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ABSTRACT

The theory of an r.f. plugging of a magnetically con-
fined plasma in an open-ended system is presented; it takes
explicit account of the collective effect brought about by
the dynamic screening action of the plasma. The theory'
predicts a maximum efficiency of the r.f. plugging at an
optimum frequency corresponding to a zero of the longitudinal
dielectric constant. The pPlugging efficiency is calculated
as a function of the plasma density, the strength of the r.f.
field, and the intensity of the magnetic field. These
theoretical predictions are compared with the experimental
observations, demonstrating a satisfactory agreement in
overall features. The results provide a useful scaling law
associated with the concept of the r.f. confinement. The
theory also offers an adequate explanation for the discrep-
ancy between the experimental values of the optimum fre-
quency and those predicted by a conventional theory based

on an individual-particle model.



I. INTRODUCTION

When an r.f. electric field is applied in a direction
perpendicular to a magnetic field, the combined effect of
the electric field and a spatial variation of the magnetic
field is such as to exert a force field on a charged particle
in the direction of decreasing magnetic field. According
to the calculation originally carried out by Dow and

Krechetli} this force may be expressed as

F = -V ¢ (1)

N

with a potential function defined by
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Here, g and m denote the electric charge and mass of the
particle involved; w, = gB/mc is the cyclotron frequency;
w and E are the frequency and the intensity of the exter-
nally applied r.f. field. Consoli and his collaborators2
attempted to use this concept for an acceleration of the
electrons.

The physical origin of the force (1) may be understood
in the following way: Consider a situation as described in
Fig.l; a charged particle is placed in a slowly converging
magnetic field and a uniform r.f. electric field is applied
to it. Associated with such a field configuration, a
component B, of the magnetic field perpendicular to the

magnetic axis arises; this field component coupled with a



perpendicular velocity component v, of the particle produces
a Lorentz force toward weéker magnetic field, an effect well
known as the mechanism of the magnetic-mirror reflection.

In the presence of the r.f. field, the perpendicular veloc-
ity and the Larmor radius r, of the particle will increase
and may diverge at a resonant condition. Since B, acting

on the particle is proportional to r,, the resulting force

should be enhanced accordingly; a calculation shows
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Equation (1) reduces to this expression when a uniform r.f.
field is assumed. “

A series of experimental investigations have been
carried out in the past several years to clarify such a
Plugging effect of the r.f. field on a plasma confined in
a cusped magnetic field§—9 In the course of these experi-
ments, however, there appeared phenomena which could not
be explained simply in terms of Eq. (1) . The physical
origin of such a discord may be traced to the collective
response of the plasma; in the experiment we are actually
treating a collection of charged particles in a plasma
state, while Eq. (1) is based on a consideration of the
behavior of a single particle in the r.f. field.

The purpose of the present paper is, therefore, to
develop a plasma theory of the r.f. Plugging with inclusion
of the collective effects inherent in the plasma. A number

of predictions are thus made on the detailed pProperties of



the r.f. plugging of the ions within a collective model.
These predictions are then compared with experimental
results, demonstrating thereby outstanding features of the

collective model.

II. FORMULATION OF THE THEORY

Consider a plasma in a slowly converging magentic
field; an r.f. field is applied to it through a pair of
parallel-plate electrodes. The dielectric shielding effect
of the plasma then acts to modify the electric field inside
it. Such an effect may be described with the aid of the
frequency and wave-vector dependent (longitudinal) dielec-

tric constant E(kj w) as
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§/ w) is the Fourier component of the vacuum r.f.

field Ee t) produced by the electrodes. 1In adopting

xtQa’
the expression (4), we are assuming that the major effect
of the plasma can be represented by its longitudinal
response; the effects of transverse response are not con-
sidered in this paper.

We begin with the equation of motion for a charged
particle in the system; we separate the perpendicular and

parallel components of the equation with respect to the

major direction of the magnetic field:
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Equation (5) describes the cyclotron motion of the particle
in the presence of the forced oscillatory electric field.
The retarding force acting on the particle may then be
determined from Eq.(6). The last term in Eq.(6)Arepresents
the effect of the parallel electric field produced by a
possible nonuniformity in the r.f. field along the magnetic
field. Such a nonuniformity is known to produce little
effectlO on the r.f. plugging under the present investiga-
tion; we shall henceforce ignore the last term of Eqg. (6) .
Integrations of Eq. (5) with respect to time formally

yieldll
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where EJto) and'xjto) denote the position and the velocity

of the partiéle at an initial time to; tensors involved in

Egs.(7) and (8) are defined so that
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The effects of the r.f. field on the cyclotron motidn of
the particle are contained in the last terms on the right-
hand sides of Egs.(7) and (8). These terms, in turn, depend

on the exact particle orbit r(t) in the presence of the
electric field.

The complex situation arising from such an interdepend-
ence of physical variables may be simplified in our calcula-
tion; we are interested in obtdining the expression of the
parallel force to the first order in |E]2 as in the case of
Eg. (1) . Hence, we may carry out perturbation-theoretical
expansion of Egs.(7) and (8) with respect to the electric-
field strength; we retain the terms up to the first order
in the expansion. The particle orbit entering the last
terms of Egs.(7) and (8) may thus be replaced by the un-

perturbed cyclotron orbit,

(7>
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Substituting Egs.(7) and (8) into Eg. (6) and carrying out

a time average, we obtain

R,

Fi = C ELtk X(Arﬁth',\z,@\:l.)]
s
+T[ LB X (AYE ‘Z’Bu )] (12)

~ A ~ ) R

where

VUVl th = ’\B’\(f‘to) 'r}fv(t") (13

Avin = (Vw) H (t-t) + Vit) (%)

o ¢ / / /

v = —-—5 dt B (t-t) - E[ R (th, t'] (15)

~tE m ¢ o~ v 9

AV = —-%—ft dt' H(t-1) - E[ Rty ] /6)
t, .

The separation into two physically distinct terms on the
right-hand side of Eq. (12) stems from the assumption that
there is a frequency mismatch, greater than the inverse of
the period of the field-particle interaction, between the

frequency w of the applied electric field and the cyclotron

frequency w,



ITII. DETAILED CALCULATION

In order to calculate Eg. (12) explicitly we now adopt
the configuration as shown in Fig.2. All the quantities
are uniform in the direction of the y-axis. The major
direction of the magnetic field is along the z-axis; the
magnetic lines of force may have small curvature on the
x-z plane.

A particle injected at z = 0 travels along a magnetic
line of force and experiences a retarding force under the
parallel electrodes. For the configuration of Fig.Z,

Eg. (12) can be written as
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where the relation div B = 0 is used. It is easy to cal-
culate Vy,th and Axth from Egs. (13) and (14); substitution

of these expressions into (17) yields the force

2
F . m () 2B
th 2 B J2.
where vf = ((V§)2 + (v;)z)l/2 is the initial speed of a

particle perpendicular to the z-axis. We employ the super-
script 0 to designate ap initial value of the corresponding
variable.

The retarding force arising from the r.f. field is

obtained in the same way by substituting Vy E and AxE in
14
Eg. (12). The unperturbed orbit Ro(t) in the integrands of
[a¥a v

Egs. (15) and (16) may be expressed as follows:
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Here, %, ¥, and 2 denote the unit vectors in the directions
of x-, y-, and z-axes, respectively.

We now single out a Fourier component of the electric
field EQ£; t) with a wave vector’&,= kxk + kzﬁ and a fre-

quency w in Eq.(3). Along the unperturbed orbit (18), we

then have
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Substituting (22) into (15) and (16), and executihg the

integration, we find that vy E and AxE are obtained as
’
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where n is a positive infinitesimal which ensures a causal
response of the system. Equations (23) and (24) represent
the linear response of vy and Ax to a monochromatic disturb-
ance with space-time variation exp{i(kxx + k,z - wt) };
relevant linear combination of these monochromatic variation
should then provide an actual behavior.

Substitution of Egs.(23) and (24) into Eqg. (17) gives
us the expression of the force as a function of the initial

(o] o]
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conditions of the particle, i.e., 2z, X + vy/wc, v

z! Vir
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and ¢ . We thus carry out an average over these initial

conditions. Let us denote such an average by a symbol < >.

(e}

Carrying out the average of v_Ax over zo, X+ v;/wc, and

¢O as well as the time average, we obtain
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Equation (25) still contains the initial condition for v,
in the arguments of the Bessel functions; it implies that

a particle with a large v, is sensitive to higher-harmonic
effect. The initial condition VZ is also involved in the
denominator of Eq. (25), describing the Doppler effect
arising from the parallel motion. Let us thus denote the
further average including these variables by a symbol << >>,
Assuming a Maxwellian distribution of the particles, we
carry out the average of Eq. (25) over vg and vg. We then
-substitute the result into Eq. (17), obtaining théreby the

final expression for the averaged value of the force as

dBg

L FE>> = jg—«?/gdx»

= ‘ 2
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and, we have suppressed the arguments of the functions

Iv(Z) and W(Cv).
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IV. RETARDING FORCE IN THE EXPERIMENTAL CONDITION
Equation (26) gives the expression for the force in

the presence of an electric field. To compare the theory
with our experimental results, we must take account of the
experimental conditions into the theoretical results. 1In
the experiment, an r.f. voltage is applied through a pair
of parallel-plate electrodes with width AL and separation d
(see Fig.2). The quantity E

(k kz, w) should thus be

ext "x'’
regarded as a Fourier component of the vacuum field created

k_ , w) takes on a

(ko K,

in this way. Consequently Eext
sizable magnitude when kX and kz satisfy the following

conditions:

%, = (24, +1)x/d (27

fy = (242t 1) X /ol (28)

where Ql and %2 are arbitrary integers. On the other hand,
in a bounded plasma as shown in Fig.3, the boundary condi-

tion specifies the wave number.kX to be
2
®y = (25€3 t 1) %7//A ’ (27

where h denotes the thickness of the plasma and 23 is an
arbitrary integer. We may then assume that the fundamental
mode carries the bulk of the field strength in a plasma; we

thus select the value of k_, and hence that of L+ satisfying



fx = %/ = (24,+1)7%/d o)

The component kz can take on various values in accord with
Eq.(28); since the field dissipation increases with kz,

however, we are again led to select the mode with 22 = 0:
ke = /AL (31)

‘A more accurate treatment pertaining to the eigeﬁmodes of
bounded plasmas has been made by Watanabe and HatoriJ:2
Here, however, we are contented with these simple approxima-
tions, which describe the experimental situation to a good
degree of accuracy.

With inclusion of the constraints (30) and (31), we

may express

|Em (ﬁl,ﬁ?,w)l = Z_?7t~3 E: { 5(w—0)rf) + 5(w+wyf )}

IR S (R k) } { e~ R) v 0 (e + ) |

(32)

where

E,,=VH./0( ) Ki=7/aL ?ano( K, = 7&//,,

In our experiments, AL >> h so that we assume k, >> k,.
Substituting Eq. (32) into Eq. (26) and executing integra-

tion, we obtain the force expressed in a form comparable

- 13 -



with our experiment:

2 \
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Here,
I.)} = Ip (Z) , 7 = Kj‘r/mwz ,
w,=w) , 3 = (w—»wc)/k"v; ,

and the r.f. frequency w_g applied through the electrodes
is simply denoted by w. In addition to Eq.(33), we need
an explicit expression for the longitudinal dielectric

constant, that 1is,

ECKy, Knyw) = —Zﬁ pw LT 2
Ly Kuy =1 \KZ(I+L7C > I,e W) G#)

“VT— V= ~00o

where

Ky = ¢xne’/T

Equation (34), depending on the density of the plasma,
describes the characteristic effects of the collective
phenomena in the plasma. The degree of approximation
involved in the derivation of Eq. (34) is the same as that

involved in Eq. (33).

- 14 -



In our experimental condition we may assume gvi >> 1
for the ions except in the very vicinity of w = Vw, ;. We
may thus carry out an asymptotic expansion of the dispersion

function involved in Eqg.(33). Then the expression is

simplified as follows:

K F>> =,7-"I-}32-F3’ (35)

where
22
‘ gmws B
4
wc -Z‘
- I, e
F2 {: i((A)*Vwc)l“&)i 2 v 27>
1
F, = (38>

| &k Ky, w) |?

The same approximation must be adopted in the expression of

e(k,, ku, w) in Eqg.(34); hence we have

kl - oo 2 2 Z
N PR We y b
b I,e ¢
= - Y
E(fﬂq Kn,“)) 1 2 K2 ‘§§Q° a72—~22ﬂkkﬁ~
2 Y= 400 .
V2 Kp ~Z

+ 2 x 3

2
1< .k“_ ?fﬁ Yy ==o0
In Eq.(39), we have neglected the shielding effect of the
electrons; the electrons may be viewed as being confined
in a thin layer with a thickness comparable to their Larmor
radii, and thereby regarded as producing no significant

effect in the main volume of our experiment.

- 15 -



It is clear that Eq. (2) may be derived as a special
case of Eqg.(35). The factor F3 reduces to 1 in the low
density limit; no dielectric screening effects exist there

and the vacuum field remains. When k, or T approaches zero,

we have Iv(z) = 6v o’ Kronecker's delta; Eq.(37) is then
14

written as F2 = wé/(mz - w§)2. Substitution of these ex-

pressions into Eqg. (35) yields Eg.(2). Thus we observe

that Eq.(35) is a correct generalization of Eqg.(2); both
the collective effect of the plasma and the finite Larmor-

radius effect are now taken into consideration.

V. OPTIMUM FREQUENCY
Equations (35)-(38) describe the frequency dependence

of the retarding force. The term Fl has the dimension of

2 and F3 are dimensionless quantities.

The functions F2 and F3 exhibit certain resonant structures

as functions of the r.f. frequency; we may thus define an

the force, while F

optimum frequency as that corresponding to a maximum value
of the force. In these connections, it is interesting to

know which of the two factors would actually be responsible
for the optimum frequency. It is clear from the derivation

of Eg.(35) that F2 is related to the force produced by

the vacuum r.f. field, while F, describes the dielectric

3
screening effects of the plasma. To elucidate this point
in detail, we carry out numerical computations of the

functions F2, F3, and the product F2-F3;

shown in Figs.4-6. The computational result of F, shown

the results are

in Fig.4 suggests that the force would be enhanced at the



cyclotron frequency and its harmonics. Appearance of
these harmonics represents finite Larmor-radius effects
taken into account in the present theory. Figure 5 shows

the numerical computation of e the real part of the

ll
dielectric constant. As long as the imaginary part of the
dielectric constant 52 remains small, we find that F3 would

be enhanced appreciably when w saﬁisfies €y = 0. We call
such a frequency the frequency of an eigen mode. An eigen
mode exists in each frequency span between two adjacent
cyclotron harmonics.

Thus an optimum frequency is expected at either a
cyclotron frequency or a frequency of the eigen mode.
However, Fig.5 also shows that € diverges at a cyciotron
frequency; F; vanishes there. The singularities of F, and

€, at the cyclotron frequency cancel each other; it is

thus expected that the product of F. and F exhibits no

2 3
singular behavior at the cyclotron frequency. Computational
result of F2~F3, shown in Fig.6, indeed substantiates such
an expecfation; enhancement of the force should thus take
place at the frequencies of the eigen modes. The critical
difference between this conclusion and that based on Eq. (2)
must be emphasized here; according to Eqg. (2) the optimum
frequency should take place at the cyclotron frequency.

Physically we may interpret the foregoing conclusion
in the folloiwng way: For a given amplitude of the r.f.
field, there is a tendency for an individual particle to
experience an enhanced displacement at the cyclotron fre-

quency. However such an enhanced response of the individual

- 17 -



particle also leads to a strong screening action of the
plasma as a collection of such individual particles; the
strength of the r.f. field inside the plasma is thereby
reduced substantially. No remarkable phenomena are thus
expected at the cyclotron frequency. On the other hand,
an extensive enhancement of the r.f. field takes place at
the frequency of an eigen mode determined from the equation,
€, = 0. Consequently, we may expect a drastic enhancemgnt
of the retarding force at such an optimum frequency.

Since €. is known as a function of w k,, as can be

1

seen from Eq. (39), € = 0 determines the dispersion rela-
tion of a collective mode in the plasma; the eguation con-
tains the density n and the magnetic field B as parémeters.
The wave number k, is fixed by the experimental boundary
condition; we thus obtain two sets of solutions for el(w;
n, B) = 0 fixing either n or B. Figure 7 shows such a
theoretical relation between the optimum frequency and the
plasma density. It is particularly significant to note
that the optimum frequency varies from the cyclotron fre-
guency to twice that value, as the plasma density increases.
Figure 8 shows a similar relation between the optimum
frequency and the magnetic field when the plasma density is
fixed. Again it is important to note that the optimum
frequency varies from the cyclotron frequency to twice that
value as the strength of the field decreases. Thus the

optimum frequency is expected somewhere between the cyclo-

tron frequency and its second harmonic.



VI. LOSS FACTOR

We may attempt to use this concept of an r.f. plugging
for a developmental study toward a thermonuclear reactor.
For such a purpose it is important to have an estimate on
the efficiency of such an r.f. plugging. Let us thus

define the loss factor a as

(loss flux when r.f. field is applied) (40)
r.f.

(loss flux when field 1s notapplied)

A good plugging efficiency is obtained when o is small.
Based on Eq. (1), one would conclude that a = 0 when

w = w_; an infinitely high potential barrier would prevent

a particle from escaping from the system. Hatori and

Watanabe13

modified the individual-particle theory by taking
into account a non-adiabatic behavior of charged particles.
In the modified theory they classified the particles, ac-
cording to the velocities, into two groups: adiabatic
particles and non-adiabatic ones. With assumption that all
the non-adiabatic particles would be lost from the system,
they obtained a finite loss faétor, consistent with experi-
mental results.

In our theory the singularity at the cyclotron frequency
has been removed by means of the dielectric screening action
of the plasma. A new resonance structure appears at a
frequency corresponding to the eigen mode of the plasma;
even at such a frequency the loss factor remains finite.

To calculate the loss factor, we integrate Eg. (35) along

the z-axis; a finite potential ¢ is thereby obtained. With



the aid of the Boltzmann statistics, the loss factor is

given by

¢
oL = exp (*‘—T——) . SEP

Equation (35) contains the local strength of the mag-
netic field through the cyclotron frequency W, - As a
particle moves along a magnetic line of force, the local
strength of the magnetic field changes; thus, W, is a func-
"tion of z. Introducing a nondimensional variéble X =

wc(z)/w, we rewrite Eq. (35) as

ZLEZ | pz ;r_z I, éz VB

F =" (42
g mw* 8,2 + & yow [(l—p:c)z—xzjz B , )
where we have from Eg. (39)
2 2 2
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&, = - 2 I, &
1 ! 2 -z ) (#3)
22 = 7Z‘/L Kf; k‘L
K2 Kk, (22):x
Db = o0 2 2
-2, k, (I-rx)
x 2, I, e e {“ z } 4
o oo v F 27 K" xz (5‘)
Since we are interested in a high-density case so that
kg/k2 >> 1, Eq.(43) may be simplified as
s o Ko x( I @ _ 2 I,(2) )G_Z (45)
| k2 | - X | -2 X
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The frequency of the eigen mode is then determined from the

solution of El = 0 as
x=x, = L*2L ($4)
21, +212

.

For a small Larmor radius so that z < 0.5 we have Il >> I,
consequently X approaches 1/2; the optimum frequency reduces
to twice the cyclotron frequency in this limit.

As we are particularly interested in the vicinity of

‘the optimum frequency, let us expand Eqs.(42)—(44) around

2
FE. v Fa -4 (47)
4mw* B 2‘2 + 222 N

(#2)
Ky 2%,(xo-2%) -2
£| = — I, e
K* U=X)((~-22%0) »
2 2
‘\/2 Kkp K -2 KZ(/-zxo)
= % : e e - d
£, = oxaon *p [ 7 o ] G0
>
L e” (50)
F, = ~
% (l-22) :
After some rearrangement, we have from Eq. (47)
< 2
F - Z’EZ VB [KD Zo 4Ie‘ZJ-‘2_
smw?* B K*= /- X0 ‘
Le?
x (Z‘z—o)z + 3‘2 (&N
. . 2 | 2
_ /o I, (I1-%X0) (=2 2%,) I‘..L("'Zz") (52)
o =7 L 2k, X3 (ZZ)‘/Z =rF [ 2 KiZ Xo ]
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Multiplying Eqg. (51) by (w/VwC) and integrating the result-
ing formula with respect'to x, we obtain an expression for
the potential as
2_2
4 E

N (/"zo)z
¢C%) = — (:)Z)

4m w* /6 27 1, e %

- z - X
« [ L 4 oten
S5 2 )

J (53)

The value of k, may be estimated from a measurement ofvthe
standing waves inside the sheet plasma. The average Larmor
radius p can also be obtained from an experimental determi-
nation of the ionic temperature. Hence, we may regard z as
a fixed value; in our experimental condition, we find z =
0.4 to be an appropriate value. With the aid of these
numerical considerations, we may simplify Eqg.(53) as

< 2

a/é% * [ 7c - X -2
2 ( LUPZ ) g [ 2 + Tax ‘“7}?‘—‘ ] (5%)

In the derivation of Eq. (54), we have ignored numerical
factors of order unity. Carrying out a similar simplifica-

tion, we find that the force F can be rewritten as

F(x) = — (55)

gmw* (22 )% + 52 B

FTE* | w2 J 7B
( WFz) é[‘

Equation (54) can be factored into four parts: The

first factor q2

E2/4mm2, having the dimension of a potential,
represents a canonical strength of the potential involved

in these problems. The second factor (wé/w;)z describes a



shiélding effect. An increase of plasma density results in
a decrease of the potential through wé, while the magnetic
field acts to increase the potential. The third factor 1/6,
being large in magnitude, acts to ensure the potential

large. The quantity § arises from the calculation of

§ = [ ;- ( = £ )-

2% (56)

Jx:xo

It is thus closely related to the dissipation in the plasma.
“In fact, 1/6 can be regarded as a Q-value when the rlasma
between the r.f. electrodes is looked upon as a resonance
. -1

cavity. The last factor, {n/2 + tan ~[(x - xo)/G]}, de-
scribes a- sharp rise of the potential as x passes the point
X =X .

o

Combining Eq. (54) with Eq. (41) we obtain the loss

factor as

oo o 05 G T ven 2]

(57)
Going over to the limit of x + =, we find the minimum value
of the loss factor as
2 2 2 2
o exp {-— LE (2) X} €5%)

Let Fref denote the flux reflected by this potential; it

can be calculated as

Fyef = X (D) ~ X (o) (67



In Fig.9, we depict schematic behavior of the force F, the
potential ¢ and the reflécted flux F_ g7 Eg. (1) is also de-
scribed by a dotted line.

We now wish to investigate the dependence of the loss
factor on the intensity of the r.f. field and the density
of the plasma. As Eq.(54) clearly indicates, the potential
is proportional to the square of the field strength and is
inversely proportional to the square of the plasma density.
Figure 10 illustrates dependence of the loss factor on the
field strength at a constant plasma density. Figure 11
shows the dependence of the loss factor on the plasma
density at a fixed field strength. Plugging efficiency
becomes worse with increase of the plasma aensity; én
increase of the r.f. field strength can then compensate
such a loss of plugging efficiency. Figure 12 shows the
relation between the plasma density and the r.f. field
strength to maintain a given value of the loss factor.
These overall features of the interdependence among the
physical parameters as demonstrated in the present study
may be useful in constructing é scaling law associated
with the concept of the r.f. confinement; one may attempt
to scale up the size of the experiment with the aid of

such a scaling law.

VII. COMPARISON WITH EXPERIMENTS

A. Optimum Frequency

Schematic diagram of the experiment is shown in Fig.13.

A helium plasma is produced by a plasma source of the TPD



type14 in one of the point cusps, and fed into the cusp

container through a hole of the anode along magnetic lines
of force. The density of the plasma ranges from 108 to

10ll em™3

at the center of the container; the temperatures
of the ions and electrons are almost the same and take on
values between ten and twenty eV. Injected particleé escape
from the container through the open ends of the two point
cusps and the line cusp, after several mirror reflections
in the volume and non-adiabatic scattering at the center.
The plasma forms a sheet at the line cusp, and its thickness
is of the order of a Larmor radius. We call it the "sheet
plasma". A pair of ring-shaped r.f. electrodes are set up,
sandwitching the sheet plasma. We apply an r.f. véltage to
the plasma through the electrodes; the loss flux of the ions
is detected by a multigrid-type electrostatic analyzer at
the end of the line cusp. 1In the presence of the r.f.
voltage, the decrease of the ion losses is thereby detected.
Figure 14 shows the observed loss factor as a function
of the r.f. frequency. The optimum frequency can be found
at £ = 1.9 MHz; this value is to be compared with the ion
cyclotron frequency which is about 1.1 MHz. On the other
hand, the optimum frequency calculated in the high-density
limit, Eq.(46), is 2:1 MHz; this value is in satisfactory
agreement with the experimental result. 1In ofder to de-
scribe the degree of plasma confinement achieved by the
mechanism of the r.f. plugging, let us introduce the ratio

B defined by



the plasma density at the center of the container)
when r.f. field is applied

the plasma density at the center of the container)
when r.f. field is not applied

(
(

The experimental values of B are also shown in Fig.l4. At
the optimum frequency where the loss of particles is mini-
mized, the corresponding increase of the plasma density is
observed.

When the magnetic field is varied, the optimum fre-
quency varies accordingly as shown in Fig.l1l5. The observed
variation of the optimum frequency as a function of the
magnetic field is then shown in Fig.l16. This result is to
be compared with the theoretical prediction of Fig.8; a
qualitative agreement is indicated. |

The optimum frequency is a function of the plsma
density when the magnetic field is fixed. The loss rate of
the particles is expected to be drastically minimized at a
certain value of the plasma density when the r.f. frequency
is kept constant. Let us call such a value the optimum
density; a theoretical calculation of this density as a
function of the frequency has been described in Fig.7.

In order to carry out an experiment pertaining to this
effect, we create a decaying plasma by stopping the plasma
injection; this can be done through short-circuiting the
voltage applied between the cathode and the anode of the
TPD type plasma source. The decay of the plasma density is
observed at the center of the container by means of a
double probe; the result is shown in Fig.l17. The smooth

decay curve in Fig.l17 illustrates the feature in the absence



of the r.f. field; the wavy curve around it describes the
change in the presence of.the r.f. field. Clearly we here
observe a suppressed rate of decay in the early stage.
Generally, however, the place where the minimization of the
decay rate takes place depends on the frequency. We may
read out the values of the decay rate -(1/n) (dn/dt) from
Fig.1l7; we may thus plot the decay rate versus the density
in Fig.18. The decay rate gives a measure of suppression of
particle losses achieved by the r.f. plugging; the optimum
‘density should thus correspond to minimum point &f the

curve in Fig.18. The optimum density determined in this

way is plotted in Fig.l19 as a function of the frequency of
the r.f. field; the qualitative features exhibit a femarkable

agreement with Fig.7.

B. Reflected Flux

Reflected flux is observed by means of a small multi-
grid-type analyzer, movable radially along the sheet plasma
in the line cusp as shown in Fig.20. Loss flux and re-
flected flux are shown in Fig.?l; enhancement of the re-
flected flux and decrease of the loss flux take place at
the same frequency. The spatial distribution of the re-
flected flux is revealed as one changes the position of
the analyzer; the result is shown in Fig.22. Again, the

main feature is consistently explained in terms of Fig.9.

C. Loss Factor

Equation (58) may provide a scaling law when the
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concept of the r.f. plugging is applied to a thermonuclear
device. A salient featuré of the prediction is that the
plugging becomes less effective when the plasma density is
increased; the plugging efficiency may be recovered as cone
increases the r.f. voltage applied to the plasma.

The dependence of the loss factor o on the r.f. field
and the plasma density is also investigated experimentally?’
Figure 23 shows the loss factor at the optimum frequency as
a function of the strength of the r.f. field. This result,
when it is compared with the theoretical calculation of

Fig.10, shows a good qualitative agreement. Empirical

relation between the loss factor and the r.f. field strength

may be expressed as o = exp(—AEX) with x = 1.4; this result
differs slightly from the theoretical value x = 2 in Eq. (58)
Recent study indicates that this difference could be ac-
counted for in terms of the effect of charge separation
created around the r.f. electrodes.

The density dependence of the loss factor is also
obtained experimentally. Density of the plasma is varied
from 1010 to 2 x 10t cm™3 by changing the discharge cur-
rent of the plasma source. Figure 24 illustrates such a
dependence of the loss factor; it can be compared satisfac-
torily with the theoretical result of Fig.ll. Parameters
in the figure represent the intensities of the r.f. field;
an improved loss factor is obtained through application of
an intense r.f. field.

Figure 25 shows the relation between the plamsa density

and the intensity of the r.f. field when the value of the

9



loss factor is kept constant; an empirical relation, E/n =
const. thereby obtained, is a result in fact predicted in

Eg. (58).

VIII. CONCLUSION

We have thus developed a theory of ther.f. plugging
with inclusion of the collective effects brought about by
the dynamic screening action of the plasma. The detailgd
features of the theoretical predictions are compared with
experimental results, demonstrating a satisfactory agree-

ment between them.
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FIGURE CAPTIONS

Fig.l. Mechanism of the r.f. plugging.

Fig.2. Coordinates.

Fig.3. The electrodes and the plasma.

Fig.4. Graph of F2; k, = 0.5, k, = 1.5, kD = 3.35, and
7 = 0.5 are assumed in the computation.

Fig.5. Graph of €q7 the computation is made with the same
condition as Fig.4.

Fig.6. Graph of F2-F3; the computationis made with the
same condition as Fig.4.

Fig.7. The optimum frequency versus the plasma density;

B = 1.4 kG, Te = 10 ev, and Z = 0.4 are assﬁmed

in the computation.

Fig.8. The optimum frequency versus the magnetic field;
Z = 0.4 and n = lO8 cm-3 are assumed in the com-
putation.

Fig.9. Schematic behavior of repelling force (a), potential

(b), and reflected flux (c); the dashed line repre-
sents the potential obtained from the individual=
particle model of Eq.(2).

Fig.1l0. Loss factor versus the r.f. field.

Fig.ll. Loss factor versus the plasma density; the param-

e2E2 1w

4mw2’T 6

Fig.1l2. The r=lation®between the plasma density and the

eter A =

r.f. field at a constant loss factor; B = 1400 G

is assumed.



Fig.1l3.

Fig.l4.

Fig.15.

Fig.le6.

Fig.1l7.

Fig.18.

Fig.19.

Fig.20.

Fig.21.

Fig.22.

Fig.23.

Fig.24.

Fig.25.

Schematic diagram of the experimental apparatus.
The frequency dépendence of o and B. The solid
line expresses a and the dotted line B.

The variation of the optimum frequency with the
magnetic field.

The optimum frequency versus the magnetié field.
The cyclotron frequency cannot be determined

uniquely since the magnetic field varies under

' the electrodes. The dashed regions in the figure

show the ranges resulting from such an uncertainty.
Decay curves of the plasma density at the center
of the container with the without the r.f. field
(see the text). The scele factor of the agscissa
is 100 usec/div.

Decay rate versusthe plasma density.

The optimum frequency versus the plasma density.
The shaded regions in the figure show uncertainty
in the cyclotron frequency.

Experimental setup for the measurement of the
spatial distribution of the reflected flux.
Reflected flux and loss flux as functions of the
frequency of the r.f. field.

Spatial distribution of the reflected flux.

Loss factor versus the r.f. field.

Loss factor versus the plasma density. Eo repre-
sents the strength of the r.f. field.

The relation between the plasma density and the

r.f. field at a constant loss factor.
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