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Abstract

When an iaitial disturbance in a plasma is so strong
that fo(X) (fo(v): unperturbed distribution, A; phase
velocity) and g(A) cos kx (g(v) cos kx: disturbance) are
of the same order, the spatial inhomogeneity represented
by the latter causes a new type of amplitude oscillation
while the usual amplitude oscillation predicted by O'Neil
is not sensitive whether g(A) = 0 or not. This is due to
the fact that the initial spatial disturbance survives
around A unsubjected to phase mixing for some time. The
most remarkable feature of this oscillation is that the
émplitude almost always remains larger than the initial
one. The maximum‘amplitude 6f an electric field E is

2 2

2 = 3 = 2
nearly Eo(l + 2¢O ) where ¢O wape/wB’ wy 4re g(A)vTR/m,

Vor = wB/k and Wy is the bouncing frequency of the electron.



§1. Introduction

It is well-known that”théiamplitude of monochromatic
disturbance in a plasma will not Landau-damp, but will
oscillate when the initial bbﬁncing frequency of a particle

(electron) w viéllérgef4thén the Landau damping coefficient

B
YL(I’Z'a).‘ Siﬁée'tﬁe gfédién£ of the initial unperturbed
distribution fo(v)'df the'eléCtrons at the phésé velocity
A is not zero, i.e.,Aaf;(A)av'é £,' (N % O,lthere is a
difference between the numbers of trapped electrons with
velocities iafger and smaller Ehah A, énd there then occurs
a popuiatibn inversion arbuhd A aﬁa’an energy exchange between
the trapped electrons and the wéVe. &his isAthought to be
the feason of the ampiitudé éscillation predicted‘by O'Neill).
We will show hefé that another kind of amplitude oscilla=-
tion can occur when g(A) is finite even if £,'(\) = 0, where
g(v)cbs kx is a déviation from the uhpertuibed.distribuﬁion.
When g (A) §°o, the initial spatial disturbance survives around
A unsubjected to phase mixing for some time. Furthermore,
the spatial inhomogeneity of this initial disturbance turns
into one in velocity space, and together with a finite shift
in phase velocity causes an amplitude oscillation. This means
that the amplitude oscillation takes place independently of

whether £'(A) = 0 or not when g(A) is small but finite. And,when

fo'(A) ¥ 0, the effect of g(A) is still appreciable if g(A)



and fo'(A) are of the same order. We here formulate the
problem only taking into account the effect of g(v),‘although
usually the effects of both g(A) and f'()) coexist. The
importance of the initial spatial disturbance was first
emphasized by Taniuti), whereas 0'Nejil!) has failed to

estimate its effect.

§2. Calculation and Discussions

The method of treatment of the problem follows reference
(5) where an asymptotic expansion of the Vlasov equation is
developed. We first note that the exact Vlasov equation
eéxpresses only incompressible flow in phase space, that is,
f(x,v,t) = £(x(0), v(0), 0) = fo(v(O)) - 2e2g (v (0)) cos kx (0)

(1)

or £ is constant alohg the characteristics dx/dt = v,
dv/dt = -E, and E is determined by the Poisson equation. Here
fo(v(O)), which may be considered to be a Maxwellian, stands
for the unperturbed state of the pPlasma while g (v(0)) repre-
sents an initial disturbance, and all quantities are normalized
appropriatelyS). The smallness parameter & is taken to be
the square root of the_smalles£ decay constant of Landau
damping, Y;,» that is, €2 =1G(\)/2k? = Yy, where G(A) and A
are BfO(A)/av and phase velocity.

Suppose that E asymptotically takes the form



gk (x=At) . ...

E = ez(E(n)eik(X"Xtu c.C.) + esEEﬁ(l) (n)e

(2)

where n = et is a stretched time. Substituting eq.(2) into
the equation of characteristics will allow one to determine
the long time asymptotic behaviours of the characteristics.
Results will be remarkably different for the two regions,
the non-resonance region for which |v - A| >> ¢, and the
resonance region where v becomes close to A

First we consider the non-resonance region, We assume,
corresponding to eq. (2), that the deviation of the particle
. orbit from the straight line path is of the order of €. We
éalculate the orbit up to 0(e?) and express £ (x(0), v(0)) in
terms of (x(t), v(t)) and the deviations. Finally, from the

5

Poisson equation we get

3, dE ~ s s 3 - ﬂ~—jch
2¢€ kaﬁ + C.C. = Terms of 0(e’) of 5| @ :
Here we have used the fact that the contribution from the
initial disturbance g(v) will phase mix to zero in this region;
also, J means an integration over the resonance region.
res
In order to evaluate the integral-on the RHS of (3), we
have to specify the velocity range of the resonant particles.

They will move with almost phase velocity, then we impose the



requirment that.the resonant particles do not appreciably
feel the plasma oscillation. Still the boundary between
non-resonance .,and, resonance regions is quite diffusive.

We introduce an. artificial critical velocity § such that the
velocity range of the resonant particles is to be given by
[v-A]<§ and the 6 satisfies the following assignments, i.e.,
i) G(At8 ) = p(e) and ii) 1>8>>e. If the integration over
the resonance .reqion is independent of an arbitrary & which
satisfies i) and;ii), we consider that the integration is
defined. More, detailed discussion of these two regions is
given in reﬁér@nce (5). Since the resonant particles do

not feel the plasma oscillation, their orbits vary so slowly

that X = x - At and ¥ = v - A are functions of n only.

Assume X(n) = X + ex' + *** and ¥(n) = ev + **° , and we have
g—;i =y, & ~-E(n) exp ikX + C.cC.

dn

Then [ £(v(0))dv is expressed as
res :

f

§/¢€
| fav = f £f(n)av + e22E) f V(0)av  (3')
Jjres res oV

[»] —6/6

§/¢
fg€3g<x>f cos (kX (0))av

'“"(S/E



It is shown that the second integral on the RHS‘Convorgcs
independently of the value of 6/e(>>l)3). We, for a while,
assume the third integral converges, too. Then considering
the definition of €, we know the second teérm is of the order
of €%, hence the term in the above equation cofrespdnding

to the one on the RHS of eq.(3) is the last one. Equating
this with the LHS of eq.(3), multiplying bqgth sides by e‘ikx
and integrating over X, we will have an equation'goﬁernihg

dE/dn. We introduce the fol%owing variables:v y = kX,
1 .

T 2 i¢-Fi |
u = kV/(ZkEO)' ;T o= (ZkEO) n , De =E/E0 (D: * real

and positive), E_ being |E(0)]. ©Noting that the phase

volume dxdV or dydu is conserveds), we finally get

du

5T = <D sin(y + ¢) (4)
‘;T'
an A " ) :
g = - 5?%§E) [ dyO[ duo sin(y + ¢)cos Yo (5)
e} - *_g . :
as o) (Ma [Pan o e 5
I = - Z7k2DT, | dyof duj cos(y + ¢)cos y_  (6)

~ -~

where Yo = y (0) and u, = u(0). The only parameter is now
g(A)/(szo) provided ¢ (0) = 0. 'The boundary value of the
'integration £ is of the order of &/c because k and E arc 0(l).

It can be shown that the integrands of (5) and (6) are peaked

o



around u - 0 and decrease rapidly for large luol. Then we
may put *£ = o in the actual calculation, i.e., the third
integral of (3") converges and our formulation to get {(5)
and (6) will be consiétent.

We estimate D(t) analytically. We assume that only:
deeply trapped electrons contribute to the: calculation and
that D does not change significantly during-the time intérval
considered and may be put equal to unity as long as the *timeé
derivative is not important. Notice khatffor deeply trapped
electrons |y + ¢| << 1, then the RHS of (6) 'is almost constant
and ¢ = -¢ T where ¢_ = g(A)AyOAuO/(kZEb), and Aybéuo is™"
the phase volume to which deeply trapped electrons'ihitialiy

beloﬁgéd. We note that ¢ is given alternatively by

. 2, 3 2 . a2 ‘ 2 e

¢ = (wape/wB)t, w5 drme g(A)vTR/m and ViR wB/k in
unnormalized quantiﬁies; The equation of motion (4) can be
solved and gives us

y = ¢OT -+ (uO - ¢0)31nr + Y, €OST
Then eq. (5) reduces to

dD _ 2 s D=1+ 2¢ % sin?(t/2)

a*jr- = o Sint oxr = 4 <95 T g N
It is interesting to note that: (i) the amplitude grows - *

periodically over the initial one, or an instability takes



place, and (ii) the phase velocity increases as ¢O does.
We solve the set of egs.(4), (5) and (6) numerically and find

nearly the same results as predicted by the above analytical

- estimation. These are shown in Fig.l.

We shall attempt to give a more lucid explanation of the
phase -shift and the amplitude oscillation. In about half
a gyale, or in w/mB, the spatial inhomogeneity turns into the
velocity space inhomogeneity and there occurs a dip in the
velocity distribution as may be seen from the particle traject-
ories in phase space which follow. A schematic diagram is
given in Fig.2. Note that the distribution of untrapped
electrons adjacent to the trapped regions must be, in an
average sensgse, smoother than that of)the trapped electrpns.
The dip causes a phase velocity shift. The dispersion rela-

tion for the distribution shown in Fig.2 is given by7”)}

1 = w'? - wé/[(w - kA)? - wé]

Putting w = ki + kéA Z 1 + k8X and expanding the first term
on the RHS with respect to 6A, we get a cubic equation for JA.
Using wé/wé = 0(e), then the smallest root corresponding

to the phase shift considered is given by 8A = sz/(kaBz)

and the phase shift k(SA)t is g()\)L\uOT/(llk?‘Eo) £ g(A)bdu Ay 1/

(4k2E0) % ¢,7 which is the one given before where we have



used Ay, % 1. Since mé/wé = 0(e), the dispersion rela-
tion above does not show any instability and in order to explain
the growth in amplitude we must examine the configuration. of

the trapped region.

As soon as the phase velocity shifts, the trapped region
will become as shown in Fig.2 and 3. The horizontally lined
portion where the magnitude of the distribution is relatively
small is almost in the lower half in the new potential trough
in Fig.3, while the newly trapped portion is supposed to have
the average density. Then there are more electrons in the
upper half portion than in the lower half. Therefore in the
next half cycle the wave will grow. This is the mechanism
of this new type of amplitude oscillation. We nunerically

consider the situation in which the amplitude oscillation

will appear. Suppose g(x)/(anon) = 1/20, 2e%g(r) = £,00,
= =1 _ —a - =

A=Kk = 4.5( 3'2Vth,e) and Te 10 eV, so we have

€2 = 2.3 x 107% and 0.4/n{cm °) x 10”5V/cm for the electric

field. We also estimate g = YL/wB introduced in reference

(3) to be 0.15. 1In this case an ordinary amplitude oscilla-
tion will also appear, although smaller than the “"new"
oscillation amplitude, and the profile of the amplitude will
usually become a superposition of these two types of amplitude
oscillations. It is interesting to note that since, as is
seen in Fig.2 and 3, the magnitude of the distribution in

the trapped region is small compared with that in the adjacent



untrapped region, the side band instability which has not
been discussed in this paper will be excited more easily that
in those cases where the trapped region is flat or convex®) .
We note that in experimentsg) and computer simulations!®)of
the two beam instability excitation, there somectimes occurs
a strong amplitude oscillation of the excited wave. This
‘may be explained a:z follows: due to the strong interaction
between a plasma and a beam, the beam bunches spatially and
since the phase velocity of excited wave is almost the same
as the velocity of the beam, the spatial bunching turns into
an inhomogeneity in velocity space and causes the amplitude

oscillation.

§3. Conclusion

We have solved the Vlasov equation with an initial
condition having a spatial inhomogeneity. Under the condi-

tions w, >> Yy and O(g(A)) = O(£' (X)) we find a new type of

B
amplitude oscillation which differs from the usual one in

the following points: 1) the initial spatial inhomogeneity
is the source of the amplitude oscillation; ii) there appears

a finite phase shift; and iii) the amplitude almost always

remains larger than the initial one.
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Fig.l.

Fig.2.

Fig.3.

Figure Caption

The time dependence of the normalized amplitude D and
the phase ¢. b = g(A)/(ZﬂszO) where g()) and Eg,
represent the initial disturbance of the distribution

at phase velocity and the initial field, respectively.

A schematic diagram of the distribution f(v) vs. veloc-
ity v near the phase velocity. - ? Region of trap-
ping for zero phase velocity shift. €—3 Region of trap-

ping for finite, nearly constant phase velocity shift.

A schematic diagram of trapped regions. The trapped

region surrounded by the dotted line gradually trans-

fers to the one surrounded by the solid line at about

t = W/wB. In the vertically lined, the blank and the
horizontally lined area, the magnitude of the distri-

bution function is relatively large, average~sized,

and relatively small, respectively.
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