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Abstract
We present a one—dimensional analytical model which
can be applied to the super-compression of the multi-
structured pellet. The main result shows that the time
dependence of the input power E for the optimal compression

)—63G+1)/2G /4

is given by E « ( 1 - t/tS where G=( p1/ pz)1

Pq and p, are the densities of the D-T fuel and the high
Z material respectively, and t if the characteristic

time interval.



§1. Introduction
To compress the density of the D-T fuel pellet to more
than 1000 times of the solid density is necessary for the
laser-fusion scheme. One of the possible method to realize
this compression is launching successive shock waves which
arrive simultaneously at the pellet center. Recently the
multi-structured pellet, which is the D-T microsphere covered
with materials having high atomic numbers Z, is proposed to use.
These high Z materials which form the outer shell prevent the
pellet from pre-heating due to high-energy electrons and
hence regist the reduction of the compression due to pre-
heating at the pellet center. So far S.Mikoshiba and B.Ahlbor%)
have presented a one-dimensional analytical model for the
super-compression of the D-T solid fuel. But their analysis
cannot be adapted to the multi-structured pellet. In this
paper we present a one-dimensional analytical model which can
be applied to the super-compression of the multi-structured
pellet. The main result shows that the time dependence of
the input power E for the optimal compression is given by
- (36+1)/26 1/4

where G=(pl/ pz) , pl and pz

are the densities of the D-T fuel and the high Z material

Es (1 - t/tg

respectively, and tg is the characteristic time interval.

§ 2. Model for Super-Compression
To simplify the analysis, we limit ourselves to a one-
dimensional plane configuration. As shown in Fig.1l, the

pellet consists of a D-T fuel (region 1) and a high Z material



(region 2). A large number of successive shock waves are
launched from the point A (the point of the critical density

for the laser light which is irradiated from the right hand

side in Fig.1), impinge upon the contact discontinuity B and

are transmitted through B to the region 1. This phenomena are
schematically shown in Fig.2. As each shock is weak, we describe
the Mach number M of the shock wave as M=1+AM, where 0<AM<<1

and the Mach number is determined in the reference frame moving
with the velocity before the shock wave. If we use the
suffices i and t to the incident and transmitted shock wave

respectively, we have

1/4
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for y=5/3 (see Appendix A), whére the the suffices 1 and 2
denote the region 1 and 2 respectively, and the suffix 0 means
the value before the shock wave reaches. Equation (1) implies
that the transmitted shock should be weaken. 1In the region 2
on the other hand, a rarefaction wave is reflected shown as
B-R in Fig.2. We denote the ;elocity of the ablation surface
(A-F), the shock surface (A-B or B-O' or A'-B'or------) and the
contact discontinuity (B-B'-E) by V, U and W respectively.
The n-th shock leaves the surface A-F with the velocity Un at
t=t_, reaches the surface B-E at t=tﬁ and propagates toward the
center O with‘the velocity Uﬁ in the region 1. Let us consider
that successive shock waves are launched from the surface A-F

into the region 1 as a result of the anomalous absorption of the



laser energy at the surface A-F of the critical density. In
order to converge the shock waves in the region 1 to the point

O at the same time, the input power E of the laser light
irradiated to the pellet should increase in time in the definite
way. If we assume that the n-th and (n+1)-th shock waves

arrive at the point O at the same time tes then the following two

equations must be satisfied,

Ua (ts~tﬁ) = Uﬁ+l(ts_tﬂ+l)+wn(t'n+1—t'n) ’ (2)
Un(tﬁ—tn)+wn(tﬁ+1-tﬁ)'Vn(tn+1-tn)
UL (th ot )+ 0(aM) (3)

In eq.(3), the term O0(AM) comes from the interaction between
the shocks and the rarefaction waves in region 2, whose inter-

action change the shock velocity so we denote this change as

-t'
n
= L
{n U dt = U_(t! -t ) + O(aM) etc.
By use of
V= - ! = ~
Tt -t Tt -t (4)

eqs. (2) - (3) reduce to

' - ' Y '
Tn+1 T n _ Un Un+1 . (5)
T' - u! - W ’
n n+l n

(Un+l_wn)Tﬁ+1 * (Wn-Un)Tﬁ

= (U_..-V)) +(V_-U )t #0(aM), (6)

n+l 'n’ Tn+l n n’'n



To solve eqgs.(5) and (6) we use the following Rankine-Hugoniot

relations for weak shocks,

_ 4

Up™Un-1t ¥+1 Cn—lAM’ (7)
= A

Up=u g+ c 4 (1+8M), (8)
- 2(Y-1)p

<, cn_1(1+ Y M), (9)

where u is the fluid velocity and <y is the sound speed behind
the shock n. The increment of the Mach number MM in the region
.2 should be replaced by AM" which includes the interaction
between the shocks and the rarefaction waves, but you can see
that the leading term of eq.(3) is of the order of the sound
velocity, that is 0(1), accordingly the terms of O(aM) and
therefore O(AM*) is negligibly small.

The Rankine-Hugoniot relaéions in the region 1 are obtained
if un,cn,Un>and AM in eqs.(7)-(9) are replaced by Wn, cﬁ, Uﬁ

and AM' respectively. By the use of eqs.(7)-(9), eqgs.(5) and

(6) reduce to

1 - 1
Th+1 Tn

n

= -2AM' (10)
el T ~A NI (17 1) > (11)

where Nn is the Mach number of the ablation surface. In the
above equations, only the leading terms are retained. The

velocity of the ablation surface is given by



Introducing a new variable &(=nAM) and taking the limit of
n >« , AM > 0 and nAM » &, we obtain the following
differential equations for ¢' and t (the suffix n being

dropped) instead of eqs.(10)and (11),

dT' - - '

&= -6, (12)
dr! 4T

ac (1-N) ic (13)

where eq. (1) is used with the identities AMi=AM, and AMt=AM'
=GAM.

The solution of eqs.(12) and (13) is given by
T ~ exp(-2Gg) (14)

for the range of moderate value of & , where N can be neglected
because N diminishes as exp(-g) with respect to g. (see eq.(16))
In the derivation of eq.(14), the fact that G is constant

is used which is derived in Appendix A.

§3. Power Input

The absorbed power E in the ablation surface can be found

as

E= (1-NH % c*? J20v?-1)N, (15)

from the Chapman-Jouguet deflagration conditionl's)‘ Here

suffix * refers to the values including the effects of the
reflected rarefaction waves discussed in Appendix B. We can

express N as a function of & as follows) ,

N =-%—exp(-g) . (16)

On the estimation of the term p*c*s, we must consider both



the effects of launching shock waves and of rarefaction waves
coming back from the contact discontinuity. As shown in Appendix

B, finally we derive

p*C*3rv exp (zié%ilng ] . (17)

Combining eqs.(14)-(17), we obtain

E ~ exp [2(3y;1%G+(Y+1) EJ ,

_2(3y-1)G+(y+1)

. T ZGDG
_3G+1
~p 26 .(for ¥=5/3). (18)

Equation (18) yields

E'»T—z for solid D-T,
-2.43 . . .
E ~T for salid D-T covered with solid glass ,
-3.05 . .
En~nt for solid D-T covered with gold,
-3.95 . . .
E~t for gas D-T covered with solid glass.

We analyzed the super-compression of the multi-structured
pellet and obtained the relation (18). This relation should
be useful as a 'structure law' when we engage in laser-fusion

experiments.
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Appendix A

A contact discontinuity has no discontinuity with
respect to the pressure p or the fluid velocity u across it.
Hence if the regions in Fig.2 are indicated by the suffices,

it follows that
p1=p2 ’ p4=P5, u1=u2 ’ u4=u5' (A-1)

As the shocks are weak, we can put 1+AMt, 1+AMi and 1-AMR
for the Mach number of the incident shock, transmitted shock

and reflected rarefaction waves respectively, where

0 < AM, AM,, AMp << 1.

Then from eq. (A-1), we obtain

AM; =AM, + AMp, (A-2)
and
+1
AN \Fr e aa, AMJF 2y+4AM
-AM ]plp’S Yy +1
R{pspl Zy+4AMR . (A-3)
Equations (A-2) and (A-3) reduce to
AM. 0
—1 . (ZH1/4 (A-4)
AMt P
with the aid of the Rankine-Hugoniot relations
P3= pz(l 1AM; ),
(A-5)

4,



The increment of the Mach number AM; may reduce to AM% due
to the interaction between the shocks and the rarefaction
waves but this ¢ffect is of the order of the density ratio,

that is,
= *
AMi AMi (1+ O(AMi)),

SO we can assume AMi remains constant in the interaction
processes. This fact does not mean that the quantities o,
p, u and U remain constant but means that the quantities
vary in the way of’AMi remaining constant. As the quanti-
ties in eqs.(A-1)-(A-5) are not ones throughout the region
2 but ones in the vicinity of the contact discontinuity ,

we have no difficulty to use AMi in eq.(A-5) instead of

*
AMi. i
The ratio-ps/p4 is obtained from
en L —4 - 4
Py=P1GF [1" y(y+1)AMi] [2 YOv+1) ae]
and
P.=p 1+ —2 AM
571 y(y+1) e |’
as
_ .4 2
pg/py = G* + 0(AM7). (A-6)

Equation (A-6) means that the density ratio across the
contact discontinuity remains constant in all successive

times.



Appendix B

The successive shocks launching from the ablation
surface compress and heat the high Z material. Such com-

pressions are described as

- 2(y-1) ] n 3
c,=%o [1+'_£TT—_"AM , (B-1)

A n
og=og [1+ M ], (B-2)

where the suffix 0 denote the initial values. In the limit
of n , AM - 0 and nAM'+ g, €qgs.
(B-1)and (B-2) reduce to

cn=c0exp{}zé%ill-€ ] , (B-3)
PL=PeXP [ Yil g ] . (B-4)

On the other hand, the rarefaction waves coming back from the
contact discontinuity reduce <, and oy to c; and.p;

respectively according to

ez = cpexe | 270 (e | (B-5)
ok = p_exp [—Y—j-fT(G-l)g] : (B-6)

These results are based on the fact that the Mach number of

the rarefaction waves is given by
AMR= AMi-AMt

=AM (1-G), (AM=aM,) (B-7)

—s0 —



where eqs.(A-2) and (A-4) are used. Combining eqs.(B-3),

(B-4), (B-5) and (B-6), we obtain

p;czs ~ €xp [nyl-l) GE] . (B-8)
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Fig.1l Density distribution in the pellet.
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Fig.2 r-t diagram of the ablation surface(solid
line, A-F), the .successive shocks (solid
line, A-B, B-0', A'-B' etc.), the rarefaction
waves (double chain line, B-R etc.) and
the contact discontinuity(chain line, B-B'-E).
Dotted lines denote the pathes of particles..



