (Rf—Rj)2 62(1-R3/R§)2 b?
(3R2-R?)R (R?-R?) 2R? 1
x { 12 + 21 L 1- )}, (29)
2R* 3R® 2n?n?
1 1



We have neglected the terms higher than the second-order of
(Ri—Ri)/Ri in the above equations. Equation (28) is equivalent
to the pressure balance equations for each mode corresponding
to each pair of integers (m,n) .

Now we consider the condition under which the toroidal
current density does not reverse in the plasma cross section.
As 3, is proportional to (A*r*+w)y, it is sufficient that
(\2r?+u)y = 0. This condition means that m=n=1 and A%’r?+u 2 0,

since wm n changes sign in the plasma cross section when m,n > 1.
14

From the inequality of (r®i?+u) 2 0, we obtain
2 R?/R? + M/6% 2 0 Or gnP,R2/R%? > B, 2. - B %. 30
< 1/ 0 / - 0 1/ 0 = TooVv do (30)

This means that, neglecting the toroidal effect, the plasma
pressure on the magnetic axis must not be less than the
differznce of the magnetic pressure caused by the plasma dia-
magnetism. When the plasma pressure bzcomes small, the reversed
toroidal current is needed to reduce the poloidal magnetic
pressure.

In the case of the fundamental mode Y1) and BpRi/R§+M/92 > 0,
the toroidal current is not reversed in the whole area of the
plasma cross section and the magnetic surfaces enclose a single
axis (see Fig.2). From the definition of magnetic axis (oU/dR=
sw/9z = 0) and Eg. (28), the position of the magn-tic axis is

]
found to be fixed at the point Ry = (Rc2 + a2/4){{and Z = 0,

regardless of the plasma parameters. The effect of the plasma

._]0._



parameters on the position of the magnetic axis appears from
the third-order terms of (Rz—Ri)/Ri in ¥. Substituting Ry

2
into Eqg. (29) we obtain the pressure balance equation for the

fundamental mode:

_ 2y .2 2 2y .2
g+ {1+ ALZ8mey Moy a2 WA/me, gy
P 3(1-4e+6e2) 02 b2 (1-4e+6€?)
where € = a/2Rc (inverse aspect ratio). We can calculate the

poloidal field by using the poloidal flux function ¥,,; and

obtain B = ﬂﬁz, where B

p max is the maximum poloidal

p max
field on the median plane. Therefore the definition of Bp
given below Eq.(13) is the same one defined in reference[5].

However, it is more general and convenient to use BI[93
in order to see the relation between the geometrical factors
and poloidal beta. The parameter BI is defined by

— i" .A -2
B, = 8ﬂ{jpdV/JdV}{vchdR/;ch}

where Jdv is the volume integral over the plasma region and

chz is the line integral along the contour of plasma boundary.

o

Then we obtain

2 . 2 2
3= ToB (1w 21+ 2 -2, (32)
P b2 (l-g?)?2
From Eqs.(30),(3l) and (32), we obtain the critical wvalue of
B;, neglecting order of e?, such as



< 7m? _(1+a/b)?
32 14a2/pl

Br

As a function of a/b, the critical value of B; is between
72 /16 (a/b=1) and w?/32e (a/b > 0 or a/b > ).

We have calculated the poloidal flux function Y and the
critical value of BI under the fully prescribed boundary condition,
which is different from the case of reference [5]. The critical

8. is obtained from the condition of the appearance not of the

I
second magnetic axis but of no reversed toroidal current.
Helpful discussions by Dr. M. Masuzaki and Dr. K. Ikuta

are appreciated.
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Figure Captions

Fig.l. Coordinate system and dimensions of the conducting
wall. Rc = (1/2) (R1+R2). a = Rz2-R1.
Fig.2. Typical magnetic surfaces for a/b = 1, a/2RC = 1/4

and Yo = 1.
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