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Abstract

A new method to analyze the MHD kink instability in the
cylindrical approximation is presented. Using the nonlinear
equilibrium equation with the helical perturbation method,
an expression for the growth rate of instability of a per-
turbation is obtained. For m=1 mode, the growth rate and
the stability-instability criterion, g(a)=1, are calculated
analytically for an arbitrary current distribution. The growth

rate is also calculated 1in the case of a uniform current.



Much work has been done previously about the MHD kink
instability'in terms of the normal mode analysiszor of the
energy principle method> The former method is restricted to a
particular current distribution, and the latter seems very
complicated. Previous results imply that systems subject to
kink instability have helical symmetry. On the other hand,
small amplitude helical eqilibrium equations of a plasma which
carries an arbitrary current in a cylindrical tokamak were ob-
tained by means of MHD approximation% By use of these equa-
tions, helical perturbations on the magnetic surface and the
torsion of the plasma due to the perturbation can be calculated,
once the current profiles are given. Our method presents a
systematic way to analyze the MHD kink instability for an ar-
bitrary current distribution. Especially in the case of the
m=1 "free boundary" mode, the growth rate and the stability
criterion have been obtained analytically. In the case of a
uniform current, the growth rate has been also calculated. These

results agree with the results obtained by Shafranov.

In the cylindrical approximation, the tokamak configura-
tion can be considered as a plasma (radius a) in a perfectly
conducting cylinder (radius b) with the periodicity 27mR (R is
the major radius). By introducing the helical coordinates
with $=108+k,z (r,0,z are ordinary cylindrical coordinates),
theXP component of the magnetic r[ield B, and that of the vector

potential Ay are given as
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Ay = kethy = [Ag = $ (2)
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and the plasma equilibrium equation, jxB=vp, can be expressed

as
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Since (ak;)=(a/R)« 1, in the limit of the strong troidal field

By with G?O, Eq.(3) can be written as
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The other components of the magnetic field and current density

in the z direction are

kz755+15923—%- ) (4)
By = '?Lgi ; (5)
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The boundary condition is such that By vanishes at r=b, or

.b.k_k::O at

r=>b.
3% (7)

In order to solve Egs.(3')&(7) by perturbation method,



we expand ?(r,?) as (inside the plasma)

'-V(r;‘f’) = Lh(r) + M(".(f)cossa + o2 v)+ - ' (&)

where & is a free parameter. We substitute Eq.(8) into Eq.(3')

> then we get
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where ' denotes the derivative with respect to r. In vacuum,

W(r,?) is expanded as
oone) = W)+ EG, (1) coop # - , (12)

and a set of equations for(#, %w is given as

_IT_% o4y, — ?-“Z:Bt ) (13)
q’w""yay bq/w =0 (14)

Then Eqgs.(8)&(12) are combined on the surface of the plasma.
From the continuity condition imposed on %’on the

surface of the plasma we obtain
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k (a) e = Yot (15)

The displacement of the plasma surface, S , 18 also determined
by X (as shown below). By use of g, we can calculate the mag-
netic energy change in the 2nd order ofg due to the pertur-
bation. It shoud be noted that work done by the power supply
due to the perturbation is two times the change of the magne-
tic energy, because the total current is not changed by the
perurbation considered here (ordinary tokamak operation is
under coﬁstant current condition). k”(r',‘f) is constant on the
surface r=a+§wsf so ‘P(a+5wsf,y) is independent of ¢,

(/’(a-r&m‘f’, ¢)- %(CL) = %/(a)jmy-l— (f'(a) o(my =0
/

“h@§ = e (16)

l'k,is not continuous in the first order of X. This means that
there is the 1lst order surface current. Work AWs is done due
to the tors_ion of the plasnfa column because of ?xg force from
the outside to the inside. AW; is given as
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Let the change of B  due to this perturbation be 4B* then

the magnetic energy change in the plasma per unit leng;'ch,Aw|p .

is
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and that in vacuum per unit length, AWy, is

b
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The total magnetic energy change per unit length,AWm, is equal
to AW, +AW, .

From Egs.(1),(4)&(5), we obtain
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In the plasma, B7 is expanded as
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In vacuum B, is constant, and
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X,5,& are related to each other through Egs.(15)&(16).



Substituting Eq.(22) into Eq.(18), and Eg.(23) into Eq.(19),
AWm is calculated. From the energy conservation 24Wmis equal

tO AWm +AWS +AW‘( . i €.

AWk = AWm ~ AW (2h)
The expression for the prowth rate X is given as

55T = 2 aw, (25)
Ta<P>

where (P> is the averaged density.

We next solve the case of the m=1 mode. Let f=1, and the

solutions for Eqs.(10)&(11) are given as

at

I

futr) = (R4 2k Be) (57)

Eq.(27) is not a general solution of Eq.(13), but it is ade-
quate for this analy:<is, for only the ?nd order perturbation
generated by 4, is sismificant. The kinetic energy change,

AW, , due to this perturbaticn is
C_ “N 11(2»; 2 | ! ) ; 2 .
AW, = 7R RRE S RS } (28)
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The values of Eare obtained for various values of a/b and are



shown in Fig.l. From Eq.(28) it is evident that the stability
criterion of m=1 mode is q(a)=1 for an arbitrary distribution

of current.
For the case of a uniform current, AWy for any m mode can
be obtained by this method. Fig.2 shows the results of our

calculatioh up to m=3.

Higher mode instability for any current profile is beilng

analyzed numerically by use of this method{
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Figure Captions

Fig.l. Growth rates of m=1 mode perturbation for an arbitrary
current distribution and various values of a/b. It is
evident that the stability criteria are g(a)=1. As
the value of a/b is increased, the‘unstable region
becomes narrower and the growth raée of instabilit&
approaches zero. 1)a/b=0, 2)a/b=0.6, 3)a/b=0.8.

Fig.2. Growth rates of perturbation for the uniform distri-
bution of current density and for the various values

of a/b. 1)a/b=o, 2)a/b=0.6, 3)a/b=0.8.
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