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Abstract

Solutions describing stationary one-dimensional propa-
gation of coupled nonlinear electron plasma wave and non-
linear ion acoustic wave are obtained. They have the
amplitudes linearly proportional to each other, and propa-
gate with approximately the ion-acoustic velocity in the
form of periodic wave-trains, including solitary waves

as special case.



Nonlinear stationary propagation of plasma waves has
been investigated extensively in recent yearsl_4. One=
dimensional propagation of small but finite amplitude
ion-acoustic wave in a collisionless cold-ion plasma is
described by a Korteweg-deVries equations, and the theo-
retical prediction of steepening and soliton formation
has been confirmed by experiments6. 2. long wavelength
electron plasma wave obeys a nonlinear Schrddinger equation7.
Its stationary solutions in one-dimensional case include
envelope-soliton, periodic wave-train and finite-amplitude
plane wave. The latter is subject to a modulational
instability under certain conditions.

In this paper, we present some special solutions which
describe coupled stationary propagation of one-dimensional,
nonlinear electron-wave and nonlinear ion-wave. The basic
equations are the Schrodinger equation for the electron-wave
with a potential proportional to the ion-density perturba-
tion and the cold-ion fluid equations for the ion-wave
supplemented by the electron pressure balance equation.

Our solutions have the form of periodic wave-trains,
including solitary waves as special cases, and have the
following properties; i) both electron and ion waves move
with a group velocity very close to the ion-acoustic
velocity CS, and ii) the amplitudes of the two waves are
proportional to each other.

Our solution appears to be of particular importance

in the nonlinear stage of parametric instabilities by an



electron plasma wave acting as the pump. In general, a
finite amplitude electron plasma wave always induces an

ion density perturbation by the ponderomotive force, but

if the group velocity of the pump wave is not very close

to Cgr the induced ion perturbation is very small, being

of second order in the pump amplitude. On the other hand,
if it is close to CS and ions are sufficiently cold, the
induced ion perturbation moves resonantly with the pump
modulation and is thereby strongly enhanced, becqming of
first order in the pump amplitude and hence nonlinear.

Our solution can be regarded as describing such a situation.
It corresponds to the one-dimensional scattering process
modified by the nonlinear ion response. As a consequence
of this nonlinear effect, the process can occur even in

the overdense region, in contrast to the linear decay process
which is restricted to the underdense region.

Basic equations The following equation gives the adequate

description of one-dimensional propagation of a small but

finite amplitude, long wavelength electron plasma wave7:
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where Ugr Vg wpe’ no and Sne are respectively the fluid
velocity, thermal velocity, plasma frequency, average
density and low-fregquency density perturbation of the

electron. We write
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dimensional variables, ue/ve, A/wpe and Gne/no, simply

by Ge, A and 6ne. Equation (1) then becomes
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As will be shown later, 6ne depends only on the
amplitude of ﬁe and not on its phase. Then, if He = w(x,t)
is a solution of (2), any function produced by the following
transformation is also a solution:
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where V, x, and 6 are arbitrary parameters. Keeping this

in mind, we look for a stationary solution, w(g), which

satisfies
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where £ = x—xO—Vt and we put Gne = v(£) which is also assumed

to be stationary.

For low-frequency perturbation, we can neglect the



electron inertia, obtaining from the electron equation
of motion
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where ¢ is the low-frequency potential measured in the
unit of T/e, T being the electron temperature and -e the
electron charge. The left-hand side describes the
ponderomotive force. We combine this equation with the

ion equations of continuity and motion:
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and the Poisson equation
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where 82 is the electron-to-ion mass ratio, Bni the ion
density perturbation normalized by n, and u, the ion fluid
velocity normalized by CS = ev,. Ion temperature is
neglected in (7). Since we are interested in the stationary
solution moving withvvelocity V, we can replace 3/3t by
éva/ag and 3/3x by 3/35.

If we make the linear approximation, we get from (6)

and (7),



sn, = e, /V = 6 /v . (9)

If in addition we assume the local charge neutrality,
6ne = Sni, we get from (5) and (9)
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Substitution of (10) into (2) yields the usual nonlinear
Schrodinger equation for the long wavelength electron wave.
It is modulationally unstable when the group velocity is
subsonic (i.e. V < g).

The linear approximation breaks down if V is very close
to €. In order to derive an appropriate nonlinear equation,
we differentiate (8) with respect to & and add the result
to the sum of (7) and ¢/V times (6). Using (5) and

keeping the terms up to the second order in Sne, one obtains
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This equation contains only small terms, either nonlinear

or linear with higher derivative or small coefficient

(1 - Vz/sz). One can therefore use the linear relations

(9) as well as the local charge neutrality, Gne = Gni = v(§).

Also, V/e may be replaced by unity except for the term"

(V - €). Egquation (ll1) can then be reduced to the form
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where we replaced luel by |w|“, A is the excess Mach
number, X = (V -¢)/e, and W the integration constant.

Equations (4) and (12) are our basic equations.
Solutions We expect the solution for which |w| and |v|
are of comparable order. It is then natural to assume the

form
lwlz = a + bv + cv®. (13)

Equation (12) with (13) has a general solution expressible
in terms of Jacobi's elliptic function cn(ag;k):8
2
Vo= vyt A cn” (ag;k), (14)
where L is determined by the condition that the spatial
average of v should wvanish:
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K(k) being the complete elliptic integral of first kind.
The other constants are to be determined such that the
coefficient in each power of cnz(ag;k) vanishes in (12).
There are three such relations.

Our next procedure is to separate w into the amplitude



and phase by writing w .Rl/zelw; since v, as a solution of

(13), is a function of R only, one can easily find two

integrals of (4) as

R dy/dg = M = Const. (le6)
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Substituting (14) into (13) and then into (17) gives an
algebraic equation for cnz(ag;k) in fifth power. Setting
the coefficient in each power equal to zero, wé get six
relations, of which only five are found to be independent.
For given value of A, there are twelve independent
paraﬁeters, a, b, ¢, A, o, k, A, W, M, E, XO and 8 or
Y(& = 0). Of these, we can determine only eight parameters,
four being left free to choose.

Particularly simple solutions are obtained in the

case M = 0, i.e. dy/dE = 0. 1In this case, we find a solu-

tion in the form

w = B cn(o&; k) sn(a&; k) (18)
with
A = -18k%a2, B = (432)%/2k242,
v
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k2 - 1= [(vy - 20)v, + WI/2842,

A+ vy = 202 (1 + 4k?).

Clearly, |A| and |B| are of the same order, so are |w]
and |v|. The general form of (14) and (18) describes a

periodic wave-train with three parameters, W, x, and 9,

0
being left free to choose. 1In the special case in which
2

k™ = 1, the period of the wave-train becomes infinite and

the solution is reduced to a solitary wave. In this case,

K » « and hence Vg 0, so that W must be zero. The explicit -

form of the solution is

2
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w(€) = (192)1/24 sech((-24/3)1/2¢1 tann((-20/3)% %] .
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Since A has to be negative, this solution can exist only

in the overdense region (wo < wpe)' The density perturba-

tion v(g) is negative, implying a density depletion, but is

of the same order as lw(g) . The excess Mach number )\ is
negative, i.e. subsonic, and is given by 20A/3. Whereas
the ion-density perturbation is symmetric around £ = 0,

the electron wave is antisymmetric and shows a phase jump

at £ = 0. For given A, the only free parameters are the



initial position X and the initial phase 6, all the other
parameters being uniquely determined by A.

Let us finally discuss the effect of Landau damping.
First, the ion Landau damping due to a finite ion temperature
prevents a sharp resonance at V = C_ /v_ = €, A (= |V - €])
becoming at least of order vi/ws, where vi and w, are the
damping rate and the frequency of the ion-acoustic wave.

On the other hand, a large ion-density perturbation (of
order |v| ~ |w|) predicted by the present theory assumes
|A\] to be of order |w| or less; otherwise, |v| becomes much
smaller being of order |w|2. This implies that in the case
|w| acts as a Pump the ion Landau damping brings in a
‘threshold (|w| > v,/w,) for the occurrence of a large
ion-density perturbation. Secondly, the Landau damping

of the electron-wave will cut down the large wavenumber
components and thereby tends to smooth the perturbation.
Finally, a large ion-density perturbation will benefit

the ion heating as compared with the usual parametric
instabilities where only electrons are selectively heatedg.
However, this ion heating will eventually destroy the

present solution by increasing the threshold.
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