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ABSTRACT

The general features of the electrostatic oscillations
in a lossfree plasma are discussed from the dispersion
relation and energy equation. It is shown that the electro-
static waves in a lossfree plasma have always zero energy
density, and negative kinetic energy density, the magnitude
of which is equal to the electrostatic energy density. The
feedback stabilization for reactive instabilities is recon-
sidered by a simple model, and a cold electron plasma-beam

system is studied as a simple example.




§1. Introduction

Electrostatic instabilities in plasmas are classified

1)2)

into a dissipative and a reactive type. Such a classi-

1)

fication was made first by Hasegawa according to the

electric conductivity of the plasma. However, the classi-

2)

fication by the dielectric constant is simpler and more
instructive, as shown in the present paper. As is well
known, whether the plasma is lossfree or not should be
determined according to whether the dielectric constant is
Hermitain or not. It should be noted, however, that if we
intend to determine form the so-called Joule loss whether
the plasma is lossfree or not, we have to take both the
frequency and the wavevector as real because otherwise the
Joule loss may be finite even in a lossfree plasma (see §3).
This point is fundamental but may be sometimes misunderstood.
The instabilities in dissipative plasma are caused by
energy exchange between the waves and the plasma medium,
due to collisions for a collisional plasma, and due to the
Landau damping or cyclotron damping for a collisionless
plasma. In this case, the dielectric constant has an anti-
Hermitian term and the instabilities are called dissipative.
On the other hand, the reactive instabilities occur in a
dissipation-free plasma, whose dielectric constant has no
anti~-Hermitian term, and the growing wave is always accom-
panied with the damping wave having the complex conjugate

frequency and gains energy only from the latter within the




LS

linear theory.
By making use of a simple model, Taylor and Lashmore-

2)

Davies studied the general features of feedback statiliza-
tion for the both types of instability. Feedback stabiliza-
tion can be achieved by reversing the direction of the

energy transfer or by introducing an energy dissipation.

For the reactive type without feedback, the energy transfer
is only possible between a stable and an unstable mode in

a pair, whose frequency is complex conjugate each other, so
that the reversal of the direction of energy transfer by
feedback leads to at most neutral stability. 1In ref.2, for
reactive instabilities, only the conditions for neutral
stability were considered and the phase shift of the feedback
system had to be precisely specified for stabilization.
However, as shown in ref.3, the analysis of the feedback
stabilization by introducing energy dissipation is usually
too difficult for reactive instabilities to obtain trustworthy
results.

In the next section, the general properties of electro-
static oscillations in a lossfree plasma are discussed by
making use of the dielectric constant. 1In §3, the energy
flow is studied to make clearer the properties of a lossfree
plasma, and the negative kinetic energy density of the wave
is introduced to apply consistently the formula of the wave
energy density defined for the dissipative case. 1In §4.1,
the general features of feedback stabilization for reactive
instabilities are reconsidered by using a simpler model than

in ref.2, and the same stability criteria are derived. 1In




§4.2, as a simple example, feedback stabilization is consi-

dered for a cold electron plasma-beam system.

§2. FElectrostatic Oscillations in a Lossfree Plasma

It is well known that the behaviour of small electro-
static perturbations in a plasma, varying with time as exp
(-iwt), is described in terms of the dielectric constant
of the plasma, e(w) = ¢, (w) + ie, (w), where el(w) and ez(w)
are the real and imaginary parts at real frequency,
respectively. In the present discussions, the spatial
dispersion is not important and omitted for simplicity.

As is well known, the plasma with no ez(w) is lossfree

4)

and the dielectric constant is Hermitian or reactive.

The instabilities in such a plasma are called reactive

1)

following to Hasegawa. First, for simplicity, we assume

lv,| << |w,|, where w = w + iy,, w

o and Y, being real, is

0

the solution of the dispersion relation e€(w) = 0. Then
we can write approximately the dispersion relation of a

lossfree plasma as follows;

3281

sorly, = O (2.1)

. OJ€ 1 .. 2
e, (w,) + iy, 52+ + —5_(1Yo)

dw W,
where, differently from the dissipative plasmas, the last
term is retained for the case of ael/awlw = 0. From

0
eq. (2.1) we have



1 52
El(wo) - '—2—'— YZO a;;lw = 01 (2-2)
0
€
Y, -ﬁ|w = 0. (2.3)
0
When ael/awlw # 0, always we have Yo =0 i.e. a neutrally
0

stable, negative or positive energy wave according to the

sign of ael/awlw » and the frequency w, is determined by
0

the equation €,(w,) = 0. Then the wave energy density is

expressed in the same form as in the dissipative case:S)

22
W= JE[® 0 (wer @) ] (2.4)

lém ow 0

where E is the electric field of the perturbation.

When ael/awlwo = 0, we have either y =0 or y, # 0. For
Y, = 0, the frequency w, is determined from el(wo) = 0 or
861/3w|w0 = 0, and this case corresponds to the threshold
of reactive instability as a result of the degeneracy of
a negative and a positive energy wave. For Y, # 0, the

frequency W, is determined by Bel/awlwo = 0 and the growth

(or damping) rate is given by

vz, = 281W0) 5 o, (2.5)
d%e

~__L|
w2 %o



For the reactive instability, therefore, the unstable wave
is always accompanied with the stable wave having the complex
conjugate frequency. The instabilities which appear under
the linearized treatment of plasmas as an ideal fluid belong
to this type.

Although we have assumed |YO| << [wol in the above
discussions, it is easily shown that generally in a lossfree
plasma the modes with complex frequency can exist only as
a complex conjugate pair. That is because the dispersion
relation for the lossfree plasma can be written as an alge-
braic equation only with the real coefficients, even if the
equation may become of infinite order by making use of the
series expansions of special functions. When we have an
interest in the complex conjugate modes w = w_* iyo , the

o)
dispersion relation is written as follows:

er(w) = {(w-w)?+ 2P F@) =0, (2.6)

where F (w) is generally a rational function and the poles
nerest to w, determine the location of the branch to which
the complex conjugate pair belongs. Since F (w) near w, is
regarded as almost constant, the above discussion for

lyol << |w0| is also valid for arbitrary values of complex
frequencies, e.g. for |YO| > Iwol, except that if the

multiplicity p of the roots is larger than unity eq. (2.5)

is replaced by



0 576, > 0. (2.7)

§3. Energy Flow

In this section, by comparing with the dissipative
plasma we consider the energy balance equation aiming at
the clear understnading of the characteristic features of

electrostatic oscillations in a lossfree plasma.

Let us
start with the following relation6)
3D _ JE ~
'B'—E='§'T:'+4TTJ ’ (3.1)

Where D is the electric displacement and for the monochroma-

-»> > -
tic mode D(w) = e€(w) E(w), and j is the total current density

and we assume no source current. We make the scalar product

of eq.(3.1) with E to derive the energy equation.

From the
left-hand side of eq.(3.l1l) we obtain easily
1 3D _ i 2
B. = X 2 * ok - =
= B 5% T Ten [E[%2 { w*e*(w) -we(w)} 0, (3.2)



where the bar means the average over the wave period and the
asterisk the complex conjugate quantity.
As is well known, for dissipative plasmas, eq. (3.2) 1is

reduced to6’7’8)

+

E|? d _

s Yo T35 (wel(w))lwo +we2lw)} =0, (3.3)
where we have assumed Iyol << |w,| and le2] << |e1|. The

first term is the rate of change of the total energy density
of the wave, W, which is composed of the electrostatic and
kinetic energy densities, and the second term is the rate

of energy absorption by the plasma medium.

By making use of the results obtained in the last section,
we consider the lossfree plasma. It is easily seen that for
881/3w|w0 # 0, eq.(3.3) is also valid but the two terms are
always zero. The zero of the second term means no energy
exchange between the wave and the plasma medium, and the
sero of the first term no change of the wave energy density.
On the other hand, the wave energy density itself is finite
and also given by eq. (2.4). Thus there exist neutrally
stable, positive or negative energy waves and/or the pair
of a positive and a negative energy wave.

For de:/3w| , = 0, eq.(3.2) is reduced to

2

—l%%— {y,e1lw, + iy ) + w ex(w))} =0, (3.4)



where each term is exactly zero. In this case the wave

energy density is always zero and defined by

>
W = —%%%i sl(wo + iy,) = 0, (3;5)

instead of which the definition by eq. (2.4) is also applica-
ble. Although both the stable and unstable modes in a pair
have the vanishing value of the wave energy density, the
electrostatic energy density |§|2/16ﬂ is not zero. Therefore,
the both modes should have a negative kinetic energy density,
the magnitude of which is equal to the electrostatic energy
density.

Next, let us examine the scalar product of the right-hand
side of eq. (3.1) with E. Then we have
1 = 23E Yo >

= . - - Yo 2
E = T B 5% e |E|? . (3.6)

w4

From this relation, we see that if " is not zero, the
so-called Joule loss is finite even for the lossfree plasma.
However, this does not always mean the finite value of

energy exchange between the wave and the plasma. It should
be noted that whether the energy exchange between them exists
or not must be determined by e:(w ) # 0 or e, (w ) = 0.
Especially we should be careful for the lossfree plasma,

for which we have §-E # 0 for the waves forming a complex

conjugate pair. For §-§ # 0, even if we imagine apparent




energy exchange between the wave and the lossfree plasma,
the energy absorbed by the plasma from the stable mode is
exactly given to the unstable mode so that the energy
exchange vanishes between the complex conjugate pair and
the plasma.3)

Because only if the frequency (and also the wavevector
in the presence of spatial dispersion) is real, the term
;Tﬁ.gives the absorbing power w, Ez(wo)IEIZ/SN, whether
the dielectric constant is Hermitian or not should be

examined for real frequency (and also for real wavevector

at the same time).

§4, Feedback Stabilization
4.1 General features

The dispersion relation, e(w) = 0, in the absence of
feedback is modified by the application of feedback. The
signal sensed by a sensor probe is amplified, phase-shifted
and injected into the plasma as an appropriate suppressor
signal. The change aensity Pe introduced by the suppressor
is assumed to be propotional to the electric potential ¢
sensed at the sensor. That is, we assume Pe = g¢, where |g|
is the feedback gain ard arg(g) the feedback phase. For
simplicity, the spatial correlation between the sensor and
the suppressor is neglected. Then we have the basic equa-

tions relevant to the present problem as follows:

- 10 -



div g(w) = 4ng(w)eo , (4.1)

-

D(w) = =-e(w)Ve , (4.2)

from which we obtain

e (w) + 4“i£w)¢ =0,

where the spatial dispersion is also neglected.
Regarding g as a small perturbation, and using the
results in §2, we can rewrite eq. (4.3) for the lossfree plasma

as follows:

{(w ~wy)? + Yﬁ}p =g e, (4.4)

io _ _ 479 (w)
G e = —T%ES—E%' ’ (4.5)

where G and a are real and dependent on the frequency. If
we put p = 1, then eq.(4.4) is reduced to eq. (11l) of ref.2.
In what follows we assume p = 1. If we denote the frequency
in the presence of weak feedback as w; + iy:;, where w; and

Y1 are real, eq.(4.4) is reduced to

(w1 = w,)? = Yf - y2 + G cosa , (4.6)

- 11 -




2y, (wy - wy) = G sina, (4.7)

from which we have

y2 = —%—{yi - G cosa * /(y2 - G cosa)® + G®sin®al} , (4.8)

where the lower sign is allowed only for the case of sina=0.
For the feedback phase such as sina#0, if the other-

wise unstable mode is stabilized the otherwise stable mode

is destabilized. Therefore, we have the severe conditions

for feedback stabilization

G cos o 2 Yo
(4.9)
G sin o = 0.
In egs. (4.6) - (4.9), we may take approximately the values

at the frequency without feedback for G and a. Equation

(4.9) is the same as eq.(13) in ref.2, where |y, | << |u,]

~

was assumed and the different conditions for [y | 2 [w]
were obtained. However, the stability conditions (4.9)
are also valid for |y | > |w,| because we have made no

assumption about the magnitudes of W, and vy, .

- 12 -



In the above discussions, only a certain pair of modes
has been considered. However, if the other stable and/or
unstable modes exist, these modes may be destabilized or

remain unstable when the relevant pair of modes is stabilized.

4.2 A simple example

As a simple example of reactive instabilities, we consider
the system which consists of a cold electron plasma and a
cold thin electron beam moving with a constant velocity u.
As is well known, under some conditions, the electrostatic
8)9)

instabilities occur in this system.

The fundamental equations for each component are

m(a—a€ + veV)v = e Vo, (4.10)
%% + div (n v) = S, (4.11)

where ¢ is the potential of the electric field of perturba-
tions, S is the source term introduced by the feedback system
and assumed to be propotional to the electron density pertur-
bation n', and we put S = -i n'wf. The absolute value of

We is the feedback gain and arg(wf) = 0 the feedback phase.

Linearizing egs.(4.10) and (4.11), and using the Poisson

equation, we obtain the dispersion relation in the presence

- 13 -




of feedback:

> > 0, (4.12)
wlw - wf) (w - k) (0w -

where wzp = 4nnpe2/m, and B = nb/np << 1, n, and n_ being

the electron densities of the plasma and the beam respectively.
Equation (4.12) without feedback shows that several unstable
modes of oscillations are possible for some ranges of plasma
parameters. For simplicity, we consider only the case where

wzp # (k-u)2. Then, as the four roots of eq.(4.12) without

feedback, we obtain w = #* wp and
> >
N /B (k-u) wp
w = k-u % —— (4.13)
/(k-u) - ;

1f (k-u)? < wzp, the two roots given by eq. (4.13) are

complex conjugate each other, one of which is unstable.
Assuming weak feedback such that |wf|2 << (K-G)z, we put

the frequency in the presence of feedback as w = k-u + 6.

Then solving eq. (12) we obtain approximately

1 1 48w’
§ = 55— w. t —— ug - P (4.14)
Aw%
wzp
A = T - 1. (4.15)



To obtain the trustworthy results, we confine our calculation

to the case where 4Bw;/A < |wf|2. Then from eq. (4.14) we
have
Bw?2
|mf| (1L + ——P ) sind, (otherwise unstable mode)
Alug|?
Im § = (4.16)
Bw?
- —P  sino. (otherwise stable mode)
Alwg]?

Therefore, for 6 # 0, if the otherwise unstable mode is
stabilized, then the otherwise stable mode is destabilized.
Thus the stability condition for feedback phase is 6 = 0,
consistent with the result obtained in 84 and in ref.2.
Whether or not the other two modes w = iwp remain stable
at the same time is difficult to state because the correct
calculation is very hard.

In conclusion, we can say that the feedback stabilization
of reactive instabilities in lossfree plasma is very
difficult because the stability condition for the feedback
phase is stringent and also the other stable or unstable

modes may be destabilized or remain unstable.

- 15 -
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