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"Synopsis

The stability of the kink mode of a relativistic electron
beam propagating in a current carrving plasma is analysed.
The treatments follows after Lee. It is found that the

stability condition is more stringent than that of Kruskal

and Shafranov. An available rotational transform | must be
5% < [1 + 42n(a/a)]-l, where 4 and a are the radii of the metal

wall and the beam. The relativistic effect appears in the

characteristic oscillation.



§1. Introduction

In an approach to the problem of achieving controlled
thermonuclear reactions by using toroidal magnetic confine-
ment provided by the current carried by high energy electronsr
the low frequency hydromagnetic instability of relativistic
beam in plasmas is one of the immediate problems to be
clarified. Very recently, Leel)has analysed this type of
subject without taking into account of the plasma current.

In general both plasma current and the beam one can flow in
the equilibrium.

The purpose of the present paper is to investigate the
effect of the equilibrium plasma current to the stability
of the relativistic electron beam. Since the kink mode
limits the total current we treat only the mode. The back-
~ground cold, uniform plasma is assumed to be a perfect MHD
fluid in which the intense monoenergetic electron beam
propagates (See Figure). The basic equations are tabulated
in §2. 1In 83 we treat the equilibrium configuration with
an assumption that the electron beam energy is monochromatic.
In 84 the linearized basic equafions describing the cold
background plasma, the field and the electron beam are given
and these set of equations are applied to cvylindrical equili-
brium. In §5 we derive an ordinary differential equation from
the linearized equations for a general equilibrium by an aid
of an ordering scheme. Section 6 deals with the dispersion

relation for a certain equilibrium.



§2. Basic Eguations

The background cold plasma is assumed to be described by

the following set of equations:

.g.%+v-pﬁ= 0, (1)
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where p is the plasma mass density, u the plasma velocity
- - >

and J_ the plasma current density. The quantities E and B

are the electric field and the magnetic field respectively.

The intense relativistic electron beam is desribed by
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Tt + Venv = 0 , (5)

where m* and -e are the rest mass and the charge of electron,
respectively. The quantity v is the velocity of electron beam,

g
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equations are
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- g% + V7 and y = (1 - lz}z/Cz) / . The Maxwell's



st VxE=0, (6)
VxB=uo(J_ +J (7)
_uﬂ(p b)l
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and V'B =20, (8)
where Eb = - ne v and Ho is the magnetic permeability of

the wvacuum.

§3. Equilibrium State

In the equilibrium state the velocity of the background
plasma is assumed to be zero. And this state is described

by the following set of equations.

I x By =0 (9)
Do 0 - ’
v X ﬁ = 3 + 3 ’
0= Mo ( po T bo) (10)
- > > >
m*y, (vo-V)vy = —evy X By (11)
and
Venegve = 0 , (12)

where the suffix 0 represents the equilibrium quantities,



-1/2 :
Yo = (1 - |;o’2/02) / and J = - npe vy

From Eg. (9) we immediately have

J =aB, , (13)
Po
where o is a scalar function. If the beam energy is mono-

chromatic in the whole region the following additional condi-

tion must be satisfied.

|vo/c|? = ljb /ngec|? = const. = B2 . ‘ (14)

0

From Eqgs. (10), (13), and (14)

2202 ,.,2_ -1 = _ R 12

nge’g?c?= |y, 'Vx B, a By . (15)
It is apparent from Eq.(15) that the equilibrium density
profile of the relativistic electron beam is not uniform in

space. In the cylindrical geometry (r, 6, z) with go = (0,

Be(r), Bz(r)) these set of equations are reduced to a single

equation.
dB B dB
z , 20 d _om 1 (T 2
z dr r dr (rBe) 2 r [dr + 6B9] ! (16)
Nngoe Yo
where 6 = a L, and my, = m*y, .

For ease of analysis we assume that the guide field B,
is exactly uniform. This assumption is possible only when

the equilibrium plasma current is taken into account.



Then Eq. (16) is further reduced to

d LY

where § = GCB/wZ , X =r/a , y = BG/B° A eBy/my,

ng = Ny%, and a is the radius of the beam, and B, is the

uniform guide field. The quantity N, is the density of

the relativistic electron beam at x = 0, which is defined by
No = & Bo?/(moc?B?u,) . (18)

The function f is defined by

2 _ 2 - Y 2
£ =y* + (1 = £ - (19)

In order to analytically proceed this investigation further

we define a small quantity € as follows. At x =1
y = & << 1. (20)

Then from Egs. (17) and (19) the function f is expanded as

a power series for y.
£=1- S8 Y4 g(e?). (21)

And the Eq. (17) reduces to



= (E- 1 Z+0(EY . (22)

When § 1is a constant the solution of Eq. (22) becomes
£ 0(e?). (23)

The components of the equilibrium beam velocity v60 and v,

0
can be written by

v60 = cBy/f
and
=SB _ cB y
Voo © f(1 w_a xf) : (24)

zZ

The equilibrium angular velocity of the beam around the

axis should be finite at x = 0. Hence, from Egs.(23) and (24)
£ > 2. | (25)

Outside of the beam there is a cold dense plasma in
which currents flow. Here the equilibrium is in the force

free state, which is described by

de B6 d
z @x T x ax (¥Bg) =0 . (26)



§4. Perturbed Equations
. > > > >
The quantities p , u, v, B, E
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where the suffix 0 and 1 denote the equilibrium and the

perturbed state respectively.

in the perturbed state are
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Then the governing equations

(28)
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(30)
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From LEgs. (13) and (28) we immediately have

¥
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And

=0 . (35)
Therefore the plasma velocity along the equilibrium line of
force remains zero, provided it vanishes initially. We
hereafter consider the case of G]'gg = 0. Hence, from Eq. (29)

u; = (ﬁ1 x Eo)/Bo2 . (29)"

It is convenient to introduce the vector potential A with

gauge chosen such that



> 3R
E, = - T (36)
Then from Egs. (29)', (31) and (34) we have
Bp x T =0 (37)
where
2R - —>
fz_.___po ____BA+~!'—VXVXK—0LVXA—J (38)
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Equation (37) is the governing equation of the perturbed
field, and the perturbed state of the relativistic beam in
the cold plasma is described by Egs. (32), (33) and (37).

In a cylindrical configuration, equilibrium quantities
are functions of the distance r from the axis of the cylinder.
Taking advantage of the symmetry of the undisturbed system

to Fourier-analyze the perturbed quantities we write

Ar = Ar(r, m, k)sinS ,

Ae = Ae(r, m, k)cosS ,

Az = Az(r, m, k)cosS ,

Vi = vr(r, m k)sinS ,

Vig = ve(r, m, k)cosS ,

Vi, = vz(r, m, k)cosS, (39)



and

n; = n(r, m, k)cosS,
where S = Ot + m6 + kz and m = *1 (we treat only the kink
mode). From Egs. (37), (38) and (39) we have
2
I = (X2 + k% - cCZ)Ar - g%(ﬁéﬁ + kA ) - 2mA 0
r r? A Y
mAz
- §(kAa6 - —) - Uonlr =0 (40)
and
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+ {’*f"** + 5(—‘;—“ + sz)}Ar - 6{—1:_— &(I‘Ae) + BZ "a—r—‘}
+ uo(JbleBz - JblzBe) =0 , (41)
2 2
where C. 2 = Do ang L = -4 4,14 _ (4 k?).
A HoPo dr? r dr r?

The r component Ir defines Ar in terms of A, and Az. It is

8]
apparent from Egs. (29) and (36) that

os )3

A =0 . (42)



This relation is useful to eliminate the variable Az from Egs.

(40) and (41). In the cylindrical system Eq. (42) is reduced to

AZ = -y A4 (43)
From Eg. (32) we have
e e cC dAe
FVr=D1Ve+D2VZ+m-—(-)-TAr"I—'n°O~g[D3Ae+DL, E{—] ’ (44)
'v. = DV, + — DA (45)
0 5'r o 79’
'v. = D,v_ - — DgA (46)
z "r my, g’
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cl 4
Ps = 2 x ax (XBg) = w, o
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D; = 2 F% *+ Y
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and

= - 2 Cp (W
Dg = (y + BB - vB, )9 + By (50 ).
eBe
The quantities A , Wg s Be and Bz are X = ka , Wy = Y.
VOe a _ VO
86 = 3 an BZ = “Ez .
The notation ' means
mfB
= c_9
=0 + =( — * AB,). (47)
The continuity equation is reduced to
n = (neh + v._ 989 /(ar) (48)
0 lr dx '
where
mv
1 4 B 19
h = -}-{-— a‘;{- (XVIr) ( X + A VIZ)
§5. Reduction to an Ordinary Differential Equation

To aid in the analysis we introduce an ordering in the
quantity €. It is found that the consistent scheme which is

suitable for the problem of the present interest is

B ’ B ’ ’(I‘)"— ~ O(l) ’
za

oa ‘A 1/2
<A ' o ~ 0(e )
A, Bg ~ 0(e) . (49)



Then dropping terms of order €? Egs. (40), (41), (44), (45),

(46) and (48) are reduced into a single differential equation.

In the beam (i.e. 0 < x < 1)

(-——A—)z dxdh 42 g(%?;) @y &
- [(%;QV - 24 £ (sa)
—a2<%;) ¢ SO+ Loas %1;—(1— 21 i=0, (50)
and out of the beam (i.e. 1 < x < d/a)

(E;)Z &‘ ) + IO >\)———(6a) =0, (51)
where Y = er and Yi = £§ + ;j; (m % + X). The quantity d

is the radius of the wall surface.
It is very difficult to proceed the analysis analytically for

the general & except for the case of £

Il

2 (critical equili-
brium). We limit ourselves, hereafter, to discuss only the
critical equilibrium. Then Egs. (50) and (51) are reduced

into simple differential equations. In the beam

aQ,, 4’y 1,.,a0, 4,922 dy
(CA) _—dxz + 'i[(-é;) + fﬁ(—é'é‘) (me + )\)]a‘;{‘
w_a
_ 2 _ z_ af-cf(me+ir) .Y _
[( ) 8¢ cBR af+cB (me+A) ] 2 0 (52)

X

and out of the beam

- 14 -



d day, -

a‘;{“ (x a‘;) =0 ’ : (53)
where the assumption is made for simplicity that §a is chosen
to be a step function so that the total current is continuous
at x = 1.

The differential equation (52) has the following two

solutions Y+ and Y_.

Y « exp[( + /D)anx] , : (54)
where
b:—l’...._t.__%.__.Q>O’
X2
- - 2
D=1 - 8Q_1'_ X Z 1 +4Q2 _L;L,;_g_)_ ,
X2 X+ 2 + 1 Xt
mag mA wza CA2
X=cger 277 amd Q0= -
& B3ec?

Since the plasma fills the metal cylinder to the wall Y should
* *

vanish at the wall surface x ='d , where d = d/a. And by

Eg. (53) the perturbed field is of the form

* *
Y, =C tn(x/d ) -, 1 <x<d , (55)

where C is a constant.

In the beam the solution becomes

Y, = C xb sin(/-D nx) + C, xb cos (VY=-D nx), (56)



where C) and C, are constants.

At x = 1 the following conditions should be satisfied.

l) Y0=Y ’

b
ii) e b
dx dx !
dy
.o d 1dy, _da 1%
iii) dx x dx dx x dx (57)

Then we obtain the dispersion relation
2 *
(D - b“)nd - 2b =0 - (58)

§6. Analysis of Dispersion Relation and Conclusions

The expansion of the dispersion relation (58), valid near

the zeros of X is

2 3 2 * *
X = - > Q(l + 2)° 4nd /(4%nd + 1 + Z) . (59)

This relation is sufficient to discuss the low frequency kink
mode. The unstable wave numbers are associated with the
value of Z for which X? is negative. Hence, the stability

condition becomes

*
4 ¢nd + 1+ 272 <0 . (60)

- 16 -



In a torus the wave number k is estimated to be
_ 1
k = -z (61)

where R is the major radius of the torus. From Egs. (60)
and (61) we may conclude that the stability condition of
relativistic beam in the current carrying plasma is more
2) 3)

stringent than the one obtained by Kruskal and Shafranov?

An available rotational transform | must be

R 1

L
_ —e < *
2m ~ a 1 + 4 %nd

. (62)

The relativistic effect appears in the characteristic
oscillations.
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Figure Caption

Geometry.
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