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Abstract

With the use of rf electric fields, the heating of
the plasma and the improvement in the energy confinement
are studied for an open-ended toroidal quadrupole. After
analyzing loss mechanisms of the plasma and the heating
rate, both theoretically and numerically, some optimizations
have been made. The resultant heating and energy confinement
are exhibited in the computer experiments. The plasma can be
heated easily and the improvement in the energy containment

time ~ 10 % is obtained.



§1l. Introduction

Among the magnetic confinement systems of plasmas, the
open systems have been emphasized to have several advantages
over the closed ones. There is, however, an essential
disadvantage inherited to the open systems, that is, their
large end loss. In these situations, a number of trials have
been made in order to improve the energy confinement in an
open system. Applications of rf electromagnetic fields on
open—-ended plasmas have also been investigatedl_3) for the
purpose of the improvement in energy confinements, besides
the heating of plasmas. In an open-ended toroidal quadrupole,
a possibility of the improvement in the energy confinement by
means of the applied electric field with the ion cyclotron
frequency has been pointed out by Abe et a14). They have
carried out the computer experiment based on the "Collision-
less PIC method". In their treatment, however, the rf
electric field has been applied in a simplified way, and
collisions have been introduced only for ions on the basis
of a model of large angle scattering.

In this paper, the model for computer experiments
succeeds mainly to the above paper. The design of the device
is illustrated in Fig.l. The rf electric field is applied
through the electrodes, and collisional effects are introduced
both for ions and electrons. Further, a collision model is
introduced by utilizing a modification of Langevin's equation
so as to include the small angle scatterings.

In the subsequent section (Sec.2), we shall study loss



mechanisms of the contained plasma energy in the toroidal
quadrupole. The classical mirror loss, the mirror loss due
to the nonadiabatic motion of a charged particle, and the
"banana" diffusion which originates from the toroidality of
the system and is essentially the same as in Tokamaks, are
discussed. Effects of the rf electric field on the heating
and the confinement of the plasma are investigated in Sec.3.
Since the energy of the particle contained in a container is
limited, a kind of feedback control is required. This is
discussed in Sec.4. In order to check these results,
various numerical studies have been carried out in a single
particle model. An optimization of parameters has been made.
Complete computer experiments are described in Sec.5. An
effective heating of the plasma is obhserved, as well as an
improvement in the energy confinement to a certain extent.

Section 6 is devoted to conclusions and discussions.



§2. Loss mechanisms

A plasma in a toroidal quadrupole without an external
rf electromagnetic field may be lost due to (i) the classical
mirror loss, (ii) the mirror loss caused by the variation of
the magnetic moment at the region where the curvature of the
magnetic line of force is large, and (iii) the enhanced
diffusion attributed to the "banana motion". Because of our
model, anomalous losses caused by instabilities are not
taken into account.
(i) Classical mirror loss

We shall begin our discussions by assuming that the
particle loss in a magnetic mirror is essentially ruled by
the ion loss.

Consider an ion trapped in the magnetic mirror. It
should initially have a velocity vector pointing outside
the loss cone, but after some encounters with other partiéles
its velocity may eventually be put into the loss cone and it
will be lost through an open end of the mirror. The
collisional change of the velocity is naturally not one way,
but it is quite often that an ion tentatively belonging to
the loss cone may recover the trapped condition after colli-
sions. The latter process is important when the ion collision

it

between mirrors, and this is fully taken into account in the

time Tic is not so large compared with its transit time T.

present computer analysis. In these situations, the contain-

ment time of a charged particle T is obtained as (Appendix A)



T = Tic lan + ZRm <Tit> ’ (2.1)

where <Tit> is the mean transit time of ions. The mirror

ratio Rm of the toroidal quadrupole is defined by

_ Blx=a,y=a) _ V/2+Y?
fn = =0, =) T Ty (2-2)

where vy denotes the ratio of the toroidal magnetic field
Bt to the cusped magnetic field BC.
(ii) Mirror loss due to the nonadiabatic nature

The magnetic moment of a charged particle can be
defined to be u = Mvi/ZB in the adiabatic region in which
an adiabatic parameter 4 is large enough. In such a region
this quantity is well conserved along the particle path, if
collisions are absent. Here, the adiabatic parameter is
defined as the ratio rc/rL, where r denotes the radius of
curvature of a line of force and re is the gyration radius.
In the toroidal quadrupole whose cross section is a square
with side 2a, the adiabatic parameter along the line y=x
or y=-x is explicitly written in terms of the quantity rror
the gyration radius defined by the cusped magnetic field, as

iR
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The value of 4 is illustrated in Fig.2 as a function of

Vr?+y?. The minimum of the adiabatic parameter is approximately



3Y2a/pLO at the point vx?+y? = ya/V/3.
The magnetic moment cannot preserve its original value
across the region where 4 is small. The relative change of

5)

the magnetic moment is considered proportional to exp(-4).
Accordingly, the mirror ratio of the toroidal quadrupole
becomes large, then the variation of the magnetic moment of
a charged particle also becomes large. The change in the
magnetic moment obviously causes the loss of the plasma even
when collisions are absent. For a typical case that Rm is
14 and the minimum of the adiabatic parameter of an ion
Ai[min is nearly 1.5,.the trajectory of an ion and the time
variation of the quantity p are illustrated in Figs.3(a) and
(b), where the ion escapes finally to an open end.

On the other hand, if the adiabatic parameter is not so
small, then the following occures in the collisionless
plasma. Even if the quantity p varies in the nonadiabatic
region, the magnetic moment recovers the previous value
after the passage through the nonadiabatic region. This
behaviour is typically shown in Fig.4(a), where Ailmin is
about 8. It must be noted that the particle is not lost
in this case. However, as is seen in Fig.4(b), the presence
of rare collisions makes the magnetic moment change by the
order of the variation of p in the nonadiabatic region.
Therefore the loss of the plasma is enhanced compared with
that indicated by Eqg. (2.1).

Figure 5 demonstrates the decay of the particle number

in three runs of the simulation, where the values of the

mirror ratio are chosen to 3,5, and 74. Other physical



quantities are listed up on Table I. 1In the first case where

Rm is 3 and the mean of 4. is 40, the particle contain-

ijmin
ment time is observed to be about 50 usec,which is quite
comparable with the classical value (50 psec) given by

Eq.(2.1). On the other hand, in the second case, when

m=5 and the mean of 4.

._is 13, the containment time 1is
i|min

rather small compared with the classical one. In the third

case that Rm is as large as 14 and the mean of 4. is 1.5,

ilmin
the number of ions remaining in the container decreases much
more rapidly:
(iii) Enhanced cross field diffusion

Consider a case where collisions are absent and the
magnetic moment is conserved in a toroidal quadrupole, the
motion of some guiding center forms a "banana" orbit, as is

illustrated in Fig.6. The largest width of this "banana® orbit

§r is given approximately by (Appendix R)

- 2
Sr Ve ro /a/rL for r << Y’a

and (2.4)

2

Note that dr is much larger than the gyration radius, and
consequently the cross field diffusion is enhanced because
of its large step length. Therefore, ions are lost into rf
electrodes through this cross field diffusion, even if the
gyration radius is much smaller than the interval of the
electrodes. Table II shows the relative number and the

mean energy of those ions lost into rf electrodes, which

2D,



are observed in simulation runs.
Accordingly, we assume the rf electrodes of ideal mesh
type, hereafter, so that high energy ions may not be lost

into them.



§3. Effects of the rf electric field on the heating and the confinement

6)

It is well known that ions may be heated by applying

an rf electric field in the vicinity of ion cyclotron angular

7-9) whether the rf

frequency W . However, it is not obvious
electric field can effectively decrease the loss of the plasma

in an open system.

Heating rate
The change of an ion energy for a passage through the

l10)

resonance zone has been given by Kawamura et a . In our

notations, it takes the form
AW =YW, ,/2M eFot  cos¢ + (ez/ZM)Eﬁt; , (3.1)

where Wy, is the transeverse energy before entering the
resonance zone, E, is the amplitude of the applied rf
electric field, ¢ is the initial phase difference between
the gyration and the rf electric field, and tr is the
effective duration through the resonance zone.

If the gyration phase is random at each passage through

the resonance zone, then the heating rate is roughly given by

d<W.>
d; = o EZ, (3.2)
and
a = 5 X (ez/M)(GN/N)w;_1 , (3.3)

where <Wi> is the mean ion kinetic energy, SV is the number



of ions which pass through the resonance zone, and ¥ is the
total number of ions. A comparison of Eq.(3.2) with the
results of simulation runs is made in Fig.7, where the value

! and the resultant value of a = 0.8

of w_ is 4.5 x 107sec”
eV-sec—1 x (V/m)~?2 agrees with that calculated from Eq. (3.3).

The ratio 8N¥/N is assumed to be about 10 %.

Effect on the confinement

By applying the rf electric field, an ion in the loss
cone may be put into the trapped region, if its magnetic
moment is increased by a certain amount. Putting the second
term on the rhs of Eq. (3.1) to be larger than the first term
(except for the factor cos ¢), one can express the above

condition as
2 2
Ey =2 (VM wr/ae )Vwirwil , (3.4)

where Wr stands for the parallel kinetic energy at the
resonance zone.

On the other hand, if the second term is much smaller
than the first one, the rf electric field cannot reduce the
classical mirror loss. In addition, some ions in the trapped
region may fall into the loss cone, because their magnetic
moments are decreased by the rf electric field. 1In this
case, the resultant loss rate is increased in comparison
with the classical mirror loss.

Consider the case that condition (3.4) is initially



satisfied for all ions. After a number of passages through
the resonance zone, some ions are accelerated and accordingly
the condition breaks down for these ions. And as a result,
the loss rate of ions may increase gradually. This situa-
tion is seen in a simulation run which is presented in Fig.8.
In this case, E, is set as 20 kV/m. Ions with an initial
temperature of 300 eV are completely contained at the
initial stage, where the lhs of condition (3.4) is larger
than three times of the rhs. After a few bounces of ions,
(10 usec), however, the mean kinetic energy of ions is
increased and condition (3.4) is no more satisfied for some
ions, i.e., the rhs becomes comparable to the lhs. At this
time, the loss rate of ions is larger compared with the

classical mirror loss.



§4. Feedback control of rf electric fields

As is shown previously, if the energy of a particle
is above a certain value, the applied rf electric field has
no effect on the improvement in the particle confinement in
an open system. Accordingly, it is necessary for suppressing
plasma losses that the amplitude E, is changed in accordance

with the kinetic energy of ions.

Feedback control

If condition (3.4) is always satisfied for the majority
of ions, then the plasma loss may be suppressed. Therefore
we shall introduce the amplitude Ey increasing in proportional

to the mean kinetic energy of ions:
Eo = C<W.> . (4.1)

Condition (3.4) is fulfilled as for ions whose kinetic

energy ¥; s <W.> by setting C - /ﬁﬁ;; wr/aez, and then these
ions do not escape from the container. However, the loss of
high energy ions cannot be suppressed completely by this
method. We have evaluated the effect of the rf electric

field by measuring the energy containment time T The

B*
values of the energy containment time of the ion component
obtained in simulation runs are plotted in Fig.9 as a func-
tion of the constant C, where w. is 6.8 x 107 sec-l, a is

0.25m, and Wir is about 70 eV. This figure shows a peak

around ¢ = 1.5 x 10° (V/m)?/eV. This value may be compared



with 70°(V/m)?/eV which is estimated from condition (3.4).
In Fig.10, the typical data (¢ = 1.5 x 10°(V/m)2/eV) of the
contained ions, the contained ion energy, and the lost ion
energy are shown, and the data without the rf electric
field are also given for comparison.

If the value of ¢ is too 1ar§e, ions are ready to be
separated into two groups:; one consists of a few high energy
ions and the other consists of the majority of ions with low
energy. Condition (3.4) is no more satisfied for ions
belonging to the former group. This corresponds to the

gradual decrease of t_ for larger ¢ in Fig.9.

E

Heating rate
The heating rate of ions in the feedback system intro-

duced here is derived from Egs. (3.2) and (4.1) in the form;

ar - T, Mo (4.2)

-1
where the heating rate Ty equals to aC. The evolution of

the mean ion energy which is obtained in a simulation run is
-1

illustrated in Fig.1ll. The value of w_ is 6.8 x 107 sec
and ¢ is chosen as 2.5 x 10°(V/m)?/eV. The heating rate

- -1 . . . . .
Ty '~ 7.4 x 105 sec obtained in this figure agrees with

-1
1.3 x 10° sec calculated from Eq. (4.2).



§5. Computer experiments

Parameters employed in the complete computer experiments
are chosen on the basis of the above studies, and are listed
in Table III. The mirror ratio is settled to be 3 so that
the adiabatic parameter is large enough. The feedback system
is performed by choosing ¢ = 1.5 x 10°(V/m)?/eV, and the
quantities for the computations are chosen as shown in
Table IV.

In order to avoid effects which may be brought about by

4)

an initialization of the charged particle system, the rf

electric field is not applied for the first 3 usec, and then
it is applied until the time ¢ = 18 usec (Experiment I).
For comparison of the results, other computer experiments
have been carried out for two cases: in Experiment II, the
rf electric field is absent over the experiment, and in
Experiment III, the rf electric field is turned off at the
time ¢ = 12 usec.

The improvement in the particle containment time is
seen in Fig.12. Between the time ¢ = 3 psec and ¢ = 12 usec,

the particle containment time in Experiment II is TAIT =

35 usec, while in Experiment I the rf electric field increase

Tt to be 39 usec. Similarly, between the time ¢ = 12 usec

and t = 718 usec, TnI = 35 usec should be compared with the

containment time in Experiment III, i.e., 31 usec.

Thrir ~

The values TATT and TaTIT obtained in the computer experiments

are coincide with the wvalue calculated from Eqg. (2.1), provided

that the mirror ratio Rm is replaced by the effective onell):



R eff — Rm/(l + e¢/<Wi> ) (5.1)

where ¢ represents the mean plasma potential. The spatial
distributions of the plasma potential in Experiment II and
I at the time ¢ = 9 usec are illustrated in Figs.l1l3(a) and
(b), respectively.

The evolution of the contained energy of the plasma and
that of the lost energy are demonstrated in Fig.14, where
the contained energy consists of the kinetic energy and the
potential energy of ions as well as electrons.

As well as the particle confinement, a careful applica-
tion of the rf electric field brings about a certain improve-
ment in the energy confinement. In fact, the energy
containment time TeT is 47 usec for the first 9 usec or is
41 usec for the last 6 wusec, in Experiment I. These values

must be compared with T = 43pusec (Experiment II) or

ETIT
TRITI = 37 usec (Experiment III), respectively. Therefore,
in this case, the rf electric field improves the energy
confinement about 10 %.

The rf electric field may raise the ion energy. As is
shown in Fig.1l5(a), the mean ion energy increases by a
factor 3 for the time interval of I5usec. The heating rate

H“1= 8.3 x 710" sec”™! observed in this experiment agrees with

T
that calculated from Eg. (4.2). On the contrary the electron
temperature is not affaired by the rf electric field as is

shown in Fig.15(b).



§6. Conclusions and discussion

We have first studied loss mechanisms of the energy of
the plasma contained in a toroidal quadrupole. If the
mirror ratio is small, the classical mirror loss and the
banana diffusion are appreciable. On the contrary, if the
mirror ratio is large, then the nonadiak *ic motion of a
charged particle enhances the particle loss. 1In our com-
puter experiments, the mirror ratio Bm = %3 has been employed.

Effects of the applied rf electric field have been con-
sidered. The heating rate by the rf‘electric field is
descrived by Eq. (3.2). In order to obtain a good confine-
ment of the plasma, some feedback control of the rf electric
field must be required. According to the simplified simula-
tion, a certain optimized feedback system is introduced.

Computer experiments have been carried out with optimized
parameters in the toroidal quadrupole. The plasma has been
heated easily and the improvement in the energy containment
time ~10% is obtained.

In these computer experiments, some of instabilities
have been inhibited, and the effective collision time has
been restricted by computer time to the value which has been
only a few times greater than the mean transit time of ions.
This situation has probablyAcaused favorable results‘in the
improvement in the energy confinement by the applied rf
electric field. For instance, the absence of instabilities
which may be associated with the rf electric field does not
give anomalous losses, and a number of collisions may restraine
ions from beeing separated into two groups by the rf electric

field.
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Appendix A Classical mirror 1loss

The classical mirror loss is caused by Coulomb collisions
which change the pitch angle 6 = tan—l(vé/v") of an ion.
In order to obtain the particle containment time T We
determine the distribution function f for ions. For
simplicity, we introduce sources which provide new particles
and are distributed uniformly throughout the entire volume,
and analyze the stationary problem. For purposes of further
simplification, we assume that the magnetic field is uniform
over the entire volume, and that it rises rapidly at the ends.
Then, the kinetic equations in the trapped region (I) and in

the loss cone (II) can be written, respectively:

BfI
—-aT—)c=q for m - 64 > 6 > 06, (Al)
af‘]::l:
"“at )C=q—2f0r60>6>0,’n—60>9>60,(A2)

where 6, = sin_1/17Rm is the loss angle, and 3f/3¢)

denotes the change of the distribution function by means

of collisions. The source density ¢ and the loss density 1
are assumed independent of 6 , and the relation Jq d3F=fZ d;
should hold. We assume also that the containment time for

ions in the loss cone is nearly equal to the mean transit

time <T1.,> .
it

Since we are seeking the distribution function in the form

f = F(8) exp(-Mv?/27T), (a3)



we rewrite Egs. (Al) and (A2):

4D 22?¥x) -0 (z) +ad’ (x) 1

v? 2x?

sin6

where x stands for v/M/2T.

constantlz)

=q in the trapped region,
3 . of
35 sind 55

=g-% in the loss cone,

(A4)

The quantity AD is the diffusion

and ®(x) is the error function.

As is easily seen the boundary conditions are given by

afI/ae =0 for
8f14/80= 0 for
1= F11 for
and
8fI _ of 11 for
30 30 ©

Through straightforward

HI

containment time, Th

in the form

where the collision time’ri

1 r4
T. =

= 7/2 S
= 0, m s
= 6() > - e0 3
= eO s ™ - eo (AS)

calculations, we obtain the particle

J (Ff; + fII)dZ/Jﬁ dv , approximately

2R
m

D 22°¥x)=0 (x)+xd"' ()

ito (A6)

c is given by

2
Moy a3

1C

(2WT/M)3/2J03

2x°

exp (- (A7)

2T

19 -



In the usual condition, the second term on the rhs of Eqg. (A6)
can be neglected, while this term is important in our

simulation.



Appendix B Banana orbit

As 1s well knownl3), the cross field diffusion is

enhanced by the "banana" orbit of a charged particle in
Tokamaks, as compared with the classical one. A similar
phenomenon can be observed also in a toroidal guadrupole.

In the absence of collisions, the total angular momentum

Pw of a charged particle is conserved in the toroidal quadrupole:

Pw = M(R + x)vw + e(R + x)Aw = const, (B1)

where AW' the component of the vector potential along the

toroidal axis, is given by

X x2 LZ
aBC[{] - 65} 27 az] . (B2)

SN

We consider that the aspect ratio €~ '= R/a is much larger
than unity and that the nonadiabatic nature can be neglected.
Then we easily find two types of the trajectory, i.e., one is
banana-like and the other four-cusped. This difference is
due to the initial condition: the position (x;, 0) and the

sign of v, The velocity v

b 12

is approximated in the form

B

t
= + —=
v 5 {

. (5 - uB)}/?, (B3)

I

where both the energy F and the magnetic moment p are constant.

Introducing the "banana"” size 6r on the X axis, we rewrite

Eg. (Bl) as for the "banana" orbit:

/



Pw(xl) = Pw(xl +6r). (B4)

Then a substitution of Egs. (B2) and (B3) into Eq. (B4) gives

an approximate relation

2 2yv=-1/2 _
5?2 xq, Op av{y? +(xy,/a)*} 2{UBt/E}
2L, 4+ 2 EL 2= =0,
a a a {a/rL}+Y{Y2+(x1/a)2}'3/2
(B5)
where r is defined by /2ME/eBc . Consequently, the "banana”

size is comparatively large at the central region and is

approximated as

Sr

R
Sl
=
3
S

for r_. << Yza
and ' (B6)

Sr = V2 vya for r. >> Y?a

- 22 -
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Table I Physical quantitites for simulations

M

Ti.initial

I

5000 Gauss

2500, 1450, and 500 Gauss respectively

0.26 m

-27
71.67 % 10 kg

300 eV (Maxwellian)

Tic = 12 usec
Table IT Ions lost into rf electrondes
Rm Ni/N, <Wi> <Wgy>
3 ~ 6 ~ & keV ~ 500 ev
5 ~ 3 ~ &5 keV ~ 500 eV
14 0 _— ~ 500 eV
N, : Number of ions lost into rf electrodes,
. N2 : Total number of lost ions,
<W;> : Mean energy of ions lost into rf electrodes,
<Wgo> : Mean energy of contained ions.




Table ITII Parameters of the system

and physical quantities

(a) Bmax = 771250 Gauss
B_ . = 3750 Gauss
min
R = 2.5 m
a = 0.25 m
c = 7.5 %x 10° (V/m) 2 /ev
W, = 6.8 x 107 rad/sec
(b) M = 1.67 x 10~%*7 kg
T, . . =T . . = 300 eV (Maxwellian)
i-ini e-ini

initial density= 7.6 x 10'* m™3

Tic = 12 u sec
Table IV Quantities for the computation

line density of super particles =7.7 x 10° m |
mass ratio of an ion to an electron= 25

initial number of super ions

and electrons = 1500 respectivelyf




FIGURE CAPTIONS

Fig.l Schematic cross section of the toroidal quadrupole

and principal coordinates of the system.

Fig.2 Adiabatic parameter 4 vs distance from the cneter
Yz? + y?, along the line y = x or y = -z in the toroidal

guadrupole.

Fig.3 Trajectory of an ion (a) and time variation of u (b)
for the case of Ai min - 1.5. The magnetic moment varies
after the passage through the nonadiabatic region, and the

ion escapes finally to an open end.

Fig.4 Time variation of y without collisions for the case
of Ai min = 8 (a). The magnetic moment recovers the previous
value after the passage through the nonadiabatic region.

On the contrary, the change of the magnetic moment is enhanced

by rare collisions (b).

Fig.5 Decay curves of the particle number for the cases of
Rm = 3 (dashed curve), Rm = 5 (chained curve), and Rm = 14

(solid curve).

Fig.6 Schematic "banana" orbit of the guiding center of
a charged particle in the toroidal quadrupole. A dashed

curve denotes a line of force, and 6r is the "banana" size.



Fig.7 Evolution of the mean ion energy. Applied rf
electric fields Fy, are 20 kV/m (Curve I), 10 kV/m (Curve II),
and 5 kV/m (Curve III), respectively. Dashed lines indicate
the change by means of Eq. (3.2), where coefficients a are
respectively 0.75(Curve I), 0.85 (Curve II), and 0.8 (Curve

III) eV-sec—1~(V/m)—2.

Fig.8 Decay of the particle number, and evolutions of the
contained ion energy and the lost ion energy, for the case
of Eo = 20 kV/m. The loss rate is gradually increased when

the ion energy is increased and condition (3.4) breaks down.

Fig.9 Improvement in the energy containment time g by
means of the feedback control of the applied rf electric

2
field. The quantity ¢ is defined by the ratio E, /<Wi> .

Fig.1l0 Comparison of the result for the case of ¢ = 7.5 x 10°
(V/m) 2 /eV (solid curves) with Ehat for the case of no rf
electric field (dashed curves). The decay of the particle
number and evolutions of the contained ion energy and the
lost ion energy are demonstrated. The applied rf electric

field is turned on at the time ¢t = 3 usec.

Fig.1l1l Increase of the mean ion energy for the case ¢ =
2.5 x 10° (V/m)?/eV. The applied rf electric field is

turned on at the time ¢t = 3 psec. Dashed curve corresponds

-1
to that with the heating rate Ty = 1.4 x 10° sec™.



Fig.1l2 Decay curves of ions and electrons. In Experiment I
(solid curve), the rf electric field is applied from the
time ¢ = 3 usec till the time ¢ = 18 usec. In Experiment II
(dashed curve), no rf electric field is applied, and in
Experiment III (chéined curve), the rf electric field is

turned off at the time ¢ = 12 usec.

Fig.13 Distributions of the plasma potential in Experiment
IT (a) and in Experiment I (b) at the time ¢t = 9 usec.
The outer square is the wall of the container, and the

equipotential curves are drawn at intervals of 20 volt.

Fig.14 Evolutions of the contained plasma energy and the

lost plasma energy.

Fig.1l5 Time variations of the mean ion energy (a) and

the mean electron energy (b).
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