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Abstract

Implosions of a target pellet exposed to an intense laser
light are investigated numerically by using the spherically
symmetric hydrodynamic equations. In order to obtain the maxi-
mum out put of the fusion energy from the pellet, the following
facts are pointed out: (1) There is the optimum value of the
laser intensity: (2) It is effective to replace the outside
part of the critical density of the target plasma by a substance
with a heavier particle mass: (3) For large pellets, a larger
laser power is efficient: (4) There is the optimum shape of the
laser pulse: (5) More out put energy is yielded from a pellet
with a larger radius when the power and the pulse shape of the

laser light are optimum.

§1. Introduction

As a feasible method to realize the controlled thermo-
nuclear fusion reaction, experiments on the laser-driven im-

plosion of a pellet have been carried out in several laborato-



ries and are watched with keen interest. The calculations!~’
regarding to the implosion of a pellet hgve also been per-
formed together with the development of experiments. The
purpose of this paper is to give some theoretical infor-
mations to the group which are performing experiments in
Japan®-'0 and make several serious points clear in order

to improve the thermalization and the compression of ions
in the target plasma.

In section 2, the fundamental hydrodynamic equations
for the spherically symmetric implosion are described.
Section 3 is devoted to the note concerning to the trans-
formation from the fundamental equations into the differ-
ence equations which are used for numerical calculations.
In section 4, main results are reported. The summary 1is

described insection 5.

§2. Fundamental Equations

The spherically symmetric hydrodynamic equations are
the governing equations for the implosion of the target
plasma exposed to an intense laser light. That is, the
following six equations are the fundamental equations.

The equation of continuity is
d3p/3t + 1/r% - dpur?/dr = 0 . (1)

where t is the time, r the radial distance, u the fluid
velocity along the radial direction and p the density which
is expressed by using the particle mass m and the number

density n as follows,



p=mn, +mn, . (2)

The suffix 1 refers to the ion and e to the electron.

The equation of motion 1is

du/dt + u du/dr = -1/p*3(p+q)/ar
-4/ (3pr?) -5 (r2pdu/ar)/ar

-4u/(3p)+3(u/r)/3r - 4uu/(3pr?) (3)

where p is the pressure, q the artificial viscosity term, and
u the coefficient of viscosity. The pressure p and the co-
efficientu of viscosity are the sum of those of the ion and

the electron, respectively,

P = Py + Pe » W T U3 + e -+ 4)

We assume that the equation of state of the ideal gas holds

among the pressure p, the number density n and the temperature

= kn T. (5)

where k is the Boltzmann constant. The explicit form which we

employ here for the artificial viscosity q ist!?
q = ¢, @GufAr)ifou/sr<0, q = 0 if ju/sr>0, (6)

where o is a small constant. For the coefficient y of

viscosity, we use!?

Wi o = 0.406 mil,/e2 (KT; )*/*/(e*1n 1) (7)

where e is the electron charge, and

3 k3T 3
.n A = 1n ( ©
2e3 T n

g/z’ (8)



which is assumed to be constant.

The density of the target pellet is so high that the
charge separation in it can be neglected. Thus the equation
(1) of continuity and the equation (3) of motion are not sepa-
rated for the ion and the electron. However, the energy
equilibration between the ion and the electron does not reach
during the implosion are achieving in the pellet. Therefore,
the energy equations are employed separately for the ion and
the electron.

The energy equation for the ion is

dT. dT. 2m. (p.+q) dr%u T.-T
Iy gy - 171 - 2+ Wi + Qi.(9)
or dr 3 p kr? or Tei

In this equation, we neglect the ion thermal conductivity. The

relaxation time Tei of the energy between the ion and the

electron is expressed by!?

Tei - 3mellz(kTe)3/2/ [4(21T)1/2 ne*1n p ] - (10)

Among the energies which are released as a result of the thermo-
nuclear fusion reactions, ouly the kinetic energy EOC=5.63><1O'6
(erg) of the o particle is assumed to be absorbed in plasma
with zero mean free path. The fraction f, which is given by?

£ = 32/(32+T_/1.16x107) (11)

of %x is given to the electron, and 1-f to the ion. Thus in
eq.(9), Wi which comes from the fusion energy to the ion is

expressed by

W, = 2 (1-f) E, W / 3k, (12)

where W is the reaction frequency given by eq.(18). The contri-
bution Q from the viscosity is
= . - 2— .
Qi o 8ui’g(9kni) ou/or) 16uui,e49knir) du/ar

*8u; o/ (9kn )« (u/T). (13)
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The energy equation for the electron is

2 2 -
5 Te 8T, Zm,p, 3T*U Zm.c 3r*P T.-T

+ 4 — = - - L+ i €
2 ~Al-y+2 9 N
5t 5 T 3pkr or 3oty T Tei
2m. 3 3T
+ 2 T 2k &)W +Q ATV 2 (14)
e e ‘e e
2okr?3T T

’

where ¢ is the light speed and Py the laser intensity. The
coefficient K, of the electron thermal conductivity is

expressel by12

, k(KT )/
K. = 1.89 =
(S ( T ) mé/ZeL& In A (15)
In eq.(14), We is
W, = 2f Eq W/ 3k, (16)

and the last term shows the energy escaping from the pellet as

bremsstrahlung. The constant A 1is
-27
A = 2.84 x10 /(3k my ). (17)
The reaction equation is
5Y/3t + n 3Y/ar = W = n(1-Y)’<ovs>/ 4, (18)

where

Y = (na + nn) / (nD+nT+nu+nn) . (19)

Here we consider a pellet which consists of the deuterium and
tritium. By reactions, 4 particles and neutrons are produced.
The suffix o refers to the o particle, n the neutron, D the

deuterium and T the tritium. For the rate <gv> of the thermo-

nuclear fusion reaction, we use the expression!?
<gv> = 5.3x1042(1o7/TiY/3 exp{-21x(107/T )1/ 2}. (20)
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The equation for the laser intensity is

l
(e]

1/r2.gr2PL/3r + KaP (21)

L

where Ky is the absorption coefficient of the laser light in
the plasma. For the classical absorption in the under-dense
Tregion, Ka is given by!?

)\2 n2
5x1027(Te/1.16x10“)3/2 (1-n/nc)1/2 ’

K =

a (22)

where ) 1is the wave length of the laser light and n. the criti-
cal number density of the plasma. For the anomalous absorption,

we uselt

4y /c,
Ka =smaller of { (23)
Y(KXD)(X'l/KXD’Z)V(ACX% s

when ¢ is the wave number of the induced wave in the plasma,

Ap the Debye length, and

X = (2P, / cnkT) 1/2 (24)

The growth rate y of the wave ¢ isgiven by the imaginary part
of , which satisfies the equation for the parametric oscillations}®
SWKZGZPL 1 1 .
wz + 27.(1)111 - wl = { - - - } (25)
4wzcmime w+6+11‘2 w—6+1r2

Here w1 is the angular velocity of the ion acoustic wave, T,

its damping rate, W, the angular velocity of the Bohm-Gross
wave, T, its damping rate and §=wyw, where w0=2ﬂC/A.
Equations (1),(3),(9),(14),(18), and (21) are the fundamental

equations.

§3. Difference Equations

The independent variables t and r in the equations described
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in the previous section are transformed to the Lagrangian coordi-

nates ¢ and M by using the relations

) 8__+u§.._ R é_, 1 ,a_. . (26)

5T ot 5T oM dmpr? 3T

N

The variable M corresponds to the mass of the plasma inside the

sphere of radius r,

Moo= f;zlﬂorzdr. (27)

In order to perform numerical calculations, first we must

transform the fundamental equations into the difference forms.
At the transformations, we classify the fundamental equations

into two groups which have the characteristic forms

da /3 M

B (28)
a3(b sa/oM)/oM+cia/dM +d3R/6M + e (29)

da/dT

respectively. Here a, b, ¢, d and e are functions of dependent
variables o and g. When we approximate eqs.(28) and (29) by

the difference equations, we use the method that values of p,

Ti’ Te and PL are obtained at the mid point between neighboring
two mesh points along the M-axis as shown in Fig.1l, instecad that
the values of u aﬁd r are obtained at the mesh point. According-
ly, A for o, Ti’ T, and P, and B for u and r are used instead of
o and g in eqs.(28) and (29). Now we divide the pellet into
many shells of the same mass AM, and take the finite time

interval At. Thus we approximate eq.(28) by

n n

AT 1 - AT g} . - Bl
ARETRNNES LR L S L S R (30)
A M J A M I ,

where the superscript refers to ¢ and the subscript to M.

Equation (29) is approximated by



N+l n

-A’.
Cjr1/2°75+1/2 n+1/2 pn+1/2
" a(A¥i175 » ByL1)3)
n+1/2 n+1/2 ~
b (A5.77 By )(Aj+3/2 Aje1/2)
} n+1/2 n+1/2 n 2
n+l/2 n+l/2 i
*e (AT 17 0 B5e1r2) (AfLs), Aj-1/2)/ZAM
n+l/2 n+1/2 S
*d(AYL175 » BYLyyg) (BY,By) /AN
eIV, B0 = fmne1/2) (31)
pi+l_pn
J ] a (A1 2gn+1/2,
n+l/2 n+1/2 gl
X{b(AJ+1/2 J+1/2)(BJ+1 j)
s/, n+1/2 n+1/2 2
7, an+l1/2 n+1/2
AT T (g2 A g ) /0
/. n+l/2 _n+l1/2 )
+d (A3 B )(Bj+1 BY )/2A M
+e(An+1/,2 B?”“) = g(n,n+1/2) (32)
The values An:ifg, B?+1/2 are calculated by
An+1/2 An Bn+1/2‘BI-1
j*l/2 j+1/2 _ f(n,n), — ) - g(n,n) for n=1 |,
0.5 x ATt 0.5xAt
(33)
n+l/2 ,n-1/2 n+l/2 .n-1/2
AJ+1/2 -A +1/2 B Bj B
= f(n-12/2,n), ——— = g(n-1/2,n)
At AT
for n>2 |
And Aj and B. j+1/2 are defined as
Aj = (Aj+1/2+Aj-1/2)/2’ Bj+1/2 = (Bj+1+Bj)/2 (34)

for any superscript.

In order to prevent a pellet shell from overtaking and

passing anot her ,

viscosity in eqs.(3) and (9).

it is required to introducegp artificial

The introduction of the artificial
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viscosity ensures the total energy conservation and plays an
important role in rounding off higher harmonic oscillations
whose wave lengthes are comparable with the mesh spacing of the
difference system. Although we described above that r is the
variable of B type, the equation which decides the position of
a pellet core,

or / 31 = u (35)
is approximated by another way, i.e.

L

0 R R L (36)

At J
This implicit form supplies more stable results for Lagrangian

motions.

§4. Numerical Results

Figure 2 shows the initial plasma density of the target
pellet which we use in this paper. The slope of foot (under-
dense region) is chosen to be same regardlessof the pellet size
rp. The radius Te of foot employed here is about 50(pm).

Figure 3 shows a result of numerical calculations. The
laser intensity PLs at the pellet surface is kept constant in
time. In the Figure, the time sequence of the specific volume
V (=1/p), the ion and electron temperatures Ti and Te are plotted
versus the radius r. All quantities are normalized. The standard
values by which the variables are normalized are tabulated in
Table 1.

Traces of shells in the r-t plane are shown in Fig.4, for
PLs= 3*101%W/cm2) rp=100(um). Inner shells converge to the
center. But the majority of shells expands outward.

The equation



E— fw purzdr = 2 jm rpdr (37)

gt "o 0
describes the momentum conservation. We can investigate the
accuracy of our numerical results by using eq.(37). However,
we examine the accuracy by using the relation of the total energy
«conservation. In the case that we employ a fine mesh system,
errors are less than 1%. Even in the case that we employ a
coarse mesh system in order to shorten the calculation time
interval, errors remain at most 5%.

The maximum values of n, Ti’ and Te realized at the pellet
center in the course of time, and the total number Neu of neutron
yields in the pellet are plotted in Fig.5 versus the laser
intensity PLs' It is turned out the most efficient compression
and the most efficient heating of ions occur at different values
of PLS' Hence there is the optimum value of PLS which leads us
to the maximum Neu'

As you mav see from Fig.4, a part of the plasma converges
to the pellet center, and another part expands into the vaccum.
The ratio of the energy E1 of the expanding part to the energy
E2 of the converging part is 7-20 for various E as shown in
Fig.6. Almost all laser energy absorbed in the target plasma
escapes from the pellet into the vacuum and does not contribute
directly to the fusion reaction. We can show from the plane
one-dimensional similar solutions thatls

E; / E, = (m,n, / mlnl)uz, (38)
if the energy E=E,+E, is released at an instant on the boundary
of the two different substances 1 and 2, provided that the
boundary does not move. The relation (38) also can be derived
through the following rough estimation. As shown in Fig.7, the

motions in the two substances are assumed to be homogeneous,

respectively. From the momentum conservation, we have
-10-



nlmlul2 = n,myu,” . (39)

If we take only the kinetic energies into consideration, we
obtain
E. = Zn.m.u,? E - Lnu,? (40)
1 2717171 ’ 2 2727272 ¢
Thus, from eqs.(39) and (40)
3
Ey Mynyuy MmNy Mphp3/e MoNg1/2

e - =5 = =5 e
EZ mznzu2 mzn2 mln1 mln1

From this result, we emphasize that the implosion is efficiently
performed if the outside part of the critical density of the
target plasma is replaced by an under-dense substance with a
heavier particle mass.

In the following calculations, the ion mass of the under-
dense region is chosentobelOtimes of that of the over-dense
region.

In the numerical examples described above, the rate of
absorbed laser energy in the target plasma is about 70%. For
simplicity of numerical calculations, hereafter we do not use
the anomalous absorption coefficient in eq.(21), but we assume
that the all remaining laser lights are absorbed at the surface
of the critical density after the 1ight energies are absorbed
classically in the under-dense region.

The aspect of implosion is changed according to the way
how the laser energy is supplied to the target plasma in the
course of time. We assume that the laser power E changes with
time as follows,

E o= By (1-t/ 1)72, (42)

where EO and T are constant in time. The energy Eout released

from the pellet as the fusion energy is plotted against EO in

-11-



Fig.8. For large pellets, a larger Ej is efficient for in-

creasing in EOu Figure 9 indicates that the optimum value

£
of D exists for the realization of the maximum Neu'

Figure 10 shows the fusion energy Eou versus the pellet

t

size rp when EO and t,take the optimum values, respectively.

0
It is turned out that there is the critical size of the pellet

in order to arrive at the break- even of the energy.

§5. Summary

We obtain numerical results for the implosion of a laser-
driven D-T pellet', taking into account the anomalous absorption
of the laser light. According to the calculations, the energy
breal: -even can be achieved with the suitable experimental
conditions.

However in order to pull out the thermonuclear fusion
energy from a laser-driven pellet, the implosion must take place
in a stable manner. In this paper,we assume that the motion is
spherically symmetric. In the subsequent paper, we will discuss
the stability of implosion, taking the three-dimensional motion
into consideration.

This work was carried out under the collaboratingResearch
Program at Institute of Plasma Physics, Nagoya University,

Nagoya.
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Table 1. The standard values by which all the variables are

normalized.

T, = 400 (um)

Ty = 9.09x10°% K

n, = 1.12><1021 /cm3
PLO = 1013 W/cm2

u, = 3.16x107 cm/sec
ty = 1x10’9 sec
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Fig.1l. The values of Te’ Ti’ p and PL are obtained
at points with X mark, and u and r at points

with O mark along the M-axis.
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Fig.2. The initial plasma density of the target
pellet is shown. The radius e of foot 1is

chosen to be about 50 (um) regardless of

the pellet size rp
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are plotted versus the radius r in time
lapse for PL:=30' The values with the
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standard values (given in Table 1) with

the subscript 0.



t/t

Fig.4. Traces of shells of a pellet are shown in
the r-t plane. The intial radius of the
pellet which is irradiated by the laser

intensity P .= 3x10'* (W/em ) is 100 (um).



Fig.5.

The maximum values of n, Ti and Te realized
at the pellet center in the course of time,
and the total number Neu of neutron yields
in the pelletare plotted versus the laser

intensity P for rp= 100 (um).
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The maximum values of Ti and n realized at
the pellet center in the course of time, the
total neutron yields Neu and the input
energy Ein are plotted versus T when

Ej=2.94%10 11 (W) and rp=100 (um).
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