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Abstract

A new analytic expression is obtained in a differential
form for nonadiabatic change of magnetic moment u of a charged
particle in an inhomogeneous magnetic field. The expression
gives a picture easier to be understood than the past. The

results agree well with numerical calculations which were

made previously.



§1. Introduction

Motion of a charged particle in an inhomogeneous magnetic
field has been investigated by many authorsl’z). Most of
them focussed fheir interests on the behavior of the magnetic
moment of charged particle. The magnetic moment of a charged
particle is an adiabatic invariant, but it is not an absolute
one and changes when the particle moves through a non-uniform
magnetic field region. The change of magnetic moment is
closely connected with the motion of plasma particles and
the particle effusion process in a cusped magnetic field
as in the Divertor plasma source3). Many authors have
reported that the change of magnetic momet depends on the
phase angle of gyration of the particle at the midplane of
the nonadiabatic region. It seems, however, that the
conclusion does not correspond to a picture easy to be
understood. Previously, we have made a numerical calcula-
tion to trace the motion of a particle in a cusped magnetic
field, and got the same conclusion as M. Rusbridge about
the size of the scattering center of nonadiabatic zero
field region.

Besides our numerical calculation on this problem, we
made some analysis from another stand point, and have got
a more clear picture than the past about the change of
magnetic moment. Starting from the equation of motion of

a charged particle and obtaining its solution in the vicinity

of a point where the particle initially was, we have got an



expression of magnetic moment change in a differential form.
Averaging (or integrating) this result, we have got a final
result and a picture of the process which is very easy to
be understood. This result agrees well with our numerical

calculations.

§2. Analysis

Suppose that a charged particle is travelling in an
inhomogeneous magnetic field. To trace the orbit of the
particle, we expand the magnetic field around a point P,

where the particle was at time T = 0, as

> > > >

B(¥) = B, + “Ciju-r, (1)
where ¥ is the position vector and

Ciy = 7%, (2)

is the field gradient matrix element. Among nine elements

of the C matrix, we have only one relation as

Cii =0, (3)

which is equivalent to



div B = 0. (4)

Choosing z-axis parallel with B. and x-axis parallel

0
with the principal normal of the magnetic line of force as
in Fig.l, we follow the particle orbit with an initial veloc-

ity as
v(0) = (v.(0)cos®, v.(0)sin6, v, (0)). (5)
The equation of motion is
dv > 2 (6)

maT=erB,

where e and m are the electric charge and the mass of the

particle. Setting ;(T) in a form of powér series in T as

T = 37 + BT2 4 eeens (7)
and
T(T) = V(T) = a + 2BT + +eeee, (8)

we can determine the coefficients a and b from Eq. (6), i.e.,

a=v(0), b = gﬁ v(0) x

oy

0* (9)

Now, we set a time 71, which represents a changing time

scale of magnetic field as seen from the travelling particle,



i.e.,

t = (ol /ey ol s ™5 o, 1o

where the notation ( ’ )max means the larger value of
the two values in the bracket. If T is infinitesimally
smaller than 1, it will be good enough to take only the
first degree term in T and neglect all the higher order
terms in the expression of T and V. Then

r=v(0)T, v = v(0) + %3(0) x B.T. (11)

0

The magnetic moment u of the particle is defined as

U= TBT, (12)

where E; is the kinetic energy of the particle corresponding
to the perpendicular component of the particle velocity

v
Ex = 53

(13)
and B is the field strength at the position of the particle.
It must be noticed that B is the field strength at the
particle position and not at the point where the guiding
center lies. But these two definitions of y do not show

any difference in a uniform magnetic field, and do not

show any confusion in the final conclusion.



To express VE(T) in terms of the quantities at T = 0,

we write vE(T) as

> > 2
vim) = vim - vim = vim - WELBMI gy,

B

Then, we substitute v(%) and E(T) by the quantities given in

Egs. (1) and (11). Taking only the 0-th and l-st order terms

in T, we obtain for vf(T) as

2
2 2 Vu(o) vl(o)cljvj(o) - Vn(o)czjvj(o)
vi(T) = vi(0){1 - 2 T}
+ + VE(O) B(0)v, (0)
(15)
Finally, from Egs.(l), (10) and (11), we get u(T) as a
function of T, which is
nv2 (T)
2v2 (0) v2(0) v, (0)C;.v.(0) = v,(0)C, . (0)
= {1 - 2 1 1J J Z7 T}
2[B(T) ] v,12,(0) B(0) v, (0)
(16)
2 2
_ mv,_ (0) . [231 vlCijvJ V"CZJVJ
2|B(0)| V2 Bv,
al
V,,CZ.Vj
+ Bv, ]T=O T},

or



V" 2

ed - ———— L] [ ] 3 2
S = -u(0)T{ 5 (CXx 2cos“8 + ny 2sin“6 + sz)

2vy

+ —g—(cx + ny)cose'51n6

Yy

ZV%

+ Bve [(CXz + 2sz)cose + (Cyz + ZCZy)81n6 (17)

V.L
- g (C,,c086 + Czyslne)}T=0

for the change of magnetic moment.

As mentioned before, Egs.(16) and (17) dominate only if

T is small enough to fulfil the condition
T << T. (18)
After a time Tl(T1 << 1), when the particle is at a point

T

T = J v(t)dt, (19)
0

we shift our coordinate system to that point with the three

axes set just as before, that is, z-axis parallel with §(T)

and x-axis parallel with the principal normal of the magnetic

line of force. 1In such a new coordinate system, we can

expect that the change of the matrix elements Cij will be

the minimum (Fig.2).

Putting a new time scale as



T - T, —> T, (20)

we can get just the same expression as Eq. (17) for the
magnetic moment change S§u of the particle, except the phase
angle 6. The change of 6 is due partly to the gyrating
motion of the particle and partly to the rotation of the
coordinate system. Therefore, e' the new phase angle can
be expressed as

6 =086 + (wc + wl)T 6 + Q(O)Tl, (21)

1 =
where We and w, are angular velocities corresponding to

the gyration motion of the particle and the rotation of the
coordinate system respectively. wyTq is the angle between
two xX-z planes of two coordinate systems. In most cases,

w_, is much larger than Wy and Q is nearly equal to Wey s

C

mc(O) + wl(O) = Q(0) = wc(O). (22)

Repeating the same procedure, we obtain the magnetic
moment change Gui during the time interval of i-th compu-
tation stage as

vll 2

— — —— . 2 L] 7
Gui = u(Ti){B [C,, "2cos 6, + ny 2sin®6; + C, ]



2v,
+ 5 [(Cx + C x) cos6i31nei]

Y Y
2v%
+ gv [(Cy, + 2C, )cosb, (23)
+ (Cyz + ZCZy)31n6i]
Vi

_ﬁ—(czxcosei + Czysn.nei)}T___Ti-ti = f(Ti,ei)ti,

where Ti is the time when the i-th computation stage starts,
and ti and ei are the time interval of each stage and the

initial phase angle in each stage respectively, i.e.,

To =0 (24)

i .
+j£og(Tj)tj = 60 + w(Ti)Ti,

@
il

i~ 9

where w(Ti) is the average value of Q, as
w(Ti) = = Q(t)dt. (25)

Therefore, the overall change of u can be obtained
1
with a satisfactory accuracy by summing up all Gui s, which

is



Ay = Zdui = Zf(Ti,Gi)ATi. (26)
i i

In integral form it can be written as

T
Ay = j £f(t,0)ds
0
JT Vo (£)
= - 0“(t)[§TET“{(Cxx‘t) = Cyy (t))cos28
+ (ny(t) + ny(t))sinze} (27)
ZV%(t)
+ §TET$TET{(sz(t) + ZCZX(t))cose +
(Cyz(t) + 2czy(t))sin6}
v, (t)
- m—{czx(t)cose + Czysine}]dt
where,

0(t) = 6,5 + Q(B)t, (28)

Now Eq.(27) can approximatedly be evaluated by keeping
in view the following considerations:
(1) The rate of change of 6(t) with time is much larger
than the change in other factors as u, B, v, and v,.
(2) Cij(T)'s are closely related to the field inhomogeniety
and can be considered as leading factors in the
nonadiabatic process of particle motion.

(3) The quantities u, B, v, and v, are subordinate factors,
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are definitely constant when Cij(T) = 0 as given by
Eg. (1) and are less dependent on T as compared with
]
Cij(T) s.
With these considerations, we are justified in assuming yu,

B, v, and v, as constantsand finally get

V"
Au = _“[ﬁ—{(cxx - ny)2c + (ny + ny)Zs}
ZVE
+ Bv;{(cxz + ZCzx)lc + (Cyz + zczy)ls} (29)
VJ_
"5 1(Ch) 10 ¥ (Czy)ls}]’
where ( )15. ( )lc' ( )25 and ( )2c are as follows:
e T
( )ls = 0( )ysinf (t)dt,
T
( )lc = JO( )cosO(t)dt, (30)
(T
( )og = JO( )sin20(t)dt,
¢T
( )2c = JO( Ycos26 (t)dt.
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§3. Discussions and Summary

In general, the particle starts in a uniform magnetic
field region and after passing through an inhomogeneous
field region reaches another uniform region with some change
of u. In such a case, the Cij's of the magnetic field
experienced by the particle 'in travelling along its way
are zero both at initial and final stages but not zero at
the intermediate stage.

In Fig.3, a typical curve of Cij is shown. The region

where Cij is markedly different from zero corresponds to the

inhomogeneous field region. At the same time, the integral

T
'J Ci.dt (31)

corresponds roughly to the change in field intensity between
initial and final positions.

Therefore, it can be said that the sharpness of Cij
and the total area in Cij—t plane correspond to the inhomo-
geniety of the field and the overall change in field inten-
sity respectively. The integral given in Eq. (30) can have

a value other than zero only when Cij is sharp enough to

fulfil the condition
t_ <, (32)

where tS is a half value width of Cij(T). In other words,
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with a definition of inhomogeneous field region to be a
region where Cij takes a value more than the half of its
peak value, the change in u can occur only when the diameter
of inhomogeneous field region is not larger than the helical
pitch of the particle orbit.

The conclusion from Egs. (17) and (29) are summarized

in the following:

(1) In the case of both the initial and the final positions
of the particle in uniform regions, the net change of yu
is closely connected with the first and second component
of the Fourier series of Cij(T) expanded with the funda-
mental frequency of @, where Cij(T) is the field
gradient matrix element as seen from the travelling
particle.

(2) The nonadiabatic process occurs only when the helical
pitch of the particle orbit is comparable or larger
than the diameter of the inhomogeneous field region.

(3) When a particle is travelling in an inhomogeneous
field region, u of the particle oscillates with a
frequency nearly equal to Q.

(4) The change of u largely depends on the phase angle of
the gyrating motion of the particle at the midpoint

of the inhomogeneous field region.

We made some computations to investigate the behavior
of charged particles in a line cusped magnetic field using

FACOM-230-60 and 230-35 digital computers in Nagoya University
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Computer Center. The magnetic field is given as

B, = + Ax,

B. = + Ay, 33
v A% (33)
Bz=0,

where A is a constant. The zero field line coincides with
z-axis, and separatrices are x-z and y-z planes. The details
of these comutations have been reported elsewhere4).

Among these computations, we picked up some data con-
cerning the magnetic moment change of the particle. We
calculated VE/B instead of u, where v_ is the perpendicular
velocity component of the particle and B is the magnetic
field strength at the particle position. In Figs.4 and 5,
typical behaviors of VE/B are plotted as a function of t.

At the same time, corresponding particle trajectories are
shown in the same figures.

As expected from Eqg. (29), VE/B or U oscillates in
time with a frequency of about Q. At first, when the
particle is approaching the midpoint of the inhomogeneous
field region, the oscillation amplitude of u goes up and
takes its maximum value at the midpoint of the inhomogeneous
field region keeping its average value constant. After
the passage of the midpoint, the curve of u follows after

another oscillating curve being smoothly connected at the
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midpoint, but being different in its average. After that,

as the particle moves away from the midpoint, the oscillation
amplitude goes down and u approaches a value different from
the initial one. Notice, at the same time, that the curve
sometimes shows some distortions, which means that the
oscillation contains the second order higher harmonics.

This will be easily deduced from Eq. (29). From these curve
shown in Figs.4 and 5, it is clear that u is strongly depen-
dent on the gyration phase angle of the particle at the

midpoint of the inhomogeneous field region.
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Figure Captions

Fig.l. Coordinate system with the z-axis parallel with B
and x-axis parallel with the principal normal of line
of force.

Fig.2. Relation between two succesive coordinate systems.

Fig.3. Typical curve of field gradient matrix Cij‘

Fig.4. Magnetic moment p as a function of t (a) and corres-
ponding particle orbit (b). The magnetic field is
as given in Eq. (33) with A = 0.5 Wb/m3, and the initial
conditions of the particle are ?(0) = (10 cm, 1 cm,
0), B/P = (0, 0.5, 0.87) and P = 48 keV/c which
corresponds to an energy of 0.3 eV for He ion.

Fig.5. Magnetic moment p as a function of t and corresponding
particle orbit ((a) and (b)). The field parameter
and the initial conditions of the particle are all

the same except for B/P = (-0.7, -0.7, 0).
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Fig. 1
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