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ABSTRACT

A possible modification to the well known Clemmow=
Mullaly-Allis diagram is analysed taking into account the
radiation pressure force due to a large-amplitude electro-
magnetic field E in magnetoplasmas.

We restrict ourselves here to the propagations parallel
(the right and left-hand circularly polarized waves) and/or
perpendicular (the ordinary and extraordinary modes) to the
static magnetic field Bo‘ We analyse electromagnetic waves
incident normally on a semi-infinite uniform plasma, on
which B, is applied parallel and/or perpendicular to the
surface. Considerations are limited to a cold collisionless
plasma where the incident waves are evanescent.

Simple expressions are obtained for the cut-off condi-
tions of the waves except the extraordinary mode. In the
latter case, the cut-off condition is calculated numerically
solving an integral eqﬁation. The results are demonstrated
in the usual Clemmow-Mullaly-Allis diagram for the various
values of b = 2Ei2e2/mw2KTe, where Ei and w are, respective-
ly, the amplitude and the angular frequency of the incjident
wave. The cut-off lines are shown to move towards the high-

er densities with increasing b.



I. INTRODUCTION

In recent years, nonlinear phenomena caused by the elec-
tromagnetic waves (EM waves, hereafter) of large amplitudes
in plasmas have been pointed out by many authors. They in-
clude the parametric decay processesl, the particle trappingz,
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the modulational instabilities3, self-focusing and so on.

It is well known that the characteristic features of
the EM waves in cold magnetoplasmas are expressed in the
Clemmow-Mullaly-Allis diagram (CMA diagram, hereafter)6. We
consider a coordinate system in which the scale lengths in
the different directions are proportional to the parameters
of the plasma, such as electron density, static magnetic
field strength, percentage composition by the ion species.
This parameter space is divided into a number of volumes.
Inside each of these volumes, the topological genera of the
wave normal surface7 are conserved. The diagram is extreme-
ly useful to understand the wave phenomena in laboratory
and/or ionospheric plasmas.

However, it has been based on the linear treatment of
wave analysis. Thus, in principle, the diagram can be ap-
plied only for the waves of small amplitudes. Questions
arise here: what change will happen in the CMA diagram, when
the wave amplitudes increase? 1Is it possible to assess some
expected nonlinear processes, even qualitatively, in the
diagram? Although these questions are left, in general,
unsolved at this moment, a possible modification in the
diagram is presented in this article. We analyse a modifi-

cation of the CMA diagram caused by the radiation pressure



of the high-power EM waves. Here, the term "radiation pres-
sure" means the time-averaged force acting on the electrons
in the EM field, when it is spatially inhomogeneous.

As is well known, a traveling wave creates no radiation
pressure in its direction of propagation. In order the
radiation pressure to be effective, the wave must créate a
quasi-potential barrier due to the radiation pressure in the
laboratory frame, whereas the traveling waves create the
potential barrier in the wave frameg. In other words, the
resonant electrons whose velocities are close to the wave
phase velocity can be trapped by the potential barrierz.
However, we do not take into account the trapping phenomena
in this article. We confine ourselves to a cold plasma
where no resonant electrons are present.

The gquasi-potential due to the radiation pressure can
be important in the following cases:

(I) A plane standing EM field, which can be decomposed into
two propagating waves in opposite directions one another,
can cause the potential in the direction of propagations.
(IT) A propaé&ing plane EM wave can create the potential in
a direction perpendicular to that of the propagations. In
microwave terminology, waveguide solutions can exist in the
plasma.

(ITITI) When an incident plane EM wave on a plasma is evanes-
cent, the EM field in the plasma due to the skin effect9 can
cause the quasi-potential in the direction of incidence.

In this article, we analyse the case (III), which

results in a modification of the CMA diagram.
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II. OUTLINE OF THE FORMULATION

Consider a plane EM wave incident normally on a semi=
infinite uniform plasma. Considerations are limited to a
high-density plasma such that the incident wave is evanes-
cent. Then the EM field E(r)exp(-iwt) in the plasma does
not propagate. The effect of collisions between plasma con-
stituents are ignored. Ions are assumed to be a continuous
medium which recovers the neutrality in the plasma. The

plasma is assumed to be cold, i.e.,

a > vVie/w, va/lw,
_ 1/2 _ . .
where v = (2«kT_/m) , Vo = e|E|/mw and d is the skin
te e d
depth which is the characteristic distance of the spatial
variation of E(r). Landau and Lifshitzlo derived an expres-

sion of radiation pressure of the EM field acting on the
electrons. Pitaevskiill extended their analysis to a mag-
netized plasma. We write in our notation the radiation

pressure force F (r) as,
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and w is the electron cyclqtron frequency. Furthermore,

the averaged electron density is assumed to change by an
amount of the Boltzmann factor caused by the quasi-potential,
if |

d 3> VteT, VtiT ,

where Ve = (2!<Ti/M)1/2 and 1T is the characteristic period
that E(r) is present in the plasma. The radiation pressure
acting on the ions is neglected, since it is m/M times
smaller than that on the electrons as is shown in (1). The
change of the electron density causes a charge separation
which results in a self-consistent potential ¢ in the plasma.

Then the densities of electrons and ions, Ne and Ni’ are

given respectively as
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where NO is the plasma density in the region where no EM

fields are present. Assuming that the skin depth d is much

greater than the Debye length, we impose the quasi-neutral
L

condition, i.e. Ne = N, = N . Using (3) and (4), one ob-

tains,
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Substituting ey into (3) or (4), the density N' is given as

e2B;xEi* By
N' = Noexp |-
2mw? (Tg+Ti)

(5)

We assume T  >> Ti hereafter for simplicity. Substituting
(2) into (5), the normalized electron density is expressed11

as follows,

2 2 .
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where X’ = (@p /w)2, X = (wp/w)z, Y = wc/m, wp = eN /eom
and wp2 = eNo/eOm. Using (6), we calculate the dielectric

L
tensor e, of the plasma as,
o €k
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The structure of (7) is the same as the dielectric tensor

well known in the cold plasma theoryG, except that X is re-
L]

placed by X in (7).

The Maxwell equation for E(r) is written as,
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v(v-E) -viE= —ETE, (8)
¢2

where ¢ is the velocity of light in vacuum. The field E in
(8) can be generally different from the EM field in [e']
which causes the quasi-potential in the plasma. In other
words, (8) can be a linear equation regarding E with a small
amplitude in a plasma where another strong EM field is
present. However, we restrict ourselves here in such a case
that E in (8) and that in [8'] are the same one. 1In this
case, E should be determined self—consistenfly from a set

of nonlinear equations (6), (7) and (8).

III. PARALLEL PROPAGATIONS (BO//k)

We choose z axis along the'applied magnetic field Bo,
which is perpendicular to the plasma surface. Thé plasma
is assumed to occupy the hélf-space z > 0. In this case,
the EM field in the plasma is decomposed into the longitudi-
nal and the transverse components, E, and E,, respectively,
as is seen from (7) and (8). The former one is the electron
plasma wave propagating in a direction of Bo‘ We put E; = 0,
since the purely longitudinal plasma waves do not concern us

in this section.
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We transform Exkand EY into the rotaing vector components,

Er and E2 defined by
CE. + iE E, - iE
E. = _X y E = _X y (10)

where the suffixes r and %2 denote, respéctiVely, the right
and left-hand circularly polarizations. Then one obtains

the following equations instead of (9), as
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Using (10), E, and Ey are expressed,respectively, as

E, = (E, + Er)//i and EY = (B, - Er)//ii. Substlﬁgtlng

these relationship into (6), one obtains

: A 2 2 2
X' = Xexp|=- > (‘ I‘I + | ll )]
2mw KT, M-Y 14+Y (13)

When there is oniy one of the right- (R wave, hereafter) and
the left- (L wave, hereafter) hand circularly polarized
waves in the plasma, (13) is simplified. For simplicity,
we define Y > 0 and Y < 0 for R and L waves, respectively.

Then, the above expressions are rewritten into a single



form, as

lEs|2 | (14)

X' = Xexp|- ————
E2(1-Y)

where Ec2 = 2m(3kTe/e2 and the suffix s denotesr or %. Then,

(12) is expressed as,

XI

(15)
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Using (14) and (15), the Maxwell equation (8) is written8

as,
s W X i |?
— t— {1 - - exp| - — =0, (16)
az“ c” J =y zp¢§1—1)

where suffix s is dropped for simplicity. We multiply the

above equation by 2dE/dz and integrate, obtaining
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(17)
where kO is the wave number in vacuum. Here the boundary
condition for the evanescent wave, that E and dE/dz tend,
respectively, to zero as z approaches infinity, has been
used to derive (17). Next, we put z = 0 in (17) in
order to obtain the cut-off condition of the incident CP
wave. The boundary condition at z = 0 that the tangential
components of the electric and the magnetic fields should

be, respectively, continuous, takes the formlz,



E(0) = 2Eicos(6/2) , dE(0)/dz = -2k JE; cos(6/2) , (18)

where 6 and Ei are, respectively, the phase angle of reflec-

tion coefficient and the amplitude of the inéident circular-

ly polarized wave. Substituting these expressions into
(17), and putting 6 = +0, one obtains the cut-off condi—

tion as,

(wpfw)? = v/{1 = exp[ -0/(1-uc/u)]}, (19)
where

- ) ‘1‘ 2

Equation (19) becomes (wp/w)2 = b for b >> 1. Equation (19)

reduces to the linear relationship6

(wp/w)2 = 1 - wc/w , (20)'

when b approaches zero.

The cut-off conditions calculated from (19) for
various b's are shown in Fig.l. The upper and lower half
planes correspond, respectively, to R wave and L wave. The
plane is divided into three regions, namely A, B and C. |
They correspond, respectively, to the whistler waves, the
evanescent region and the fast electromagnetic waves. The
border line between B and C is the cut-off line which is

shown, in Fig.l, by the dashed line in the linear limit, i.e.

- 10 -



(20). Equation (19) predicts that the cut-off line moves

towards the higher densities with increasing b.

IVv. A PERPEND]CULAR PROPAGATION (BO 1 k)

In this case, the magnetic field B, in z direction is
applied parallel to the plasma surface. The plasma is as-
_sumed to occupy a region where x > 0. A plane EM wave is
incident normally on the plasma surface. The direction of
polarization of the incident wave is assumed to be in y
directionl3. Such a polarization can excite the extraordi-
nary modes in the plasma. We again in this Section assume
that the EM field is evanescent in the plasma.

We substitute (7) into (8), and put E; = 0 and 3/9y =
0/9z = 0. Then, we obtéin the following equations regarding

E_ and E_ in the plasma, as

x Y
- |
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0x2 f=flak" J

Substituting (22) into (6), one obtains the expression for

X as

(23)
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and b = 4(§y/Ec)2. The analysis is analogous to that de-
scribed in Section III. We multiply (21) by 2dEy/dx. and
integrate,‘ébtaining

2

dE\° P X1 (1-41)
ax p 1-Y°=X" y

Here, we have used the boundary condition at x infinity for
evanescent waves to obtain (25). The boundary conditions at
x = 0 are Ey(O) = 2Eicos(6/2) and dEy(O)/dx = —2koEis1n(e/2)
which are quite similar to (18). Substituting above expres-

sions into (25), one obtains the following equation as

1
X' (1=-1") ' (26)
1 - c032(6/2)-3————§———— dz = 0 ,
1=-Y"=X"
0
where
5 | (27)

£' = Xexp( -bchosz’"') y D = 4(E1/E0)2-
5 >

To get the cut-off condition, we put & =+0 in (26), obtain-

ing
L X (i=41)
, G - ————E————-»dg =0 , (28)
T=Y"=X"
0
where

. 29
4' = Xexp(-bgT) . 2

Then, the cut-off line in the CMA diagram can be obtained,

if one finds the set of plasma parameters X, Y for a given

§
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b, which satisfies (28), (29) and (24). Equation (28)

reduces to the linear relationship

(wp/w)2 =1+ w0 /w, (30)

when b approaches zero. Inspecting above three equations,
one can easily find that the cut-off line moves towards
higher (wp/w)2 with increasing b, as long as T > 0. Next,
we solve these equations numerically for b << 1, since they
are too complicated to find analytical solutions. In Fig.2,
an example is shown in the CMA diagram for b = 0.1. The
upper and lower half planes correspond, respectively, to

the extraordinary and ordinary modes.

V. DISCUSSIONS

The modifications of the CMA diagram described in this
article are attributed to a density-rarefaction of the
plasma due to the radiation pressure of the evanescent waves.
It should be noted, however, that other nonlinear processes,
which are apparently different from the density-rarefaction,
may be existing in the real plasma. They are, for example,
the heating of the plasma through a parametric decay insta-
bilityl4, the stimulated Raman and/or Brillouin scattering%5
in the under-dense region at the plasma boundary. Neverthe-
less, we expect that the modified CMA diagram may be valid
gualitatively, in such a plasma where the kinetic pressure

is steadily balancing the radiation pressure due to the large

amplituae electromagnetic waves.
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FIGURE CAPTIONS
Fig.l Modified CMA diagram for the parallel propagationsg
The parameter b is proportional to the incident
power on the plasma surface.
Fig.2 Modifications of the cut-off lines for the perpen-

dicular propagations.
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