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Abstract

Modulation on an ion acoustic wave is shown to be
unstable in a direction oblique to that of the wave phase

velocity.



In the general analysis of the dynamics of a complex

° 0,
amplitude of a plane wave with a form ¢(£,T)el(kx-wt), Taniuti

has shown that ¢ satisfies the nonlinear Schrddinger equation

: 97
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The amplitude function ¢ becomes unstable when the coefficients
p and g satisfy pg > 0 (known as modulational instabilityf:

Using the above formulation, Shimizu and Ichikawa3 have
shown that the ion acoustic wave is modulationally stable. 1In
'fact there are many waves that are modulationally stable under
this category?

The purpose of this paper is to show that these modulationally
stable waves can become modulationally unstable for a modulation
applied in the direction oblique with respect to the direction
of the phase velocity of the carrier wave. For example, if we
consider a modulation in the x direction for a wave propagating
in the x-y direction with ﬁhe wavenumber kX and ky’
¢ (x) et (KgXtkoy=wt) = o 11 Bg(1) becomes 1/2 320/0%7 |} yo  oke

X 'x 'y 'y’
Consequently, the sign of p can in general be different from the

case with ky=0 (parallel modulation). Even if the sign of g may
change when ky# 0, the change of sign of p and g does not occur -
simulutaneously in general. This leads to the possibility that the

sign of the product pq - become positive for certain values of

k,/ky and x| .



The ion acoustic wave in a collisionless plasma with
ions and hot electrons, for example, has an anisotropic expression

for p while its dispersion relation is isotropic, i.e.,
(22 = 1 - 2 A (2)
k? =k ? + k2

(1 + 3w?)cos?9] . (3)

and p = £$(%)4[1

Here the wavenumber k and the frequency w are normalized by the
electron Debye wavenumber kD and the ion plasma frequency wpi
respectively and the angle 6 is defined as kX = k cos 0.

We can easily see from Eq.(2) that p changes its sign from
negative to positive when 6 exceeds a value arccos (1 + 3w2)—1/2.
Note that this value is 0° when w is zero and is 60° when w unity
(the upper limit of w®w). The upper curve in the Fig.l shows
this borderline.

The coefficient q of the nonlinear term iﬂ Eq. (1) is
obtained straightforward even in the case of the oblique

modulation, accoridng to Taniuti's general analysis}’2 The set

of equations governing the ion acoustic wave is given as follows,

on . _

g T Y "(ny) = 9 ' (4)
oV

g+ (v VDy-E=0 , (3)



yv+ VE=0 , (6)
VVE-n+ v=0 |, (7)

where Y = (9/9x, 38/9y), v = (vx, vy) and g = (EX, Ey)' This

is just a two dimensional form of basic equations adopted by

H. Washimi and T. Taniuti5 to find the ion acoustic wave solitons.
The characteristic quantities are (T/M)l/zfor the ion velocity

v, TkD/e for the electric field E and n, for the ion density -

n and the electron density v; space and time coordinates, x and t,

are made dimensionless by the characteristic wavenumber and the

frequency. We seek for a solution in the form

¢ (g,T)exp[i(kxx + kyy - wt)] , (8)
E= € (x—- At) , (9a)
T= g2 t, . (9b)

where ¢ indicates the magnitude of small but finite amplitude ¢ ,
which propagates with a gfoup velocity A, easily being given from

Eq. (2)

A =(]-{°£)3cose. o (10)
To the first order of Taniuti's general analysis of perturba-

tion expansions in terms of Egs. (8) and (9), one obtains



(1)

n =9 , kv = wé
1 : 1
e = - dete . v = B2y, (11)
(1) _ _ ., w? (1) _w
Ex = l.k cosf ¢, vX = ¥ cosf ¢
and the linear dispersion relation Eq. (2). We consider a plane

wave with wavenumbers kx° and ky° as the carrier wave. We

assume these wavenumbers are not very small so that the frequency
determined by Eqg. (2) is sufficiently large to preclude the
appearance of harmonic modes of kX° and ky° as proper modes.

The harmonics will appear virtually to higher orders.

To the second order, one obtains the second correction to
quantities listed in Eqgs.(ll) in terms of a function ¢(2)(£,T)
and 98¢/9f. The second harmonic mode of the carrier wave is also
obtained in tefms of ¢ ? This comes from nonlinear self-
interaction. Although we skip to list these expressions,

‘one can easily see, that these are isotropic; hence are the same
as in Ref.3. The zeroth harmonic mode also appears due to the
nonlinear self-interaction of the modulated carrier wave. Its
expression cannot be determined within the second order completely.
One finds just

(2) _ (2)

ng = v and k*E =0 . (12)

Proceeding to the third order, one obtains



1

ng = - (1= 27 (P> + 2c08%0) [¢|*
\ _ 6
kevi? = - (1 - a7 w cos?e (e + 2)|0]2. (13)

These expressions are anisotropic but agree with those in
Ref.3 when 6 is set zero.

To the third order in the fundamental mode, specified by
kx°, ky° and w , the perturbation expansion analysis is
closed to define an equation which governs the complex amplitude
¢, being well-known called the nonlinear Schrédinger equation,

Eqg.(l). We obtain the nonlinear coefficient in the form
q = g2 + 9o (14)

where g, and g, indicate the contributions from the second and

the zeroth harmonics,

_ 1 13 2 .9 4,5 ¢ _ 0
qd:2 = - —3—(1—) (1 + -—2— w Z w + 2 w ) ) ’ (15a)
@ =2 a- A7) 7 [w* (1-w?) +4cos?B(1+w?-2w" +18)]

(15b)

One readily sees that g, < 0 and g, > 0 since w2 < 1.

The lower curve in Fig.l is that on which g becomes zero. One
finds a wide domain where both'p and g take the negative sign,
i.e., a modulation on the ion acoustic wave is unstable when it
propagetes obliquely with respect to the direction of the

carrier wave making an angle within these two limits which



depena'on the frequency of the carrier wave.

It is expected consequently that the ion acoustic wave
has an envelope soliton which propagates in this direction.

In particular, for the parallel modulation the coefficient
p is always negative irrespective of the frequency while the
coefficient q changes its sign froﬁ positive to negative when
the frequency crossés a value O.83wpi, which corresponds to
a wavenumber l.47kD.~ Even the parallel propagating modulation
makes the ion acoustic wave unstable, if its frequency exceeds
this value, under the condition of no collisions and no wave
particle interaction? However if w exceeds 0.7iwpi, the wave
length becomes smaller than the Debye length; hence collective
behavior of plasma will disappear and consequently the ion
| acoustic wave cannot actually exist.

We see two domains in w-0 diagram, Fig.l, for a 'modulationally
.stable wave having an appropriate frequency (0 < w < 0.83mpi).
ﬁote that for nearly parallel directions of the moduiation the
wave is stable due to the nonlinear self-interaction originating
from the zeroth harmonic mode (or the slow mode), which is
often referred to the so-called ponderamotive force, while the
" wave propagating nearly perpendicular to the direction of the
modulation is stable due to the seocnd harmonic self-interaction
since p > 0 there and g, is always negative. On the other hand,
for a modulational instability the second harmonic mode ié
essential since p < 0 in the instability domain.

In the limit of small frequency we can obtain an
analytical formula for modulational instabilities. From Eqs.(lS%,

b), we obtain



1
2 = - 35 (1 + %; w? ), (lea)

do = 2w cos?0/(sin?6 + 3w?cos?6) , . (16b)

where the first two terms are retained with respect to w?. Then

one obtains

g « 3w® - (1 + %; w?)tan?o (17)

and finds a critical angle eq, at which g is zero,

- 13 o
eq = V3w (1 7 W ) (18)
which is written in radians. Also one obtains ec, at which p
vanishes, in the same limit
6, = VT (1-3d) . (in radian)

Consequently, we have modulational instabilities for ion acoustic
waves propagating with an angle V3w and its half width %/§w3
with respect to the direction of modulation.

Because of the change of the basic property of the
envelope function ¢ as a function of 6, the present result
casts doubt on the applicability of the one dimensional inverse
scattering method which are often used to solve the nonlinear -

Schrodinger equation7.



The authors wish to thank Prof. Tosiya Taniuti for
a valuable discussion. One of the authors (A.H.) is

supported by the U. S. National Science Foundation grant

No. OIP 74-12932.



Fig.

Figure Caption

w — 6 diagram. Modulation on an ion acoustic wave is
fized-on the direction 0° and thé phase velocity of the
ion acoustic wave is directed to an arbitrary direction
between 0° ahd 90°. The curve, p = p(w, 90) = 0, starts
from the origin tangent to the line, 0 = 0°, up to the
point (w = 1, 6 = 60°). The other curve, q = q(w,8 ) =
starts exactly in the same way as p = 0 curve from the
origin and ends at the point (w = 0.83,0 = 0°). The
wave whose frequency and angle with respect to the
direction of modulation are such in the domain bounded

by the curves becomes unstable.
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