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Abstract

Nonlinear ion-acoustic waves are analyzed in two-dimensional
space. Korteweg - de Vries equation modified with a subsidiary
equation is derived, from which it is shown that solitons are
stable against disturbances at a right angle to their propagation

direction.



§1. Introduction

Washimi and Taniuti (1968) first showed that nonlinear
ion-acoustic waves could be described by the Korteweg - de Vries
equation. Subsequently it was shown that this equation describes
a wide class of weakly nonlinear dispersive systems (Taniuti &
Wei 1968, Jeffrey & Kakutani 1972). It has a solution correspond-
ing to a uniformly propagating pulse, the so-called soliton.

The remarkable stability of these solitons has given rise to

much interest in the last few years. However, ali previous
stability analyses, whether numerical (Zabusky 1967) or analy tic
(Jeffrey & Kakutani 1972), have been restricted to one-dimensional
perturbations.

To study the stability of a soliton to a more general
perturbation it is first necessary to obtain the two-dimensional
generalization of the Korteweg - de Vries equation. 1In this
paper, the case of ion-acoustic waves is considered, the relevant
equations obtained and then solved to show that the soliton is

marginally stable to more general two-dimensional perturbations.

§2. Two-Dimensional Propagation of Ion-Acoustic Waves

Following Washimi and Taniuti (1968), the relevant set of

basic equations is taken to be
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where quantities are dimensionless after normalization, that is
jon density is normalized by n_, the x~ and y- components of ion
velocity, u and v, by the ion acoustic velocity (Te/mi)l/z, and
the electrostatic potential ¢ by Te/e.

We assume th< ion-acoustic wave to propagate along the x-
axis with a velocity V, and hence following Washimi and Taniuti,
we introduce the stretched co-ordinates

£ = El/z (x - Vt)

T o= e3/2%¢ (2)

where £ is a small parameter essentially related to  the amplitude
of the wave. To describe any variation in the y- direction we

introduce a new stretched co-ordinate
n =€ Yy (3)

That is, the variation in the y- direction is taken to be the
same order as the time variation observed in a co-ordinate system
moving with the velocity V along the x- axis. This is a reasonable

assumption under which we consider stability of ion-acoustic



wave solitons against a small variation in the transverse
direction, because this effect must compete other terms in the
Korteweg-de Vries equation, in which there is a first derivative
of wave function with respect to T.

We can introduce another stretched co-ordinate
n =€ y (4)

This stretching must be used when we treat a genuine two-
dimensional propagation, in other words, when we consider a
travelling wave involving variations in the transverse direction
which can not be assumed as higher order perturbations. We
analyze this case in the last section.

We apply, to the set of equations (1), the perturbation

method developed by Taniuti and his collaborators. With

expansions
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Setting n =y one gets V? = 1 and
u(l) =V Y
o) = v (7)

To this order, the transverse variations are decoupled from a
one-dimensional propagating wave described by the first two and
the last of equations (6). The wave travels with the ion-
acoustic speed since from these equations one obtains V? = 1.

To second order, we have
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From the first two equations, we have
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Substituting this into an equation obtained after differenciating

the last equation of (8) with respect of §, one gets
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where terms including ¢(2) have cancelled since V? = 1. For

simplicity we restrict our attention to thet@se V = 1. Hence

we have a Korteweg - de Vries equation modified by a transverse

variation, which is expressed through the term involving v(l),
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v(l) =0 (9)
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From the third of equations (8), we find

9 _(2) _ 3 (1) ay
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Since v(l) is independent of & as is seen from (6). Equations

(9) and (10) govern the two-dimensional propagation of nonlinear

ion-acoustic waves. As these two equations contain three quantities

(2)
v(l) and v , one needs a supplimentary condition before one

L

can obtain a unique solution. For this it is sufficient to

(2)

demand that v be finite. Integrating (10) with respect to

£ and dividing it by &, one gets
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In the limit of £ tending to infinity the left hand side wvanishes.

(1) (1)

Then since v is independent of £, ons may express v in

terms of Yy in the form

% v 2 1im % f oV ¢ (11)

g->00

Equations (9) and (11) constitute the complete set of equations
describing the two-dimensional propagation of nonlinear ion-

acoustic waves.

§3. Stability Analyses

We now study, using equations (9) and (11), the stability

of a soliton, propagating in the x-direction, to perturbations

which depend on the transverse direction. To this end, we write
- -iwt+ik
V(EM,T) = Y (E) + Sp(g)e TN
(12)
v(l) = gy e iwrHikn

where wo is a steady soliton solution of the Korteweg-de Vries

equation (in other words, a steady solution of egs.(9) and (11)

(1)

with v =0). Substituting of the above forms into (9) and (11)

and subsequent linearization gives
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where
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The solution P, is unstable if there exists a solution for §y
which is a bounded function of £ and for which the imaginary part

of w is greater than zero. Now if one writes

SA (15)
and substitutes into eq. (13) one obtains

T - SR N - L k? dy,
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In the limit of g-wx, wo+0 and %%f + 0 so that for large &,

~
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If w is imaginary, 6@ is found to be infinite from the equation
(17) . While 8y must be finite because it is a small perturbation
imposed on the soliton solution (see eq.(12)), egs.(l14) and (15)
are not consistent with each other. Hence w is real. This leads
a consistent discussion as follows.

With real w , one sees from (17) that 6@ is oscillating in

/34

the infinity of £ , i.e., 8¢ = expli(-2w) . Therefore

lim % f6$d£=0, while at the lower limit of integration 6% is

f—;—>oo

finite. Inserting Eq.(15), one finds a relation between k and w



1 =k?/2 w? ‘ (18)

where it must be noted that SA is independent of £.

Hence one has got the same result that w is real,
w = *tk /V/2 (19)

From this one concludes that any perturbations involving spatial
variation in a direction at right angles to the direction of
propagation will give rise to wave propagation but not to insta-
bilities.

We have discussed stability of steady solitons represented -
by Yo (&) for simplicity. The same analysis is valid when solitons
are travelling with a speed A, i.e., Yg = Po(&-AT). We just

shift ¢ to y-A.

§4. Genuine Two Dimensional Propagation

Substituting the expansion (5) with the stretched co-ordinates

(2) and (4) one finds in lowest order
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Writing

(1)

n'tl o=y
one gets
oD =y
u(l) = /v
3 (1) _ 3y
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Differenciating the first equation of (20) with respect to & and

substituting above expressions gives

- 2 _ 2
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Unless V? = 1, one can transform co-ordinates according to
a =&+ 1iyn
(22)

B =¢& - iyn
where y*= 1 - V2. Then eq.(21) will become simpler
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Hence V is represented by two independent functions, each of which

is arbitrary,



v = f(a) + g(B) (24)

If v2 = 1, ¢y must be independent of n, that is, two dimensional
propagation is not proper. We must note here that ¥ should be
finite. The case V? = 1 is excluded henceforth.

To second order, one gets
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Eliminating n(z), u(z) and v(z) gives
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where the right hand side includes only the lowest order quantities.
Carrying out the transformation (22) and substituting eq. (24) one

finds

1 92 (2

1) 5 0 )= r{f(a)} + T{gB)} + s {£(0),g(B)} (26)

One can directly integrate with respect to B, i.e.,
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Since ¢( must be finite, one has a requirement

T, =T {f(a)} =0

Similarly, there follows

I
o

TB =T {g(B)}

These two are nothing but Korteweg-de Vries equations
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Here one finds equations which govern two-dimensional propagation
of the ion-acoustic waves. The wave profile is given by an addi-
tion of twc functions, each of which is a solution of the Korteweg-
de Vries equation involving a complex argument, o and B defined

by (22).
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