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The number of charged particles which are trapped by an
accelerated wave in a plasma is calculated on the basis of a

simple model. It is assumed that particles move adiabatically

in travelling mirrors of the form B(z) = By{l + ecos k(z -
vph(l + % nt)t)} and that the initial velocity distribution

is an isotropic Maxwellian. The ratio of the number of

trapped particles to the total particle number is found to be
R = (/8/m) el/2c7A f(y) for e << 1,

where A = mvp;/2T, y = ZnA/Ekah and f£(y) is a monotonically
decreasing function of y (f(0) = 1). The function f(y) is
presented in a graph as well as a table. As an application
of the formula, an estimation is made on the required RF
power for sustaining the plasma current in Golovin's model

of the Tokamak fusion reactor.



§1. Introduction

1)

In a previous papaer ', we discussed the induction of
electron current by a train of travelling magnetic mirrors
of the form B(z) = By + chos k(z - vpht) and its applica-
tion to the current sustaining in a Tokamak2m6). It was
shown there that the current is induced mainly through a
deformation of velocity distribution due to trapping of elec-
trons. Since the induced current is of the order 83/2(5
% BW/Bo << 1), while the number of trapped electrons is of
the order el/2, it is expected that the increasing of the
phase velocity is very effective for the induction of
current, provided that a significant fraction of trapped

7) that

electrons remains trapped. It is also suggested
a similar idea may be applied to the production of an ion
beam, which may be used in place of the injected ion beam
in a fusion reactor proposed by Dawson et alg).

In order to estimate the effectiveness of this method
for these applications, it is essential to investigate how
many particles remain trapped, when the phase velocity of
the travelling wave increases gradually. In this paper, we
derive an expression for the ratio of the number of trapped
particles to the total number. When € << 1, this expression
can be reduced to a simple formula, in which the effect of
the increasing phase velocity is represented by a multiplying
factor.

We present a simple model in §2. The essential assumptions

are that the motion of the charged particles is adiabatic and



one-dimensional, and that the initial velocity distribution

is an isotropic Maxwellian. In §3 we derive the condition for
a particleito be trapped. 1In §4 the ratio of the number of
trapped particles to the total number is calculated and an
asymptotic expression in the limit of small ¢ is obtained.
Some remarks are given in §5. A tentative estimation is

made in §6 on the required RF power for sustaining the plasma

current in Golovin's model of the Tokamak fusion reactor?)

§2. The Basic Model

As in a previous paperl), a plasma in cylindrical vessel

is considered. The plasma is immersed in a steady, strong
magnetic field B, in the axial direction. The magnetic
field is so strong that each charged particle is frozen to
a certain magnetic line of force.

A coil is wound on the wall of the vessel and a current
starts to flow at t = 0. The current density in the coil is
assumed to be

j(r, t) = I sinlkz - w(l + %nt)t]é(r - Rye, (2.1)

in the laboratory system, where the cylindrical coordinates
are used and ey is the unit vector in the 6 direction.
This surface current induces an electromagnetic field in the

plasma. The z component of the magnetic field on a magnetic

line of force is approximately expressed-in the form



B (z, t) = By + B sinlkz - w(l + eyt (2.2)
Equation (2.2) implies a train of magnetic mirrors, which

travels in the z direction with the velocity
v = (w/k) (1 + nt) = vph(l + nt) , (2.3)

that is, with an acceleration nvph, where vph is the initial
phase velocity.

Let us move to the "wave frame", in which the surface
current (2.1) looks as a steady current and the magnetic

field (2.2) is a train of standing mirrors:
Bz(z) = B, + BW cos(kz) . (2.4)

Since the wave frame is accelerated by nv a particle in

ph’
this frame will find itself in an additional force field

—mnvph, where m is the mass of the particle. Accordingly,
the equation of motion for the particle in the wave frame will

be

- uee B (2) (2.5)

m—2 = - mnv
0z

ph

where we have assumed the adiabatic behaviour of the particle

so that the magnetic moment

2
mv,

uo= - (2.6)
2Bz(z)



is a constant of motion.

Finally, the initial Qelocity distribution of particles
is assumed to be Maxwellian in the laboratory system.
Accordingly, that is a shifted Maxwellian distribution in

the wave frame at t = 0:
- m y3/2 - m 2 2
fol(v) = n(27TT / expf{ 2T[V; + (vz + vph) 1} . (2.7)
Collisions among the particles are neglected.

§3. The Condition for a Particle to Be Trapped

We consider the motion of charged particle, which is
governed by eq. (2.5). Let us specify the initial state of
the particle as

2 =20, Vy =V, ,V_ =V at t =0 , (3.1)
and assume that

0 <zo <2m/k . (3.2)

The equation of motion (2.5) has the energy integral

l 2 _ .
'i' Vz + (D(Z) = C ’ (3.3)

where the effective potential &(z) is given by



d(z) = nv z + (qu/m) cos kz . (3.4)

ph

The constants C and u are expressed in terms of the initial

values of variables as

_ 1 2
C = 5 Vo, + d(zy) , (3.5)
and
1
fmvlﬁ
o= . (3.6)

By, + B.. cos kz,
\

For the particle to be trapped, the potential ¢(z) must
have a trough. The condition for the existence of a poten-
tial trough is easily found to be

i

nvph <y Bwk/m . (3.7)

When this condition is satisfied, the potential ®(z) has a

maximum at Zy and a minimum at zZ for which relations

z. < z and kz, + kz_ =1 hold. The second condition for
M m M m

this particle to be trapped is that the "energy" C must be

smaller than the potential maximum:
C < @(ZM) . (3.8)

The final condition is that the particle.must lie initially

in the trough of the potential:



Zg > Z, . (3.9)

The conditions (3.7), (3.8) and (3.9) are seen as well
sufficient as necessary for a particle to be trapped.

Now, we will express these conditions explicitly in
terms of the initial values of variables (3.1). Introducing

dimensionless parameters
e = BW/BO and ¢ = n/we, (3.10)
we transform the condition (3.7) into

v,2 > 2cr(1 + ¢ cos kzo)véh . (3.11)

When this condition is satisfied, we can define zy as a root

of the equation

. _ 2
sin k zy = 2( 1 +¢€ cos kZO)(Vph/Vlo) (3.12)

under the condition 0 < kzM < m/2 . Then the condition (3.8)

is rewritten as

2
2 oo Tao ( k kzo) - 2cv2, (kzo-kz,)}
v cos kz,. - cos kz,) - v zo-kz
20 1 + ecos kz, M ph M
(3.13)
Finally, if we define z, as the root of the equation
9(z,) = d(z.) L < kz, < 2n (3.14)
2 M° ! 2 L ! :



the condition for z, is more explicitly written as

(3.15)
(see Fig.l)

§4. The Ratio of Number of Trapped Particles

Let us consider a group of particles, whose velocity
distribution function is given by eq.(2.7) at t = 0 in the
wave frame. Then the ratio of the number of particles, which
are trapped by the wave (2.4), to the total number is given
by

R = %% i% JdZOJ £, (vo)dve

where the limits of integrations are to Dbe determined from
the conditions (3.11), (3.13) and (3.15). Analysing these
conditions, we get an explicit expression for the limits of

integrations (see Appendix):

2m/k - v
R = k(%) 3/2 J dZQJ V-'-odv-l-o J' zoc dVZO
0 Vioe -v
zZoC
x exp (- zml(v  + Vo) o+ Vit (4.2)

where

1 +ecos kzg _»
\Y

(4.3)

2

Viog

sin kz
Mc



and

’ (T (cos k kzo)-22v2, (kzo-kz,, )}
= ¢ cos kz . - cos kz,)-2¢v Zg-kz ’
zoc 1l +ecos kz, Me ph Me
(4.4)
kch being a root of the equation
cos kch - cos kz, = (kz, - kch)51n kch (4.5)

subject to the condition 0 < kz < m/2

Mc
We are interested in the behavior of R in the limit
€ << 1. We assume that ¢ is a quantity of the order 1.

Then we can derive the following, asymptotic expression for

R:

R = (/8/m)el/2o72 f(y) (4.6)
where
_ 2 - _2 2 ‘
A = (m/2T)vph = Vph /vth , (4.7)
y = 2¢a , | (4.8)

and f(y) is a monotonically decreasing function of y.

Explicitly, the function f(y) is given by

% 2w ¢ (6)
£y} = 3/ 2 ] a6 J C' g4 [COS$ - cosb_ 0 +¢]1/2
y/8m 0 0 sing
. cos ¢ _ y
X ;;;;—; exp ( STn ¢) R (4.9)



where ¢C(6) is a value of ¢, which makes the square root in
the integrand to vanish and satisfies the condition 0<¢c(6)
< /2.

It is not difficult to show that

lim f£(y) =1 (4.10)
y->0
and
£(y) = 0.9351 y /*e¥ fory >> 1, - (4.11)
where
"0.9351" = —=— {-1-T(3) + /3T CR (4.12)
27/%  2/7

I'(x) being the gamma function. The equation (4.10) implies
that f(y) represents the rate of reduction of R when the
acceleration of the phase velocity presents. Since we are
interested in the case where y is of the order 1, f(y) is
computed numerically and the result is presented in Fig.2
and Table 1. The reduction seems to be tolerable if y < 1,

but to be formidable if y >> 1.

§5. Remarks

1. The argument of the reduction factor f(y) in eq. (4.6)

can be rewritten as follows

- 10 -



. .nv
- 1 2m ph

Yy = 2CA = — - — - . (5.1)
mE k vth vth

This expression can be interpreted as

y = 1 _increase of phase velocity in 6t (5.2)

mEe
Veh

where §t = 2ﬂ/(kvth) is the time interval in which a particle
with the thermal velocity traverses one wavelength. Consequently,
the acceleration of the wave must be so slow that the velocity
increase (in the unit of Vth) in §t is at most of.the order
<of € in order that the reduction of R is tolerable.
2. 1In a toroidal configuration, there are usually static
mirrors along a magnetic line of force, whose mirror ratio
RM satisfies the inequality e << RM = 1 << 1. These static
mirrors can hinder the traveling wave from trapping particles.
It can be shown, however, that this hindrance is not serious.
The reason is as follows. While the velocity component ratio
(vW/v,) of a trapped particle is very small in the wave frame
(s O (81/2)), the corresponding value in the laboratory
system is of the order 1 in general, because the particle
travels with almost the same velocity as the phase velocity
of the wave. Consequently, a weak mirror (RM - 1 << 1) gives
only a small disturbance on the motion of the particle.

A preliminary computer experiment was made to show that
this hindrance is in fact not serious. A result is shown in
Fig.3. 1In this experiment we followed the motion of particles

in the magnetic field of the form



B_(z,t) = Bo{l + e sinlkz-o (1+3nt) t] + e sin(kgz +0)1, (5.3)

€g = (RM - 1)/(RM + 1) being the relative amplitude of the
static mirror to the uniform field, and counted the number of
trapped particles. Initial distribution is assumed to be
uniform along the z axis and isotropic Maxwellian in the
velocity space. In this figure we see that the effect of

the static mirror is only to bring the reduction of R by a
factor 3 even if ss/e is so large as 15.

3. A small change of v, can make a particle to siip out of
trapping, because & is very small. Accordingly, the effec-
tive loss frequency for a trapped particle is probably much
larger than the conventional collision frequency for momentum

transfer. Cautious treatments will be required, especially

for the application to the ion beam production.

§6. Current Sustaining of Tokamak

As an example of the application, an estimation is made
on the required RF power for sustaining the plasma current
in a Tokamak.

Flectrons constituting the current in a Tokamak lose
their momentum through collisions with ions. The amount of

loss of momentum is given by

A = nem v Vv _. (6.1)



per unit volume and unit time, where ng, is the number dehsity,
me is the electron mass, vV is the mean velocity of electrons
(v = - j/nee, J being the current density) and Veai is the
collision frequency of an electron with ions.

We shall supply the same amount of momentum by accelerating
a number of electrons. Then we have

n,m th/Gt = A (6.2)

t
where ng is the number of accelerated electrons aﬁd 6vt/6t
is the increase of velocity in unit time.

The acceleration of electrons is achieved by trapping
them in the troughs of travelling magnetic mirrors with
increasing phase velocity. Using the travelling mirrors
specified by eq. (2.2), we have

6vt/6t = nv (6.3)

th °

The ratio of the number of trapped particles is given by eq.

(4.6). Substituting these expressions into eqg. (6.2), we
have
v Yei _ VB 3/5.1/2 -A
— == = Y2 3/2p1/24 ¢ f(2Ar7) (6.4)
Vip W i

This equation gives a relation among the parameters of the

RF wave, which we need to supply.

In Golovin's Tokamakg), n, = 3 x 10'% em™ 7, T, = 15 kev,

-

_]_3_



a (plasma radius) = 1.5 x 10° cm, I (plasma current) = 8.55
x 10° A, plasma volume V = 2.3 x 10° cm® and B, = 50 kG.

-1
Then Spitzer's formula gives vei = 8.9 x 10% sec , and the

mean velocity v is estimated to be 2.5 X 10% cm/s.

We shall give an example of the required RF wave. We

-2 . _
choose k = 1.0 x 10 cm , A = 0.01 (i.e. vph = 0.1 Vth)'

- -4
and ¢ = 1.0. Then we have w = 7.3 X 10° s 1, e =3 x 10

-1 .
(i.e. €Bg = 15 G), n = 2.2 x 10° s and the required power:

2 9
b o _(eB)?Ve  _ 1.5 x10° o A 6.5)

8mQ

0

where Q is the O-value of the coil system. This value of
the input power seems reasonably small in comparison with the
output power of Golovin's Tokamak (5GW).

The increasing of the frequency in this method implies
the need of repeated application of RF wave. It was

7)

suggested that we should have the same effect as the increas-
ing of the frequency by changing the wavelength (i.e. the

spacings between the coils).

§7. Summary

We have considered the motion of particles in a train
of an accelerated magnetic mirror (eq.(2.2)) and evaluated
the ratio of the number of trapped particles to the total
number. When ¢ = Bw/Bo is small, the expression for the

ratio is reduced to a simple one (eg.(4.6)) and the effect

- 14 -



of the acceleration is represented by a multiplying factor
f(y). The functional form of f(y) is presented in Fig.2 and
the physical meaning of the parameter y is given by eq. (5.2).
If this parameter is much larger than 1, the reduction of
trapping ratio due to the acceleration is formidable. As an
application, an estimation is made on the required RF power
for sustaining the plasma current in Golovin's model of the
Tokamak fusion reactor. The result (eq. (6.5)) gives a
reasonably samll value in comparison with the output power

of the‘reactor.

- 15 -
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Appendix Derivation of Egs. (4.2) and (4.5)

The limitSof integration in eq. (4.2) are obtained from
the following considerations. If we fix Zo, the quantity
kzM defined by eq.(3.12) approaches to 0 as v, > © , and
increases monotonically up to 7m/2 as v,, decreases. Accordingly,
when 0 < kzy, < 7/2, there is a critical value of v,,r at
which kzM is equal to kz,. The critical value Vioe is easily

found to be

_ l +ecos kgz 2
Vloé = 2z g Vph

(A.1)
sin kz,

which is a special case of eq.(4.3) for kz, < 7m/2. The con-

dition Zy < 2o in eq.(3.15) is equivalent to the condition

>
V-L() v-l-Oc'

In a similar way, we can show that sz defined by eq. (3.14)
approaches to 271 as Vi, > ©® and decreases monotonically down
to /2 as v,, decreases. Accordingly, when w/2 < kzy, < 2w,

there is a critical value of Vyor @t which kz is equal to

2

kzy,. The lower limit Viee is given by a root of the following

system of simultaneous equations, in which kch < m/2:

) —_ 2
sin kzMC 2z (1 + ¢ cos kZD)(Vph/Vloc) ’ (A.2)

2

v-l-()c

(cos kz,, - cos kz,)- zv2 (kz,- kz.. ) = 0 .
1 + ecos kz, Me ph Mc



This system of equations is easily reduced to egs.(4.3) and
(4.5). Then the condition zo < 2z, in eq.(3.15) is replaced

by the condition v, > Vioe:

The upper limit of Vzﬁ is easily found to be given by

eq. (4.4).

The asymptotic expression (4.6) is obtained as follows.

When ¢ << 1 and r ~ 0(l), the integration with respect to
Voo is eq. (4.2) .can be replaced by 2VZOC x {(integrand at Voo
= 0) in the lowest order in €. Then, introducing dimension-
less variables w = v_,_o/vph r W, = Vloc/vph’ 8 = kzy, OM =
_ — 2
kzM, eMc = kzMC and A mvph/ZT, we have
2m w0
R = 2(%) 372 { de J wdw [w? (cosoM—cose)—zc(e—oM)]1/?
0 w
c
x expl[-A(1 + w?)1el/? (A.4)
where
» — w2
sin OM 2z/ ,
2r/sin 0 for 0 < w/2
2 —
W { (A.5)
2c/51nOMC for w/2 < 0 < 2u

If in eq. (A.4) we take eM as the variable of integration in

place of w, we arrive at eq.(4.6).
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Fig.1l.

Fig.2.

Fig.3.

Figure Captions

The effective potential ¢(z), which a particle feels

in the wave frame.

The function f(y) which represents the rate of
reduction of the trapping efficiency R caused by the

acceleration of the phase velocity.

A result of a computer experiment showing the effect
of a periodic static mirror on the trapping

efficiency R. The abscissa €q represents the ratio
of the amplitude of the static mirror to the uniform

magnetic field.
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