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Abstract

Dispersion and energy relations of ion cyclotron wave
for a cold plasma are systematically studied retaining the
electron mass. In this case, two wave modes having different
perpendicular wave numbers can exist in a uniform plasma
column. The dominant mode is a quasi-TE mode, in which the
plasma current jz is an important quantity. Because this
current is carried by electron motion along the static
magnetic field, the dispersion relation and energy relations
are considerably modified for light mass ions compared with
the customary one in which the electron mass is neglected.

Plasma loading for a coil excitation of the Stix type
is also considered using this dispersion relation. The
electric field, magnetic field, energy density, and energy
flow are calculated based on the quasi-TE mode. The energy
losses due to cyclotron damping and collisions are also
summarized. Here a possible mechanism due to resistivity

is pointed out.



1. INTRODUCTION

The theoretical analysis of ion cyclotron waves in a
uniform cold plasma has been well established. For example,
Stix has described the analysis in some detail in his bookl)
In such an analysis, it is usually assumed that the mass of
the electron is guite small and has a negligible effect.
The coupling between waves and the exciting field has been
calculated by Stix, by combining the dispersion relation
with the boundary conditions. Experimental resultsz) are
well understood in terms of these theoretical analyses.

However, there exists an effect due to finite mass of

3) studied this finite mass effect

the electron. Hosea et al
relating it to the experimental results of the Model C
Sterallater at PPL. Princeton, and found that the modifi-
cation in the dispersion relation and the coupling are
considerable.

In a magnetized plasma, the major part of the plasma
current along a static magnetic field is carried by the
electrons. Therefore, when this plasma current plays an
important role in a wave, the characteristics of the wave
will be affected by the electron motion. As described in
the folloWing, such a situation exists for ion cyclotron
waves of light mass ions.

In this report, dispersion relation, plasma loading,

and related problems are systematically studied by taking

the electron mass into consideration.



2. DISPERSION RELATION

The theoretical analysis of electric and magnetic
fields in a cold plasma has been well established4).
Therefore, we shall give only a straightforward analysis
of the wave fields within a cold plasma without a detailed
discussion.

In the following calculation, we shall use cylindri-
cal coordinates in which the z axis is parallel to the di-
rection of a static magnetic field. We may then use the

dielectric tensor which gives the following relation be-

tween displacement D and E;

/, €y €h 0 / Er-
D= k' h ft 0 | E, \ (1)
\ / .
0 0 € Ez

We are concerned here only with wave fields, and the field

-iwt

components are assumed to vary in time as e .  Then the
Maxwell's equation may be written as
div D = O:
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Combining equations (3), (4), (8), and (2), we obtain a

relation between Dz and BZ;
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Combining equations (7), (8), (5), and (6) we obtain

another relation between BZ and DZ;

3%, iw _ 1 2 W, 2 2 2 0 -
{g;;}"EDZ -é—;{ﬁtv + (E) (Et +€h )}-a-—EBz—O,
(11)
2
where V? = BRI V2.
3z2

Here, we may note that equations (10) and (11) are valid
also in cartesian coordinate if the differential operator
v2 in the cylindrical coordinate is replaced by the
corresponding operator in the cartesian coordinates.

In order to get a simultaneous solution for equations
(L0) and (11), Wwe assume that the field components have
the following forms.
D = aJm(vr)ei(me + K,z - wt),

(12)
i(mé + K,z - wt),

w
i

me(vr)e

where J is a Bessel function. The dispersion relation,
which is obtained from the condition for a nontrivial
solution of the set of field equations (10) and (11) is

then
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)e2 = 0, (14)
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Here, we may note that the dispersion relation (14) is

equivalent to the usual one, which is written in the follow-

ing forml);

ANY - BN?2 + C = 0.

From equations (10) and (11), the ratio of B, to E, is

. B, €& ny
T E_ _ N2 2
z et(et N7) + €
2
NLshN"

= - . (15)
(Nﬁ - et)(N2 - g,) 4 Eﬁ

It is clear from equation (14) that v? has two values for
a given k2. Thus N?, N} and ; are also double valued which

correspond to two wave modes.



3. PERPENDICULAR FIELD COMPONENTS

Here we shall introduce the following functions;

B+ = B, + iBg, 2

Et = E_ + iEg, . (16)
3 - 3, .1 9

3st - 3 * ir 30¢ J

From equations (3) and (4), we have
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In the same way, from equations (7) and (8), we have
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Combining equations (17) and (18), E+ and Bt are expressed

in the following forms;

_—1 2 . C 3 .
Bt = A {(ep - ND) & fep ) 557 (NE, £ 5,01, (19)
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Using the definition (16), we can easily obtain the

perpendicular field components to be
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Since there is the relation (15) between Bz and Ez, the

field components may be expressed in terms of E, (or also

Bz) as follows;
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where

Az I(NZ - e ) (N2 - e) + €2l

The equations (21) and (22) are also valid in cartesian

coordinates if the differntial operatars §% and % 5% are

replaced by §% and 5% respectively.

4. LELECTRIC AND MAGNETIC FIELDS IN A VACUUM

In a vacuum, the components of the dielectric tensor

in equation (1) are

(23)



Therefore, the corresponding equations to (10) and (11)

become
2
(v2 + &9 E_ = 0,
c? 2
(24)
(v2+£2_)B = 0.
c? 2

These are standard Bessel equations for Ez and Bz. For Ez’

this is
2 2 2
—3—E2+E§EE-{‘—*’—-(N§-1)+‘“—}E=0.
dr? ror 2 c? r? 2

Here, we again have assumed that the components vary as

exp i(k,2z + m6 - wt). In the experimental conditions for
low frequency waves, such as the ion cyclotron wave, it
may be assumed that Ni > 1. Therefore the field components
E_ and BZ may be written as

Z

a Im(kr) + a Km(kr),

=
il

(25)

' 4
= b Im(kr) + b Km(kr),

w
I

where
k.C 2 _ 2
(E“) = N» - 1.
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and, a', a", b' and b" are arbitrary coefficients, and Im’
Km are modified Bessel functions.

In a plasma, the relation between E, and B, is given
by equation (15). 1In a vacuum, however, Ez and B, are
independent of each other as is clear from equation (24).
Equations (17) and (18) are also useful in vacuum. We

then have

_c 1 9 .
Et = = ~ 557 [iN,E, * B,1, (26)
1 - N -
_c 1 3 . -
Bt = = — 5sT [iN, B, + E,l. (27)

1"

Thus we obtain a set of perpendicular field components;

3
Er = 0 3T EZ + Otsz, \
E, = a3 __3_ B. + o4E
$) °or Tz z'!
. (28)
B = o3 ——3—- B - 02E
r dr 2 z/!
B -0, —2 E + aoauB
8~ 3% 3r "z g y,
where
_ . C Ny
¢ = — 1 — ’
Y N2 -
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5. SUMMARY OF THE FIELDS

In equation (22), the field components in a cold
plasma are expressed in terms of Ez. In the vacuum, the
field components are expressed in terms of Ez and B,.
Therefore, we can write the field components as follows
with arbitrary coefficients, a and b:

A) In the vacuum between the sheet current and the plasma

(s >r > p);

v
Ez = aIIm(kr) + asz(kr),
BY = a,I_(k k
g = @3 m( r) + ame( r),
v . : |
Er = alalkIm(kr) + azalem(kr) + agazlm(kr) + aquzxm(kr),;
j
i
v 1 ' )
Ee = alauIm(kr) + azauxm(kr) + agaakIm(kr) + auangm(kr),ﬁ

- 12 -



] L
Br = agalklm(kr) + aualem(kr) - alazlm(kr) - azusz(kr),
v 1 L
Be = —alaakIm(kr) - aguska(kr) + agauIm(kr) + auauKm(kr),

B) In the vacuum outside the sheet current (r > s); ;
. . /

s

w e

EZ = asKm(kr), ‘
/
BZ = a7Km(kr),
]
E¥ = asulem(kr) + ayazxm(kr),
W . :
E6 = asagKm(kr) + a7d3ka(kr), ‘
. ? (29)
w
Be = —a5u3ka(kr) + ayauKm(kr),
w [ ]
Br = a7u1ka(kr) - aeazxm(kr),

c) 1In the plasma (r < p);

EP = ast(vlr) + stm(vzr),

Bz = asClJm(Vlr) + bsCsz(Vzr),
Ef = as6_(vir) + bssﬁ(vzr),

BY = asg_(vir) + bsE (vor).

- 13 -




where

N, . '
Gm(vjr) = - - - [1€h(NLj|Zm(vjr)
(N2 - eg) Ny - gp) + ep}
- B - N2
K p Nu (Et Nj)Zm(\)jr)],
1 2
Em(vjr) = - 12 2 [1|Nlj|{€t(€t - Nj)
' {(n? - et)(Nj - ey) + ef}
+ eﬁ}z;(vjr)],
.z —NjN"ah
DU - e - e) + e}
' _ dZm(\)r)
Zm(vr) = dno— 2
' _ de(kr)
Km(kr) = W ’
J (v.r) for v2 > 0 ,
Zm(vjr) =
Imqvjr) for v§ <0 .

In the above expression for the field components, the
dependence of exp i(m6 + k,z - wt) are omitted for the sake

of simplicity.

- 14 -



6. BOUNDARY CONDITIONS

We consider a cylinder of cold plasma, infinitely
long, surrounded by a vacuum. The radius of the plasma is
p. At the radius r = s, (s > p), there is a sheet current
of density j*exp imé + k,z - wt).

At the plasma-vacuum interface, there may exist a
surface-charge and surface-current. Here, .uowever, for
the sake of simplicity, we shall assume that the surface=
current to be zero. Then we have the following linearized
continuity relations across the plasma-vacuum surface (r =

p), for small amplitude wave fields;

P _ RV _
BP - BY = 0, \

r (30)

P _ pv _ /
Be B6 o,
where indices p and v refer to plasma and vacuum respectively.
At the sheet surface (r = s), the linearized boundary

conditions are

v \ 4 %

z z c Jew, w

w
!
(o9
]

- 15 -



v w _ 4nm

Be - Be = c Jaw !

v wo_ ‘

EY - Ey =0, (31)
v wo_
Ee Ee o,

where index w denotes the outerside vacuum of the sheet,
*
and jew and j:w are the sheet current along the 6 and the

z directions respectively.

7. DETERMINATION OF THE COEFFICIENTS

The arbitrary coefficients a and b in the expressions
(29) can be fixed if the boundary conditions are taken
into consideration. Combining equations (29) and (31),

we obtain

_ iwdTs 2 _ * m 2 *
ay = = {(N] DI, * skr M,Jew} K, (ks),
)
- - _ lwdrs 2 _ * m_ %
(a2 ag) = 2 { (N, na,, + e N"Jew} I, (ks),
_ 4msk ' *
as = c Km(kS)Jew,
/
__ 4msk " *
(ay - az) = c Im(kS)Jew.

(32)

- 16 -



Using the plasma-vacuum boundary conditions of equation

(30) together with equations (29) and (32) , we obtain the

remaining coefficients as follows:

asz =

ay =

>+

>

- 17 -

G1 czzm(vgp) K. (kp) clzm(v1p¥
G2 Gmg(vzpi askK: (kp) dmg(vlp)i
‘ ' |

Gs 2 (v2p) 0 z,(vip)
Gy Emg(vzp) 0 Emg(vlp)
0 222 (v2p) G, 212 (v1p)
0 Gmg(Vzp) G2 Gmg(le)
K_ (kp) 2. (vap) Gs Z,V1p)
—aakK;(kP) Emg(vzp) Gy Emg(vxp)
0 szm(vzp) K, (kp) G,
0 Smg(v2p)  askK: (kp) G2

4
“Km(kp), . Zm(Vzp) 0 Gs
—o3kK® (kp) Emg(vzp) 0 Gy
0 G, K_(kp) £12 (vap) !
0 Gz askKp(kp) 8. (v1p) !

’
K. (kp) | G3 0 2, (vip)
-~a3kK! (kp)  Gu 0 E g (V1P)

‘{><33>



where

8.

0 CzZm(Vzp) Km(kp) ClZm(le)

0 Smg(vzp) ungm(kp) Gmg(vlp)
A =

K (kp) z,(v2p) 0 z_ (vip)

1

-aska(kp) Emg(vgp) 0 Emg(v1p)
G = aalm(kp) ’

)
G, = a3u3kIm(kp),
G; = a1Im(kp),

1
Gy = —a1a3kIm(kp),
Smg (V4P) = Sp(vyp) = auw(p)Z (Vyp),
fmg (ViP) = Ep(VyP) — Tyou ()2 (Vip),

oy (p) = as(r = p).

DISPERSION RELATION FOR THE ION CYCLOTRON WAVE

Equation (14) can be written in the following form;

€.
t ] + L2[ 1

L*[ ——
N2 -1 (N2 - 1)2

{(n? - f:t)(et +€,) - €2}l

€

+
(N2 - 1)°

{ (N2 - et)2 + sﬁ}] =0, (34)

- 18 -




where

N2
L2 = _...._..._’f‘_._..

2 -
N” 1

Using this equation, N? can easily be obtained. For a
single ion species, the components of the dielectric tensor
for an uniform cold plasma are

2 _ a2
. 14 I (Qige w ) =1 4 .Y{l - .“QZ}

(@2 - w?) (@2 - w?) (1 - @2){1 - u?q?}

nzw(ne - Q.)

e, =i i =g — xR =W
(Q; - wz)(Qé - w?) (1 - 2){1 - u2Q?}
€Z=l—_L'
up?
(35)
where
Q = 59 ,
i
_ I?
Y:QQI
e 1
Q.
- X
U =a
e

and Qi and Qe are the ion and the electron cyclotron

frequencies respectively and I is the plasma frequency.

- 19 -



Assuming the condition that, p? << 1, — >> 1, and that
ug?
y >> 1 in the coefficient of L%, equation (34) may be

reduced to
L*{u?} - LZ{Q“(Zuﬂi) - Q%2(1 + u + Qi) + 1}

- {Q“(Q: + 2u9§) - Q%2(1 + 29?) + 1} = 0, (36)

or
Q“{Q: + 2u9§ + 2L2u9§} - Q2{uL"* + L2(1 + u + Qi)
+ (1 + 2Q§)} + {L? + 1} =0, (37)
where
Q2 = Y
° (N2 - 1)@

It is clear from equation (36) that L? has two roots,
namely, L; and L; corresponding to two wave modes. Here,
we shall assume that |L;| > |L|. For Li >> 1, the Q*
terms in equation (37) may be neglected when 0% < 1
and Q2 < 1. The latter is the experimental condition for
ion cyclotron waves. Wwe then obtain the following
approximate solution of Q;

L? + 1

1

0% = . (38)
pL: + Li(l + Q%) + (1 + znz)
0

- 20 -



L, also satisfies equation (37). Using this value of Q2
in equation (36) and neglecting the L" term, we have the
following approximate relation between L; and L;
Q2 - 2 + pL2
) uLl(l U 1)

L? = . (39)
2 uLi(uLi + 1 + 92)

9. NATURAL WAVE

The condition for a natural ion cyclotron wave in a
cylinder of a cold uniform plasma can be determined from
the condition A = 0, where A is the determinant defined in

equation (33);

A =iK;(kp)Zm(L1kp)Zm(L2kp){(E1 + ay,;) (F,+ a)

- (E2 + ay,) (F, + a)} =0, (40)
where
]
o = 1l Km(kp)
e, (=1ge,)
Y = -ig, = -N X h ’
J J (N2 - 1)2ej

- 21 -



§_ _(v.p) : €
- I j . m 1 2
E; = grdode— = - () —=—— {1+ }
] Zm \)jp kp N, v, .2 L2.
WING - 1 j
" )
L, 2 (L.k
24 1 (L 5kP)
+ Yj ’
Va2 2
- iEm (v;p) m B, 1
P52 -~ G == 1+ 7y
m Jj ‘/Nﬁ -1 Lj
s € |Lj| Zm(ijp)
S kp) '/
v L2 2 (Lykp
N2 -1 7] J
- 1 i
€, E “t {(Et ‘ - (1 +L%2)}) - (—iih——)z.
7wz -1 @ -1 J N2 -1
In these expressions, the indices j = 1,2 denote the values

corresponding to Lj' Here we may note that the condition .
Zm(ijp) = 0 does not lead to the condition for a natural
wave, since these factors will cancel out due to the
numerators of the coefficients a and b given by equation

(33). Thus the condition for a natural wave becomes
(Ey + ay1)(F2 + o) = (E2 + ay2) (F; + a) = 0. (41)
In the case of m = 0, this condition may be reduced

to a simple form assuming Fj >> a, and N; >> 1;

- 22 -



L7 Zo(Likp) Ko (kp) €3 L?> €, Zo(L2kp)

= (E; - 1) + 2

. (42)

|L1| 2! (Likp)  K! (kp) |2 | 2 2! (L2kp)

The ratio €,/e, for ion cyclotrcn waves can be obtained
from equation (35) and the definition of ej given in equation

(40) . The approximate form of the ratio is

€1 uL:
E—2- - 9292 * (43)

For the case in which u = 0, it can be shown that the
condition for a natural wave given by equation (42) is
reduced to the usual one [e.g. Stix ref. 1, p.88, eq. 25].
In this case, however, L2 plays the role of Ll.

In the case.of Li >> 1, the ratio, €,/¢€;, is sufficient-
ly large, so that the second term on the right hand side
of equation (42) becomes more important. A rough approxi-
mation from equation (42) is then (for moderate values of
L kp) ,

Ji1(Likp) ~ 0. (44)

In Fig.l, the characteristics of the dispersion
relation for v = 0, and yu * 0 are schematically illustrated.
Perpendicular resonance at which v goes to infinity for a
certain @, 0 < @ < 1, appears in the case of u = 0. In the
case of yu ¥ 0, however, this resonance disappears. In Fig.

2, the characteristics of the equation (36) is demonstrated. .

- 23 -



In Fig.3, the values of the terms in equation (42) are

plotted against kp to indicate the character of the equation.

10. STORED ENERGY IN EXCITING SYSTEM

Here we shall consider the stored energy in an ex-
citing system without plasma, The stored energy density p
in vacuum is generally given by

1 _
T (E-E + H-H), (45)

P =
where E and H denote the complex conjugates of E and H
respectively. Using the expressions for E and H given by
equation (29), the stored energy density pi(r) for 0 < r

< s is

1 Nﬁ + 1 m, ? = . 2
Pi(r) = B ({1 + (g;—:—z)(if) }(ai1a1+ asaa)Im(kr)
NZ + 1 _ _
+ (g;—j—z)(alal + aszas) (Ir'n(kr)2
. m 4Nu - -
+ l(Ef)(—;_—_—)(alas - a1a3)Im(kr)I$(kr)]-

-1

(46)
In the same way, the energy density Po(r) for r > s is

2
1 R _
Po(r) = §F[{l + (N2 . l)(E;) Jasas + azaz) K;(kr)

- 24 -



NZ +1

+ (———) (asae + azaz) (K'(kr))?
N2 -1 m
o 4Ny _ _
* LD () Bear - acly )y () Ky (k) 1. (47)

From the continuity relations for E, and Ee across the
sheet surface, we obtain the following relations between
the coefficients;
Im(ks)
m
(48)

Iﬁ(ks)
ar = KAIESS as,

Then, the total stored energy Pm per unit length along the

z direction is

s oo
Pn = f 2WrPidr + f 2nrP dr
0
s
s?, - - - -
=7 {aja1Y1+ aszasys + (ai1as - aias:)¥za}, (49)
where
N2 + 1 1I_(ks)
- 1 " m 1
Y, = 5 {( ) - + (21" (ks)
ksK_(ks) N2 - 1 Ks N2 - 1 m

- 25 -



1
- ksKmst))}’

Y3 = ksk' (ks) {(NZ _ l)( s )
1l m, 2 1
+ ea— (1 + () 7) (21 _(ks) + EER;TEET)}'
I
2N, o I, (ks) )
Y, = -i {K {ks) ks)
Nﬁ -1 (ks)?2 m

To obtain equation (40), the following mathematical

identities are used;
JrI2 (kr)dr = r* {12 (kr) (1 + (=9 2%)- (I'(kr))?2}
m T2 m kr m <t o

. 2 2 m? 1 ... _r .
[{r (1} (kr)) % rI2(kr) + o E IZ (kr)tar = £ I_(kr)I! (k).

(50)

In equation (50), Im(kr) and I&(kr) can be replaced by

Km(kr) and Ké(kr) respectively.

11. PLASMA LOADING

Energy transmission from the sheet current into a
plasma can be calculated using Poynting's vector at the

surface just inside the sheet. For an infinite length

- 26 -



coil, the energy transmission Wo over the lengh & and per
unit time is

2n1/w 27 L

W, =Re g [ dt [ a6 [ dzl g(-n) [E x B, (51)

0 0 0

where nis the unit vector normal to the sheet surface, B
is the complex conjugate of the B and Re means the real
part.

For a coil of finite length (0 < z < &), the end
effect may be calculated by making use of the Fourier
integral of the field components. But, here we shall use
another method which leads to the same result.

Since there may be a natural wave of arbitrary ampli-
tude, the wave in a plasma can be considered as a super-
position of an excited wave and the natural wave. We are
concerned with a wave which propagates in the Z direction
so it will be quite natural to assume that the wave fields
is zero at Z = 0. To the contrary, if we are concerned
with a wave propagating in the -Z direction, the wave field
should be zero at 2 = 2. Thus we can determine the
amplitude of the natural wave in this direction. The field
compbnents E and B just inside the sheet surface may then
be expressed as

E = Eeel(k"z + mb - wt)

i(k,z + m6 - wt) _ei(kpz + mo - wt)}

+ E;{e
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B = B ei(k“z + md - wt)
e

+ lBl{el(k”z + mo6 - wt) _ e1(kpz + mo6 - wt)}' (52)

where, Ee and Be are the exciting fields, E;, and B; are the
fields due to the waves and kp is the Z component of the wave
number of the natural wave.

The power transmission W, from the sheet current of

length % to the plasma is then given by the following re-

lation;
we 21/w 2m %
W =R J at sde dz
0 0 0
[-{Eeeﬁlz - Eezﬁle}(l - e_l(kp - ky)z)
- B - = _ ik, - ky)z
{EIGBeZ ElzBee}(l e P " )
- {EeeBez - EezBee}
- {E1gBiz - E1zByg} (1 - et Ky X2 - e 1k,
- k,)z
)1. (53)

In this equation, the third and the fourth terms in the
integrand, are related to the self-energy of the exciting
field and wave itself respectively. They are pure imaginary

and do not make any contribution to W. Carrying out the
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integration of equation (53), we obtain

1 1 - cos (kp - ka)l
(~aja, + azay){ }.

C
W = —_—
ik ——
Nﬁ -1 kp - ky

(54)

Here, aj a; and asay are real quantities.

Coupling between the external field and the plasma wave
may be expressed in terms of a "figure of merit", Q, of the
exciting system, which is defined by the ratio of fraction-
al energy loss per radian to stored energy in the exciting
system. For the case where the stored energy is not
affected very much by the pressence(of plasma, the Q may

be approximated as

o = w(Pml)
W
» aia1Yy + azaz¥; + (a as - a;as)y,
= {ks) },  (55)
(T)S (ky - kp)(alaz - aszas)
where

2{1 - cos(k_, - k, )&}
s = £ .
{’Q’(k - ku)}z
P

Here, S is a shape factor of a coupling resonance and it is

unity for kp - K, = 0, where the coupling reaches its
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maximum value.

From equation (33), a: and a, are

a = - % Zm(vlp)Zm(Vzp) E% N — [a3A,3 + ia1Az:1]
N -1
) a1I (kp)
Y 4
km(kP)
1 1l .
ay = % Zm(le)Zm(Vzp) kp —— [iasAy3 + aiAu1]
NI -1
a;I' (kP)
- m p (56)
]
k! (kP) |
where
Ay = (E; - E2) + alyr - Y2),
A3 = Fp - Fa,
Ayi1 = E1vz2 - Ezv1,
Ays = %(EIFZ - E,F;) + (E, - E2).

Because the coupling or loading is efficient for the
condition kp -k, =0, a, and a4 may be expanded around
kp - k, = 0, where A = 0, (the last terms in equation (56)

are independent of the A). Thus the Q is
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2 - (ks)zka;(kp)

Q = 5(L/2)
a1&Y; + aszasz¥s; + (aias - aas)Y.
x A'a . 57
{—a1a1A21 - azazAy3 + l1ajaz (A3 + Au1)}' (57)
where

pa = 2 {(E; +ay ) (Fz + a) = (B, + ava) (Fy + o) ).

When an induction coil of the Stix type is used to generate
an ion cyclotron wave of m = 0, it is clear that the sheet
current je is the main source of the external field. 1In
this case a; may be neglected compared with a3 which
represents the je current. Then, keeping only the main
terms in Y3, Q may be approximated to

I (ks)
Qn szAu3 { (xp) K;TE-T YN K;(kp) Aé}- (58)

12. EVALUATION OF PLASMA LOADING FOR m = 0

The evaluation of Q given by equation (57) will still
be troublesome, because the calculations of Aé and A
are necessary. Here we shall limit ourselves to the case
of m = 0.

Because there is a relation between Ej and Fj for

m= 0, (Eje2 = ijj).the A; which is defined in equation
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(57) may be expressed in the form

Ay = g leFaFoya N2 - 1 2@ 1, (59)
L
where
®= ¢ el) K, (kp) Li Z, (Li1kp) €1 Lz Zo (Lokp)
= l1] - — + - —
€2 gy(kp)  |Li| z§(Lrikp) %2 |L,| 2z} (L.kp)

From the boundary relation (42), it is clear that the ® is
zero where A = 0. In Fig.l, we can see that the second term
in H depends critically on K, while the remainder of the

terms are rather insensitive to K. Therefore, we may write

the A! as
a
 E———— d Zo(lep)
Aé Y E—]; aF,Foyv1 Nf -1 ax {L1 ——
% ‘ ' Z, (L1kp)
L2 (uL? + Q2?) €
1 — 1
N T aFFov, N‘2 -1 [p 1 1 g {Lz + (E— 'k"z")z}]'
2 (ut - e ! 2P

(60)
In the last relation, we used the following approximations;

aL? Q2L"

1 . 0o_1
dk ]JLL} _ Qz
1 0

NES
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€2 Zo (L1kp) L? Z, (L:kp) 2
(_") Ll v 2 v (E—) ’
2! (Likp)  |Lz| 2! (Lzkp) P

(at A = 0, for |L,kp| << 1).

Because Ay3 is a smooth function of k,, we may fix the value

at k, = kp and use again the relations EzEj = Yij for

m=0, and H= 0 at A = 0. Then we have

E—— €1 L2 Zo (lep)
Ay3 = Y 1F1F, —% N2 -1 [(1 - —=){-L

o €2 L, | 2! (Likp)

Ko (kp) _ 1
+ ——— (1 +€))}] v yiFyF, = " N} -1
K;(kp) 2

x (1 - —) —— , (for €y >> 1). : (61)

Using these equations (60) and (61), we have the following

approximate expression of Q for moderate values of lep;

2 I;(ks)
o 2+ b
) NI (kpK; (kp)) LM, (62)
where
Q2 (uL? + Q2) 2uL*
M = g 1 & {1 + ( 1 )2y, (63-a)
€ (uLt - a%)? a2y p
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*
When u in the Me goes to zero, we see that Me goes to-unity.

The Q given by equation (62) is essentialy the same to that
of Stix's calculation, provided that u = 0 and Zo(L1kp) ~ o0,
where the latter is the boundary condition for the natural
wave in that case.

The munimum value of equation (62) against L; is

obtained at
uL* v 302,
1 0

Corresponding values of L:Me and Q? are

9¢c?
(L'M,) AT
! min (kp)“

where c, is the value which satisfies J),(cg) = 0. There-
fore, plasma loading will be considerably modified by the
finite mass of the electron.

In the above calculation of Q, we have taken the
derivative of only the second term in @)of equation (59).
For L., n L,, hcwever, the last term can not be ignored.
For this case, keeping the last term we obtain the expres-

sion of Ll“Me in equation (62) to be

* Note: mathematically, for mn=0, Ll should be replaced

by L Then L., plays the role of Ll in the analysis.

2° 2
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LM ~ —— 1 , (for L; ~ L,). (63-a)
1 € (€1 1) 2
€2

Here we have used the following approximations;

13. WAVE MODE

There are two equations (10) and (11), in which the
components of wave fields Dz and BZ are related to each
other. When the Dz and Bz are nearly independent, we may
have two isolated dispersion relations;

- NJ) — e N? v 0, (for B, = 0), (64)

€o (¢ t
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e ey - N2) + .e; ~ 0, (for D, = 0). (65)

These two dispersion relations are schematically indicated
in Fig.4. Ve see that the dispersion relation, which corre-
sponds to equation (14), is almost equivalent to those of
(64) and (65) except in the crossing region of these modes.
Since equation (14) has two roots of L, say L, and L,, wWe
shall here call these two modes the Ll - mode and the

L. - mode. Pecause we have assumed that |L1| > |L,|, the

2

L. - mode may be considered to be a gquasi - TM mode, and

1
the Ly - mode a quasi - TE mode.

The distribution of components of magnetic field and plasma
current for these two modes are schematically shown in Fig.
5. The analytical forms of these components obtained from
equation (21) are summarized in Table 1.

For the L, - mode, the plasma current J, which flows
along the static magnetic field is important. The current
Jz and Jr form a divergence-free flow within a plasma,
when the approximate boundary condition given by equation
(44) is satisfied.

The other current Je is also divergence-free and is related
to J_ as IJel volQ JrI, for the case of m = 0. The magnetic
field component Be for m = 0 is directly related to the
current JZ by equation (9).

when €, is large enough, the dispersion relation (64)

may be approximated as
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€ N2 ~ 0, (for L,-mode) . (66)

From equation (65) the dispersion relation of the L, mode is

Q2 = L i (67)
uLj + (1 +n§)

We see that equation (67) is an asymptotic form of equation
(38) for Li >> 1. The difference between the two equations
appears only for the condition that uL; < QZ
For the L2—mode, the approximate dispersion relation
is )
L2 +1
Q% ~ 2 (68)

QZ
0

Because Q§ is a quantity which roughly indicates the
frequency shift of the ion cyclotron wave from the ion cyclo-
tron frequency, we may assume that Qz is considerably smaller
than unity based on usual experimental condition. Therefore,
Lz is usually a nagative quantity.

The group velocity of a wave Vg along the z direction

can be obtained by a calculation of 3w/dk. We obtain
vg N vp(l - Q%), (for L,-mode), (69)

, (for L,-mode). (70)

g 1% QZQZ
0

where, Vp is the phase velocity of the wave along the Z

direction.
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14. FIELDS OF THE MODES

From equation (29), we see that the coefficients ag

and b_ are associated with the Ll—mode and the Lz—mode

5
respectively. m™he ratio 9§€3 may be obtained from equation

(33). For the natural wave, the ratio is

b5 Zm(LJkP) Fi + a

85 7z (Lkp) Fz + a

Zm(L1kp) F,y
— _ . (71)
Zm(szP) Fa

For the case m = 0 and assuming that kp << 1 and

E}éz >> 1, equation (71) may be approximated to be

L?2|L,|2! (Likp)
= A - 2 0 . (72)
5 L, | LiZ;(szp)

Thus, we can obtain the wave field components of the
Lz—mode in terms of the field components of the Ll—mode.
The results are summarized in Table 2.

The field components in the vacuum outside of the
plasma are also obtained directly from the continuity
relations across the plasma-vacuum surface, using the ex-

pressions for the field components of the Ll and L2—mode.

The results are also given in Table 2.
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15. WAVE ENERGY

The wave energy in a plasma can be calculated by the
following relation as described in the Stix's book (p.48,
eq.7).

t

W= BB+ T (k@) + K W))E exp2J w;at',

- 00

(73)

where W and w; are the real and imaginary parts of the
wave frequency w respectively, K is the dielectric tensor
and Kt is the Hermitian conjugate of K. For a loss-free
plasma, K is a Hermitian, that is, K(wr) = K+(wr). Using
the dielectric tenser components given by expression (35),
we have the following derivatives of the tensor components

with respect to w:

2
3 (o) = 1 + ¢ 1 + 8
5& Et t 1 - QZ ’
3 1
5—-(w€ ) = 2¢ (74}
9 (we,) = 1 -
So WEpl * €y 7
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W = 16 [B-B +E-F + Ek]' (75)
where
1+ Q? _
Ek S T o (ErEr + EeEe) EzEz z

In this equation, the first term is the magnetic energy, the
second is the electric energy, and the third is the kinetic
energy associated with the coherent wave motion of the
charged particles.

The velocity of charged particles in a wave field is

given by
i . 1Ze 1 . i
vi = i|==] (wEy, + iQ.E_),
X i w2 - @2 1Y
i
i de 1 A
vi = |=—= (R.E  + 1iwE ),
y mitop? -2 tY X
i
i Z
Vl = l-_e_l .]; E ’
z m,' w 2z
i
Ve = I...?_I l E ’
z m w2z

where indces i and e refer to the ion and electron. The

kinetic energy of the charged particles is



1 .
I Fny m-v? v o= [———— et|Ei - EQIE;|J~ (76)

Thus we see that the kinetic energy E, consists of ion Larmor
motion and electron motion which is parallel to the z di-

rection. Since,

41

KD = E + i=— J§ ,

the E, may be written as

E =iy L . (77)

Here we have used the relations that
jk = nZyeq Vv,
and

2
1 _ o2
(1 9] )ﬂi

—i V. n V,
dw 1 i

where the suffix k refers to the species of the charged
particles, and € to the signs of the charges.

In equation (75), the E, is the dominant term and the

k

electric energy E E is at most negligible provided that €¢

has a large value. The ratio of magnetic energy to the



kinetic energy E, is roughly equal to QzQi/(l + 02). The

total energy W, in terms of EB" is -

E? NjL“ 1+ Q2 uL?
wno (21t ) [ J2(v,r) + —t— J%(v,r)
16mJ1 (V) Qin“ 1 Qzﬂi 0
1l 2
+ — J%(vir)], (87)
QZ 1

for Lf >> 1. In this equation, the first, the second, and
the third terms are associated with the field components

Er’ Ez, and Be, respectively.

l16. ENERGY FLOW

The density of energy flow F(r) along the z direction
can be obtained by multipling W with the group velocity Vg,
where F(r) is a function of radial position r. This energy
flow can also be obtained more directly from a Poynting's

vector calculation;

F(r) = Ry 5% E x B ’
E} cN, (1 - 2%) (1 + L?)
v —— ) L J%(v,r)
8mJ1 (V1) Qiﬂ" 1
LZ .Ju(\)lr)
+ 1 2% (vor)l. (79)

|L2| Zo(vzr)
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In this expression, the first and the second terms are

l—mode and the Lz—mode

respectively. For a large value of L

associated with tl:e energy of the L
17 the first term
is dominant and the second is negligible.

The energy flow calculated using the two methods,
one from W. Vg and the other from Poynting's vector,
coincide reasonably well. The difference is due to ap-
proximations for the field components. In the vacuum
outside of the plasma, there is also an energy flow, mainly
associated with the wave field of the Lz—mode, though it is
not important usually.

The total energy flow F, along the z direction over
the entire cross-section of the plasma column is obtained
by integrating F(r) with respect to the radial position r.
Taking only the Ll—mode field and neglecting the energy

which flows through the outside vacuum, the energy flow

F is approximatly given by

) P C .
F = R, j §E'(m x B)2nrdr
0
B, (1 - Q2)pP2L%V
v L P 32 (cy), (80)
Jo (v1T) 8929§ 0

where the boundary relation Jl(lep) ~ 0 has been used.
From this relation, the field components of the Ll—mode

may be expressed in terms of the energy flow F. The
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results are summarized in Table 4. We see, from the results,

that the electric field E and the magnetic field B, are

P

important in the L.,-mode. The plasma currents jz, jr' and

1
je can be obtained from the electric fields and the die-
lectric tensor. The results are also given in the Table

4. Among the currents, jz has the largest value as far as

L, >> 1.

17. ENERGY LOSSES

The dispersion relations and energy relations described
above are based on a dielectric tensor for a cold plasma,
so there is no loss except energy loss which is associated
with wave propagation. In a warm plasma, however, there
are energy losses due to ion cyclotron damping and collisions.

Here we shall consider these damping mechanisms of the wave.

Cyclotron Damping

In a case of finite ion temperature, each ion in a
plasma feels its own perturbing frequency because of a
Doppler shift. The ion, whose perturbing frequency is
nearly equal to the ion gyration frequency, will resonantly
absorb wave energy, and cause a damping of the wave. This
damping mechanism, known as cyclotron damping, will,

therefore, be large if
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vih 2 - v (81)
where Vth is the ion thermal velocity. From this relation,
we can see that there is a limiting value of k, for wave
propagation since relation (8l) can be easily satisfied by
a large k, and there appears a strong damping of the wave.
Using equation (67) and the definition of 9, which is given

in equation (37), the limiting value of k,is obtained as

niq
Ky v ——q— , (82)
2c Vih
where we have assumed that u1L2<<Q:. This relation may be
1

compared with Stix's expression for the maximum k (ref.1,
p.196, eq.27).

To obtain a more guantitative expression, we may use
the spitzer's attenuation distance of the wave d, (reference
5, p.88, eq.3-59), together with the relation wi/ki = Vg'
where ki is the imaginary part of wave number k, and has

#he value of 1/d. The result is

@3 -2 .
—— A 2v/mR%reTF (83)
w 0
where
K. \
s —5 (1-0) _% <. (84)
kVin Ven
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This equation is the same as that described by Stix (ref.l,

p.195, eq.23), if (1 - Q) is replaced by %,szi, and that
w A Qi. In the usual case, the value of T is not very small,
so this damping may be neglected. This mechanism is, uowever,

essential in a "uveach field".

Ion-Electron Collision

The time constant for ion-electron collisions Tie’

which is given by Spitzer (reference 5, p.135,eq. 5-29) is

AzTe3/2(°k)
Tie = 11.7

(85)
(A + A )Al/zn %2 nh
e e e

where A is the atomic mass of the ion, and Ae is that of the
electron. This collision will causes an additional broaden-
ing of the coupling resonance whose half-width in frequency
is fie’ where fie = l/ZwTie.

The numerical evaluation of fie is given by

n_&nh
-10 e
f. ~ 2.54 x 10 ’ (H_ ) . (86)
ie ATe3/2(ev) z

This damping mechanism will be important when the electron

temperature of a plasma is low.



Ion-Ion Collision

Since we are concerned with the averaged ion motion,
collisions between the same ion species is not important.
Here we consider the collisions with different ion species.

The collision time of i-th ion with j-th ion given by Spitzer

is
1
T3/2(°k) A.A. 2
.. o= 11.4 ( 1 J )
1j *
n.z2z24nA A. + A,
Ji3 1 J

The corresponding broadening, fij’ is therefore

: 1
z2%4nAn. A. + A.. 2
-8 73 J 1 J
f.. ~v 1.14 x 10 (H,) » 87
ij Ti/z(ev) ( AiAj ) ’ P (87)

kThe collision time for ion-neutral collisions Th is given
by

A 1

T = = r

n i i
Vih 2h%nVth

where ) is the mean free path, 0y is the neutral particle
density, and o is the collision cross-section for this

15 2

encounter. Because o is of the order of 10~ cm”, this

collision frequency is ususlly low and may be neglected.
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Resistivity

Because, the plasma current jZ in a wave is high, the

energy loss due to resistivity may be considerable.

To

estimate this effect, we consider that the mass of electron

is a complex quantity as can be deduced from a generalized

Ohm's law neglecting the pressure terms.

*
introduce a complex quantity u which is defined by

o

* 0
o= u(l + ix),

2

where
2
_ Vei IIen
o = =
Q. 4mwc?
i

In the equation, Vei
and n is the corresponding resistivity.

u in equation (38), we have the following approximate

is the electron-ion

solution of & in complex form for Ll>>l;

1
2~ Qp[{l 8(anuLl) } i

no{L - %(nﬁ + LA} - i

2

e

P 2
3 auLI]

pLz(l - 92)1
1 0

So, here, we shall

(88)

(89)

collsion frequency

*
Using this u for

(90)

where Qp is the value of Q for real p which has been given

by equation (38). In the last relation, we assumed that



1 2
—— << .
8(OLQ uLl) 1

The ratio of the imaginary part to the real part in Q

is then

e
I3
NI
2
£

nN

Hén uL?
4nc? 2

Thus the loss will be considerable when both H; and Li are
large. 1In this mechanism, wave energy will be transmitted

directly to the electrons.

18. DISCUSSION AND CONCLUSION

The dispersion relation of an ion cyclotron wave is
analytically calculated retaining the electron mass. In
this case we have two wave modes in a plasma, the Ll—mode
(quasi-TM) and the L,-mode (quasi-TE). Under most con-
ditions of ion cyclotron wave experiments, the Ll-mode is
essential. The plasma current jz is the important component
in the Ll-mode, s0 the feature of electron motion associated

with the jz plays a role in the dispersion relation and

energy relations of the ion cyclotron wave. The modifi-
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cations in these relations will be considerable if the ratio
v/kvhas a large value. The negligible electric field EZ is

due to a high conductivity along a static magnetic field

and does not mean a low plasma current jz. In fact, the jz

has a finite value that is independent of u, when u goes to

zZero.

The plasma current jz for uy = 0, which has been calcu-
lated by Stix, nas a distribution profile of Jo(vr) and is
nearly zero at the plasma surface. 1In this case, the surface
current flows to form a closed circuit for the body plasma
current. In the analysis described here, however, the
boundary relation is J,(v,p) v 0, rather than Jo(vxp) ~vo0,
at the plasma surface. Then the plasma current has a
divergence-free flow in the plasma without a surface current.

It is shown that, the field components of the L;-mode
are nearly canceled out by the components of the L,-mode at
the plasma-vacuum surface. As a result, coupling between
the exciting field and the wave field is somewhat reduced.
The wave energy is calculated based on the field components
of the L,-mode. We see that most of the wave energy is
kinetic energy of coherent ion Larmor motion. The wave
energy flows with a group velocity, Vg = Vp(l - Q%). The
field components, therefore, can be obtained as a function
of energy flow and are summarized in Table 3. It is shown

that the important field components are B, and Er’ for a

6
large value of v/k.

The damping of waves is presented for cyclotron damping,



collision loss, and resistive loss. The third is due to
electron-ion collisions, 50 there is a possibility of direct
electron heating by the wave field of E,. This heating will
be considerable if Li is large and the plasma density is
high.

Thus we have a nearly complete understanding of ion
cyclotron wave together with a basic physical picture of
these waves.

In the analysis, however, we have used a dielcctric
tensor for a cold plasma. Energy losses are included as
corrections to it. Moreover, the density profile with a
sharply bounded uniform distribution is assumed. Therefore,
the analysis described above should, more or less, be
considered to be a semi-quantitative one for a practical
plasma in which plasma has a diffused profile with a finite
temperature.

It should be noted here that our considerations are
concerned mainly with ion cyclotron waves of light mass ions.
In case of heavy ion mass, effects of electron mass will
not be important. In that case, L2—mode plays the role of
L,-mode, because L, tends to infinity and L, should

satisfy the boundary condition as the dominant mode. Some

cautions seem to be necessary on this problem, though a

little is payed in the analyses.
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Field
components Numerical values Units

B
z1l
lm)—l N~ 1.15 d@ gauss

| 2ol l v 35.1 o2 VF gauss
J1ZV1r5

fip

B
|3T7§%ETI n 3.77 x 1072 pd VF gauss

| Cz1 | vo.57 -2 ) F volt/cm
Jo (ViT) n

v 7.55 x 107 “Qpdv/F volt/cm

rl
lml N 70.2 E_d— /-F-‘- VOlt/Cm

3 _
|3?T%%ETI v 1,07 x 102 2 /F Amp/cm?

~vo3.51

T
=)

Amp/cm?

J
Ij—l—(—\e):}—ry‘| vo3.510 % VF Amp/cm2

244
QOQ, lo6

1 - Q% £2°
p; plasma radius (cm) f; wave frequency (MH,))

n.; electron density (cm-3) A= %ﬂ ; wave length (cm)

Table 3. Values of field components in terms of energy flow F.

F; energy flow (kW) , a2 =
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ion cyclotron resonance

ion cyclotron resonance

Fig. 1,

Basic chracteristics of the dispersion relation

of ion cyclotron wave for u=0 and u%O.
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u=5.446 X 10*

Fig. 2.

The values of L against w.
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The values of the terms in equation (42) against kp.
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L,-mode(eq,68)
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Fig. 4.
Schematic drawing of the dispersion relations of the Ll
and the L2 modes. Interaction between the two modes

are ignored.
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Fig. 5.
Schematic drawings of wave field distributions

for the Ll and L2 modes, where m=0.



