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Abstract

A large-amplitude electron plasma wave in a bounded
collisionless plasma is observed to steepen and form a
shock with a trailing wave train. The dependence of the
Mach number and the period of the wave train on the shock
amplitude shows that the shock structure is related to
solitary waves. For a larger-amplitude shock, however,
the trailing wave train is small or disappears, and a
potential jump followed by large-amplitude oscillations
propagating with a slower velocity than that of the shock
front is observed. The amplitude of the oscillations is
sufficiently large to trap a significant number of elec-

trons and to form vortices in phase space.



§1, Introduction

Collisionless plasma shock waves have received consid-
erable attention in recent years% Since Taylor, Baker and
Ikezi2 established a method to generate large density per-
turbations in a plasma, the experimental::’_7 numeric:als-ll
and theoretical12 studies of collisionless ion-acoustic
shocks have been reported by many authors. The electron
plasma wave shock reported here is essentially an electro-
static wave. However, it is different from the ion-acoustic
shock in that only the electrons participate in its evolu-
tion.

Since the electron plasma wave in a cylindrical plasma13
with a strong axial magnetig field has a dispersion relation,
(w/ku)? = w;e/(kﬁ + k2), which is similar to that of the
ion-acoustic wave, we would expect a shock wave similar to
the ion-acoustic shock to be formed in the axial direction.
Here, k., and k, are the axial and perpendicular wave num-
bers, respectively. Indeed Manheimer14 predicted theoreti-
cally that such a wave would steepen into a sharp density
discontinuity. In that work, he neglected the coupling
between the waves corresponding té different radial and
azimuthal modes. An experiment15 motivated by this antici-
pation has confirmed the existence of electron plasma wave
shocks in the cylindrical plasma. This paper reports the

details of a further experimental investigation.

§2, Experimental Conditions and Techniques

The experiments are performed in a single ended Q-



madhine. The experimental setup is shown in Fig.l. The
cylindrical conducting waveguide, 1.5 m long and 5.5 cm in
diameter, is filled with a potassium plasma. Typical
plasma parameters are as follows: plasma density n ~ lO7
cm—3; electron temperature Te * 0.4 eV; background neutral
gas pressure p v 1 x 10--6 Torr, and static axial magnetic
field B = 3 kG, For these values of the parameters, elec-
tron mean-free-path is much longer than the length of the
waveguide. Since the electron cyclotron frequency Wl is
much higher than the electron plasma frequency wpe, the
phase velocity ug given by wpe/kl for w << wpe’ is (2 - 3)
x lO8 cm/sec. Here k, = 2.4/a, where a is the radius of
the waveguide. The electron thermal velocity is about

3 x 107 cm/sec.

The wave exciter is at the opposite end of the plasma
from the hot plate which generates the plasma. Conventional
probe or grid16 excitation is not used for the following
reason. In order to create large amplitude electron density
perturbations in the plasma, the wave excitér must be able
to supply a significant amount of excess electrons into the
plasma. .This is the idea suggested by the method employed
in the experiment2 on ion-acoustic wave shocks. In that
case, the wave exciter was actually an ion source. Two
types of wave exciters ("Type A" and "Type B") are used in
the present experiments. Type A, shown in Fig.l, consists
of a barium-oxide coated cathode, 5 cm in diameter, and a
mesh grid separated from the cathode by 5 mm. The grid is

directly connected to the waveguide and has the function



of extracting electrons from the cathode. The excitation
of a ramp wave, which is used for observing the wave
steepening, is accomplished as follows. First, the elec-
tron injection is inhibited by biasing the cathode at the
plasma potential. Then at t =0, a negative ramp potential
is applied to the cathode and the electrons, which give
rise to the electron density perturbation are injected into
the plasﬁa. Both the amplitude of the ramp potential ¢ex
and its rise time tr can be varied. The Type B exciter is
simply a conducting cylinder which has the same diameter as
that of the waveguide and is 50 cm in length. The cylinder
is filled by the plasma as well as the waveguide where we
observe the shocks. Applying a negative potential ¢ex to
the cylinder causes the plasma electrons contained in it

to be injected into the plasma.

The wave potential is detected with a wire probe which
is connected to a high input resistance circuit16 which
responds in a frequency range from 0.1 MHz to 100 MHz.
Since this is a capacitive input impedance circuit, we can
measure the absolute amplitude of the wave potential ¢.

We estimate the thickness of the sheath around the probe

to be 4KD}7

§3. Experimental Results

3.1 Small-Amplitude Wave

Before describing the shock wave results, we first
examine the features of the small-amplitude wave. Figure

2 shows the spatial wave response at a fixed time due to a



1 V step excitation. The rise time of the step is much
shorter than Zﬂ/mpe. The plots are obtained by sampling
the wave potential signal from the probe at a fixed time t,
while sweeping the probe position axially. The repetition
frequency of the step voltage is typically 100 kHz. A wave
train results behind the wave front. The wavelength,

(10 ~ 20)k:l, of the wave train expands as it propagates,
proportional to tl/3.

The velocity of the wave front, 1.9 x 108 cm/sec, is
much faster than the electron thermal velocity, 2.6 x lO7
cm/sec, therefore Landau damping is not observable. Inter-
ferometer measurements of the small amplitude monochromatic
waves show that the above velocity of the front agrees with
the phase velocity of the wave when w << wpe. The wave
amplitude e¢/mu§ (uO = wpe/k*) is about 0.04. If the
plasma density is reduced, the wave velocity decreases and
the wave trains disappear as the velocity approaches the
electron thermal velocity; i.e., they suffer Landau damping.
No higher radial nor azimuthal modes are observable under
the present experimental conditions. Using either type of

wave exciter does not make a significant difference in the

features of the small-amplitude waves.

3.2 Steepening

Figure 3(a) shows the nature of the compressional-wave
propagation due to the applied potential ramp shown in the
bottom trace. The excess electrons are injected by the

Type A exciter. The negative potential corresponds to a



compressional wave because of the negative sign of the elec-
tron charge. As’the wave propagates, it steepens and is
followed by a wave train with a frequency v 0.5 wpe. A
small precursor can be seen in front of the shock. The
amplitude of the precursor is found to become smaller when
the wave amplitude becomes smaller, or when the plasma
density increases such that the shock velocity becomes
faster. The experiment in the lower density plasma shows
that no wave train results. Large-amplitude sinusoidal
waves are also observed to steepen as shown in Fig.3(b).

The possibility of spurious effects due to the stream-
ing electrons from the cathode is checked in the following
way. When the plasma is turned off and only electrons are
injected from the cathode into the vacﬁum by the step
potential (top trace in Fig.4) applied to the cathode, the
leading edge of the streaming electrons is observed to
spread as it travels (see second trace). If the plasma is
turned on, then the shock wave forms. As the plasma density
is increased, the shock-wave velocity increases (see bottom
trace). Since the velocity of the streaming electrons
leaving the wave exciter is fixed, this dependence of the
shock velocity on the plasma density excludes the possibil-
ity of steepening due to bunching of the streaming elec-
trons. These observations also show that the precursor
consists partially of the electrons from the wave exciter
freely streaming into the plasma.

All experimental observations show that the compres-

sional waves steepen in a time
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within an error of 30% provided the ramp rise time tr > w;i.

Here, ¢max is the maximum potential amplitude of the wave.
The derivation of Eqg.(l) will be given in the next section.
The type B exciter generates both the compressional
and the rarefaction waves. If a negative ramp is applied
to the cylinder, the compressional wave is launched into
the wavegqguide and propagates away from the boundary between
the waveguide and the cylinder, and the rarefaction wave
propagates in the cylinder. Since the cylinder is essen-
tially a waveguide, the application of the positive ramp
generates a wave of opposite polarity. It is observed that
the compressional waves excited by the Type B exciter
steepen into shock waves and show essentially the same

behavior as those launched by Type A. The rarefaction

waves are found to spread rather than steepen.

3.3 Structure of the Shocks

The structure of the shock depends primarily on its
amplitude. For small amplitudes, a slow wave train appears
as already noted in Fig.2. Fig.5(a) shows the spatial wave
response at a fixed time (= 0.5 pus) due to a step excita-
tion with the Type A exciter. As the excitation amplitude
is increased, the shock front shifts to the right (i.e.,
the Mach number increases) and the period of the wave train

shortens. 1In contrast to the case of very small amplitude



waves, the period of the wave trains behind the larger
amplitude shock does not change very much during their
propagation. The wave number of the wave train k and the
Mach number M(:= u/uo) are plotted in Fig.6 as a function

of the maximum amplitude of the shock, ¢max' Here, u is
the shock velocity. The values of k plotted in this figure
are obtained from the separation between the first two
peaks when t = 0.35 us. Since the period of the wave train
increases as it propagates when the amplitude is small, the
values of k are smaller than those plotted in Fig.6 if we
use the data obtained at larger t.

The properties described above are observed when ¢ex
is not very large. Let us return to Fig.5(a). Increasing
¢ex eliminates the wave train and increases the amplitude
of the precursor, and finally the wave jumps up behind the
shock front when ¢ex exceeds mu§/2e [= 14 V in the case of
Fig.5(a)]. The observation of the propagation direction
shows that this jump is not due to any interference with
the wave reflected from the control grid. Behind the
potential jump, noise grows, presumably due to an electron
two-stream instability. In the small-amplitude range where
the shock with its wave train is formed, the amplitude of
the shock ¢max is proportional to the excitation potential
¢ .. After ¢ reaches the value at which the wave train

ex ex

disappears, ¢max saturates.
When ¢ex applied to the Type B exciter is not very
large, there is no difference in the shock structure from

that produced by the Type A exciter. The potential jump



is also created when ¢ex exceeds mug/Ze [= 8.3 V in the

case of Fig.5(b)]. However, in contrast with the shock
excited by the Type A exciter, the potential jump is fol-
lowed by a large amplitude and long wavelength oscillations,
and no random noise grows. It should also be noted that

the wave train behind the shock does not vanish. No shock

wave is observed when ¢ex exceeds 33 V [= 2mu§/e] in
Fig.5(b). The upper critical Mach number is observed to
be 1.25.

The oscillations behind the potential jump may be more
easily observed temporarily. Fig.7 shows their growth,
parameterized by the axial distance from the exciter. At
small distances, only a single potential hump is seen.

As the shock propagates, the interval between the shock
front and the potential jump lenghthens and the number of
oscillations increases. The amplitude of the oscillation
is about the same as that of the shock front. We observe
that two oscillations would occasionally coalesce into a

single, longer-period oscillation.

3.4 Comparison to the Grid Excitation

In closing this section, we compare the difference
between the conventional grid or probe excitation method
and the method used in these experiments. As reported in
Ref.16, the grid or the probe does not generate a shock
wave which has a DC potential jump, even for a step excita-
tion. The same result is confirmed in the present experi-

ment. This is due to the fact that the probe or the grid



can not supply electrons continuously into the plasma
because it is not an electron source. On the other hand,
the exciters which we have used here can be electron sources
and can therefore launch waves which have the same waveform
of the wave potential as that of the applied potential

signal.

§4. Analysis and Discussions

It has been shown that the evolution of small but

13,14

finite amplitude Trivelpiece-Gould waves is described

by the Kortweg-deVries equation~l~ (see Appendix).
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+ 1In the derivation of the Kortweg-deVries equation in
Ref.16, the radial mode is not treated properly. However,
the final expression is correct as long as the coupling
between the different radial modes is neglected.
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4.1 Small-Amplitude Wave

We first analyze the structure of the small-amplitude
wave. We solve Eq.(2), neglecting the nonlinear term and

setting the initial condition to be

% § <0

Wi(v,g)= (3)
0 . 5 >0
at T = 0. We Fourier transform Eq.(2) in £ and Laplace
transform it in 1. After some simple calculations, the
inverse transforms give us
. L0
L}/(T)%)‘: i;-/_:l‘J ’ A. (x)dXx ; (4.)
§/(c/ay?
where Ai is the Airy function. Equation (4) agrees with
the solution of the linearized piston problem for ion-
acoustic waves].'8 The plot of Yy as a function of z with t
as a parameter agrees well with the waveform shown in Fig.2.

T,1/3 _

Since Yy is a function of 5/(7) (k,2 - wpet)/(% wpet)l/3

the period of the wave train increases proportionally with
tl/3. Equation (2) contains only the lowest-order disper-
sion effects. 1Its solution does not completely describe
the waveform far behind the wave front where the large
wavenumber components determine the wave's shape. However,

such large wavenumber components are quickly Landau damped.

Therefore the solution of the fluid equation does not apply.

4.2 Steepening Time

The second term of Eg.(2) accounts for wave steepening.

- 11 -



A gentle initial potential profile such that the third
term of Eq.(2) may be neglected will be considered. We
analyze the steepening by employing the characteristics

defined by

O(% . 3X L// (5-)

dT 2.
It is assumed that a negative potential ramp at t = 0 is
applied to the wave exciter at z = 0. The ramp rises until
a time tr and excites a wave with a maximum amplitude _¢ma

X

Two characteristics can be drawn in the T - & plane. One

of them starts from T £ = 0 with a slope d&¢/dt = 0, and
the other starts from 1 = -§ = wpetr with a slope dg/dt =
(3a/2) %

_ 2 -
where wma =e ¢ ax/muo‘ As shown by the line

X X m

(a) in Fig.8, one characteristic crosses the other and
leads to a potential discontinuity. The steepening time

is calculated as

Jf:=(_2;.._rr.\.!.§_-r-1)t ~ muf + (6)
S 3X e Puax P —%x r.

If a positive ramp is applied, then the two characteristics
separate from each other and lead to a spreading of the
wave (line (b)). The dependence of t, on ¢max indicated in
Eg. (6) is confirmed quantitatively in the experiments.
However, once the wave steepens, the wave dispersion effect
limits the steepening and the sharp potential discontinuity
does not appear. This fact introduces the main source of

experimental error when we measure ts.

- 12 -



4.3 Mach Number and Wave Train

We compare the observed dependence of the Mach number
M (= u/uo) and the wave number of the wave train k on the
shock amplitude with the prediction of the stationary-state
solution of Eq.(2). Although Eq.(2) does not have a shock
wave solution, dissipation or electron reflection will re-

sult in shock formation%gm21 We define a new variable

1= %5-AMc, (1)

and assume Yy is a function of n. After integration by n,

Eq.(2) is reduced to

_ o2 |
(4 + Uy)=0 (%)
¢
where

- TS C i3
U= —-aMyp? - 3 y°

We have assumed dztp/dn2 = 0 when Yy = 0. The function U has
a minimum at wo = -4AM/3a and Yy changes following the
pseudo-potential U, At n = », Y starts from ¢y = 0 and

goes negative. If there is no dissipation, then Eq. (8)
leads to a solitary wave. However, the breaking of charge
neutrality due to electron reflection introduces oscilla-
tions of Yy around wo. We calculate the oscillation period
which corresponds to k. Expanding U about its minimum, we
obtain a harmonic-oscillator equation, from which k is

estimated to be

_13-



R..L mul
- (25 )

Eq. (8) also gives the relation

X e?’max )
MAMM=M-1=5 — (10)
M 2 mur
. . I £
A calculation employing a better approximation leads to a

slightly improved relation

e 11
MAM =) = o S ()
The solid curves in Fig.6 calculated from (9) and (11l) both
fit the experimental points reasonably well. When e¢max
exceeds 0.4 mug, the wave train disappears and significant
number of reflected and transmitted electrons are observed.
Therefore, the above analysis which neglects wave-particle

interactions would not be applicable in this high-amplitude

limit.

4.4 Strong Shocks

When the amplitude of the potential ¢ex applied to the
wave exciter is greater than mu§/2e, the following behavior
of the shock is observed: (i) A large potential jump ap-
pears behind the shock. This potential jump is not a
higher-order perpendicular mode since its velocity is slower
in the higher density plasma. (ii) The amplitude of the

potential jump increases with ¢ex' (iii) Large-amplitude

- 14 -



oscillations of frequency w

/(2 - 3) follow the potential
pe

jump. The amplitude of the oscillations is about the same
as that of the shock. (iv) No shock wave is observed when
¢ex exceeds ~ 2mu§/e.

No analytical interpretation has been attempted so far.
We find, however, great similarities between the waveforms
observed in the present experiment (Fig.7) and those ob-
tained in the numerical simulation by Sakanaka:.Ll He has
treated the ion-acoustic shocks, in which the dynamics of
the ions dominate the evolution of the wave and the elec-
trons shield the ion space charge. In the present electron
wave, the space charge resulting from the electron pertur-
bation is shielded by the surface charge induced on the
surrounding metallic waveguide. Therefore we may employ
the results obtained for the ion-acoustic waves if we make
the following transformations: wpi > wpe’ kD + k,, and
ion-acoustic velocity - Uy e The difference between the two
cases is that the computation is carried out in one-dimension
whereas the waves in the waveguide is three-dimensional.

The initial condition in Sakanaka's numerical analysis
is as follows: The ions have a two-component distirbution;
one component is uniform background ions; the other is a
uniform "beam" which occupies only the left half-space with
a positive flow velocity. He has observed that a region
where the ions are accumulated grows and expands in space
and large-amplitude oscillations develop behind it. The
pictures of the ion distribution in phase space show that

the oscillations consist of vortices. Numerical work by

- 15 -



Kamimura22 has shown that two vortices coalesce to form one
vortex.

The large-amplitude excitation potential in our ex-
periments injects an electron-beam into the plasma. If we
follow the evolution of the electron distribution instead
of the ions, the behavior of the wave shown in Fig.7 is
thought to be essentially the same as that described in
the above numerical works. Indeed, the observed potential
amplitude of the oscillations is sufficiently large for the

trapping of the electron-beam.

§5. Conclusions

An electron plasma wave in a bounded collisionless
plasma is observed to steepen and to form a shock wave with
a trailing wave train. When the amplitude of the shock is
small, the solution of the linearized piston problem quali-
tatively accounts for the wave form. As the wave amplitude
increases, the Mach number increases and the wavelength of
the wave train decreases. An analysis based on the
Kortweg-deVries equation describes the dependence of the
wavenumber of the train and the Mach number on the shock
amplitude. When a very large excitation potential is
applied to the wave exciter, the amplitude of the precursor
increases and a potential jump followed by large-amplitude
oscillations grows. The amplitude of the oscillations is
sufficiently large to trap electrons injected from the wave
exciter. Comparison with a numerical work suggests that

the oscillations form vortices in phase space.

- 16 -
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APPENDIX

In this appendix we will derive the Kortweg-deVries
equation for the electron plasma wave propagating in a
cylindrical waveguide. We assume the plasma is uniform
in the waveguide. We consider the case when very strong
axial magnetic field is applied to the plasma, so that the
electrons can move only axial direction (z-direction). We
also assume Te = 0 and start from the fluid equations:

Vv V _ e % _ .-

5‘F+V"az ™ 52 Y

2N .
ST+ 2

Vi + 34

(nv) =0 , (A1)

Here v is the axial electron fluid velocity, n the electron
density, ¢ the potential. Ions are treated as an uniform
background and their density is n,.

First, we linearize (Al) and obtain an equation for

the potential

2. 3 % 2 % 4
(VJ‘-JF az?—) S€T =T “pe %ZZ ) (A2)

Separating variables

¢= L) exp[i(kz-wt)] (43)
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(A2) is written as
[(\7.12" kl) Wt W;vi K ] jc (r,B) =0, (AL/~)

The solution of (A4) may be expanded by the eigen functions

as
, (b
{ir,6)= Z Y Tn (kg 1) €

E%JWRMWE)c (A5)

The waveguide sets ¢ = 0 at r = a, so that
T Cknn 0) =10, | (A6 )

Once radial wavenumber kmn is determined by (A6), the linear

dispersion relation is known from (A4).

Now let us derive approximate nonlinear equation for

¢. For simplicity we rewrite variables as follows:

n e g vV 5
’nuﬂ’n / m(%’.&g'lﬁ P (Wpe /Rot )

[5]9]
ko2 2, and Wt — T (A7)

Then a set of equations (Al) is written as

PV L2V 29
F+V3E -5 =0 |
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N3

M ., . 3V an_ _ -
3¢ T NSz V455 =0 (A%)

The normarizations (A7) indicate that we are interested in
the fundamental perpendicular mode which corresponds to koo'
Following the method employed by Washimi and Taniuti:,L8 we

introduce new coordinate.system (£, 1) which is defined by

the transformation:

3 i
T=€ "t , ond $=¢€* (z-ut) (A9)

wehre € is a small parametér of the order of magnitude of

the wave amplitude. In the new coordinate system, (A8) is

V 3\/ 2¢
€3¢~ "5 35 — 9

We expand v, n and ¢ as

h= 1+ éZR N+ €23 Ry NS+

.
o mn
L1

- i1
\/:er‘z—v’mem\/mn‘*e Z-R u) - A

b = e Z R n¢mn vz Rmn¢w+--~

mn
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Substituting (All) into (Al0) and collecting terms of order

€, we have

(1) ) ) (1)
Z Rmn ()\/mn Z R al’\mn :__Z Rmn 2 (AIZ)
m 2

Winn 3% mn 3% mn U;ﬂ
where
— Ree Ai3)
Upo = 2= (
mn
Using the condition néi) = véi) = 0 where ¢éi) = 0, we
integrate (Al2) and obtain
-1 W ) o, =2 (1)
um‘ﬂ \/mn = nmn = LA'rmr\ CPmY\ , (AI‘#)
The equations of the order €2 are
1) (2) U)
mn - M 3T mn 9% M'Y\' m n' -3% mn
(2) -
3 Pma \ _ .
e U,
- 1 ~n 2 lz) Apie
('1)
+ S (1) . )
Mn )
LnR ( Ny + '“" Vi )J

L2
_ Rama 4% | 324) (2)
%n Rm“ ( R:: CPmn T Bgm >= mzﬁ Rinn mn
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Now we concentrate to the behavior of the fundamental
radial mode, namely m = n = 0., In order to obtain the
equation for ¢ o’ Ve multiply R . to all equations and

integrate over the cross-section of the wave guide,

Le., L]ﬂrj de |

0
o \
v e s Wy sl N
3T °5 PR P T3y T 3y T Y
(1)
N 1 N :9\/,,(0”+ z_.X w av%
5T " 3% 7% % 35 L (g
—|— U} ong )
1)
Y B (2)~ | \2) J
252 To T Nga
where p = (m, n), g = (m', n') and

a 27
Y = [Drdrh)de Rm>Rmn’%mM’
° 14

As Manheimer discussed,  the walue of Y(o o) (0,0) is much
’

(A7)

larger than any other y. Therefore we neglect coupling to
the higher-order perpendicular modes. With the aid of
(Al4), we obtain

9.){1) REE 94,() 1 83 (U_ .
2T 2 Teo ag Tz D%B’ D (f')

where o = Y(o,o)(o,o)'
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FIGURE CAPTIONS

Fig.l. Experimental setup. Wave exciters are shown
schematically at the bottom.

Fig.2. Spatial élot of wave potential with time after the
small voltage step ¢ex as a parameter. Type A
exciter is used. ¢ex = -1V, and n = 9,0 x 105
cm” 3,

Fig.3. Plot of wave potential versus time with distance
as a parameter, excited by ramp signal (a) and by
sinusoidal signal (b). The wave potential signals
in this figure and also Fig.s 4 and 7 are delayed
by 0.05 us in the cables from the pulse oscillator
to the wave exciter and from the receiver probe
to the scope.

Fig.4. Effect of streaming electrons from the Type A
exciter on the shock at different plasma densities,
observed at z = 100 cm.

Fig.5. Spatial plot of the wave potential with amplitude
of the excitation step as a parameter. (a) Type A
exciter is employed. n = 1.2 x 10’ cm_3, mu§/2e
= 14 V. The time t is fixed at 0.5 us after the
step. (b) Type B exciter is employed. n = 7.2
x 10° cm-3, mug/Ze = 8,3V, and t = 0.6 us.

Fig.6. Dependence of wave number of the wave train at t =
0.35 us, and Mach number on shock amplitude. n =

1.7 x 107 em™3,
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