INSTITUTE OF PLASMA PHYSICS

NAGOYA UNIVERSITY

Modified Nonlinear Schr8dinger Equation
for Alfvén Waves Propagating along the

Magnetic Field in Cold Plasmas

. * 0 * . 0 *
K. Mio, T. Ogino, K. Minami
and
S. Takeda

IPPJ- 231 SEPTEMBER 1975

RESEARCH REPORT

NAGOYA, JAPAN




Modified Nonlinear Schrddinger Equation
for Alfvén Waves Propagating along the

Magnetic Field in Cold Plasmas

. % . * . L *
K. Mio, T. Ogino, K. Minami

and
S. Takeda
IPPJ- 231 SEPTEMBER 1975

Further communication about this report is to be sent
to the Research Information Center, Institute of Plasma

Physics, Nagoya University, Nagoya, Japan.

* Permanent address: Department of Electrical Engineering,

Nagoya University, Nagoya, 464, Japan



Abstract

The basic nonlinear equation which describes the Alfvén
waves, with small but finite amplitude propagating along the
magnetic field in cold plasmas is derived modifying the
reductive perturbation method proposed by Taniuti and Wei.
Then as a result, the nonlinear dispersion relation is
obtained through a procedure which clarifies the physical
meaning. Furthermore, the modified nonlinear schrddinger
equation is proposed which describes the modulated Alfvén
wave more correctly than the previous works. Our analysis
agrees well with the numerical calculation of the initial

value problem using the basic equations.



§1. Introduction
In recent years, nonlinear behaviors of waves in plasmas

1,2)

have been extensively analysed by many authors. "Taniuti

3)

and Wei proposed the reductive perturbation method as a
generalized scheme for deriving nonlinear differential
equations of the waves. The method is shown by many authors
to be a powerful procedure to extract the equation describing
a particular wave with finite amplitude from a set of funda-
mental equations in which various waves can be included.
Their method has been successfully applied to various waves 3?’

such as ion acoustic4) 5)

and magnetosonic waves. However,
the method by Taniuti and Wei cannot be applied to Alfvén
waves propagating along static magnetic fields. This is
because the eigenvalues of the zero-order matrix obtained
from the basic equations degenerate in the left and right=
hand ciréularly polarized Alfvén waves (left Alfvén wave and
right Alfvén wave). This fact contradicts their assumption3)
on which the reductive perturbation method is substantiated.

In the present paper, a-different way of reductive ";
perturbation ié proposed which is effective even in the case
that the degeneracy does exist. In the present method, the
right and left Alfvén waves can be separately extfacted from
the basic equations describing the magnetohydrodynamic waves
which conserve the nonlinearity of the waves. The nonlinear
equation for each wave thus obtained is analysed in detail.
Using the equation, we derive the nonlinear dispersion

relation of Alfvén waves through a procedure that the

physical meaning of the relation is clarified. Next, the

e
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propagation of modulated Alfvén waves is analysed, which
results in an equation named, in this paper, the modified
nonlinear Schrédinger equation (M. N. S. equation).

6)

Hasegawa obtained the nonlinear Schrodinger equation (N.

S. equation) describing the behavior of the modulated
magnetohydrodynamic waves propagating along the magnetic
field. He used the reductive perturbation method for the
envelope of the modulated waves which was proposed by Taniuti

7)

and Yajima. The present M.N.S. equation includes an
additional higher-order term which plays an important role
when the wavelengths of the envelope and the carrier wave
become the same order. Thus the features of the steepening
of the envelope and the modulational instabilities are
affected significantly by the additional term except an
early stage of the time evolution.

In‘order to check our theoretical analysis, we numerically
calculated our equations. The results of the nonlinear
dispersion relation and the steepening. of the envelope in
the modulated waves agree with the theoretical analysis.

In §2, the M.N.S. equation for modulated Alfvén waves is
derived. The numerical results and discussions are presented
in §3. The analytical results of the modulational instabi-
lities and the envelope solitons will be described in the

subsequent paper.

§2. Theoretical Analysis
2.1. Formulation of the basic equations

The motions of electrons and ions in plasmas are



described by the following equations: the equations of
continuity, the equations of motion which are coupled with
Maxwell's equations. The magnetohydrodynamic wave with long
wavelength, i.e., Alfvén waves in a uniform magnetized plasma
is here considered. In a long wavelength limit, the charge
separation between electrons and ions can be ignored. This
allows us to assume that the plasma is quasi-neutral.
Furthermore the displacement current in Maxwell's equation,
is neglected assuming that the phase velocity of the Alfvén
waves is much lower than that of light in wvacuum.

Eliminating the electric field and the electron velocity,
from the equations, one obtains the equations for a plane
Alfvén wave propagating along x-axis in a uniform plasma.

5)

Then, the equations are

g o
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where

4 2 .0
ax = ot TYoxr

Here, B, x, t and n are normalized, respectively, by the
static magnetic field Bo, the wavelength L, the reciprocal

of the wave frequency w, and the mean plasma density n,.

Also, I and Woi denote the cyclotron frequencies, respec-
tively, of electrons and ions normalized by W, - The frequency

Wy is given by VA/L, where V, is the velocity of the Alfvén

wave, i.e., BO/[4ﬂno(me+mi)] . In the above equations, u, v
and w denote respectively, x, y and z components of the ion
velocity normalized by Va- The equations constitute the
fundamental equations of the present analysis.

We restrict to the propagations of the Alfvén waves
along a static magnetic field in uniform plasmas. As is well

known, the dispersion relation of the Alfvén waves with an

infinitesimal amplitude are given from Egs. (1) - (6), as

w
%—?-l:F}N%,» 7)

where

M= -12- (W™ - W) (3)

w and k are, respectively, the frequency and the wave number,
which are normalized, respectively, by W, and L-l. In Eqg.
(7), the upper and the lower signs denote, respectively, the
left and right Alfvén waves. Taking into account the linear
dispersion relation, Eq. (7), we introduce the following

stretched space and time variables,



g = ¢&(x-t), T

£t (9)

in order to carry out a perturbation expansion of Egs. (1) -
(6), where € is a positive number smaller than unity.
The variables have the power series expansions in €

about a homogeneous equilibrium state,

N =1+N=]+¢en? +en®+-- (10)

u = &— = Eu.m + Elu(z)‘l-"' (11)
U = '2L M 4 n2

U= = (VP +rev®+) (12)
~ s

w= w = &2(w(l)+gw(2)+...) (13)

~ n
By = By = &*( Bym +E Bgm-‘--“ ) (14)

Bz = Bz

gé—(Bzm‘*‘f Be¥+ - ) . (15)

The expansion given by Egs. (10) - (15) is the best choice of
the present analysié’in the»seﬁse that leading order terms,
respectively, of the éﬁantities in Egs. (10) - (15) can be
the largest among various ways of expansion. The detailed
discussions on the choice of expansion in the reductive
perturbation method will be published elsewhere.

In order to simplify the analysis, the plasma is assumed

to be in equilibrium state at £ -+ +», then following boundary



conditions are valid that n(l), u(l), v(i) w(l) By(i)
Bz(l) approach, respectively, zero as & goes infinity where

and

i=1, 2, .... . Substituting Egs.(9) - (15) into Egs.(l) -

(6), and equating terms with the identical powers of €, the

following equations are obtained. First for sl:

N — 0]
v = Bg (17)
and
)
w = =Bz, (18)

Next for 62:
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(24)

Substituting Egs. (16) - (18) into Egs. (21) - (24), we obtain
equatons regarding the stretched variables, £ and T in time

and space, respectively. Turning the equations back to the

forms in the real space and time coordinates, x and t, the

following equations are derived,

0
0

[Bg (4 +Bg +Bz)] ,u 0'Bs = (), (25)

+Z§x— or

J—OI[BZ (4 +By

, (26)

O

where, for simplicity, the superscript (1) of By and Bz are
omitted. Equations (25) and (26) together with Egs. (16) -
(18) are the basic equations for nonlinear Alfvén waves
obtained in the present analysis.

First, the nonlinear dispersion relation of the Alfvén
waves with small but finite amplitudes is investigated in some
detail. In order the Egs. (25) and (26) to be applicable to
describe the nonlinear behavior of the wave, BY and B
should be, respectively, smaller than unity, since g
+ (1)

£2B
Y2

In the linear theory, By and Bz can be written as

R

Y2
1
O (e7) < 1, as is shown in Egs. (14) and (15).

B% = (@ cos (ﬁx‘wt)

(27)

Bz = fasin(Bx-wt),



where a is the amplitude normalized by the static magnetic
field B,- If a small amplitude a of Eq. (27) is assumed as
initial values of By and B, in Egs. (25) and (26), By2 + 322

= a2 which is constant in time and space. Then, Egs. (25)

and (26) become essentially the linear differential equations
regarding By and Bz. The linear equations thus obtained

are Fourier transformed in time and space. Then the nonlinear

dispersion relation w(k, a2) can be written as

Wik, @) = wR)+(5%) 0%,
W £ (28)
(5&),= =+ -

where w and k denote, respectively, the frequency and the

wave number, w(k) is the linear dispersion relation given by
Eg. (7). Here the notations by Karpman dn Krushkals) have
been adopted. HasegawaG) derived the N.S. equation somewhat
different from Eq. (35) for a magnetohydrodynamic wave propa-
gating along the magnetic field. He obtained the nonlinear
dispersion relation, Eq. (36) in Ref.6, which tends to Eq. (28)
in a long wavelength limit, <comparing the corresponding terms
in his N.S. equation and that by Karpman and Krushkal.B) The
nonlinear dispersion relation, Eq. (28), is derived in a
procedure which clarifys the physical meaning rather than
that by Hasegawa. Also, it should be emphasized that the
assumption a << 1 is not necessarily required in Eq. (28).
Then, no harmonic waves are generated even when the initial
unmodulated amplitude is relatively large, whereas, the

phase velocity of the wave increases with amplitudes.

If a wave whose amplitude is initially modulated, the



envelope steepens as the wave propagates. This is because
the portion of large amplitude propagates faster than that
of small amplitude. Then the break-down time tB of the
modulated wave can be defined as the period that the part
of the maximum amplitude of the wave, which is initially
modulated sinusoidally, over-takes that of the minimum
amplitude. In this case, the initial condition of the

modulated wave is expressed as
By (X.0) = (Q +a sinKx) cos BX,
Bz (X, 0) =i(ao+a|3l\nKI)Sl‘H'ﬁ1,

(29)

where K and k are, respectively, the wavenumbers of the
- envelope and the carrier wave. Using Eq. (28), the maximum

and minimum phase velocities, V and V

pmax pmin’ respectively,

of the wave can be written as,
Vemax = Vpo + (Ao + Q) /4
Vpmin = VPO + (Qo - a‘)z/4, ’

where Vpo is the phase velocity for the linear Alfvén wave.

The break-down time tB is then written as

meaz - mein 000, K

(30)

Next, the time evolution of the modulated Alfvén wave,
Eqg. (29), is analysed. It is restricted during a time less
than tB' For this purpose the rotating vector components

are introduced as

- 10 -



BLr = Bg T fB;

s

(31)

VLrR=V T 1w

where suffixes L and R denote the left and right-hand circu-
larly polarized waves, respectively. Substituting Eq. (31)

into Egs. (16) ~ (18), one directly obtains

’

R L)

(32)
UL'R = - BL/R b - ".

Also, substituting Eg. (31) into Egs. (25) and (26), the baéic
| equation is obtained which describes the nonlinear evolution
of é finite amplitude Alfvén wave propagating along the
static magnetic field. For simplicity, the following nota-

.tions are introduced

,_Pw@) |
y = BL,R », UO— D'@_Z =4 2/u . {33)

Then, Egs. (25) and (26) are written

o4 +-}L—Q-[<p(4+|301 )]- U gz—p =(. o

2.2. Modified nonlinear Schrddinger equation

6)

Taniuti and Yajima proposed a reductive perturbation

method to analyse generally the propagation of the modulated

- 11 -




waves. They used the transformation in time and space, such

as
g = €(x-t), T= ¢t
and the perturbation expansion for the wave amplitude, as

oo \
m . (m) At{(BoX—Wst
¢ = 7 £Mpm gtl(RX=wit)
4, m=1
where ko and w, are given by a linear dispersion relation.

If their method is applied to the Alfvén waves propagating "
along the magnetic field, the following equation for the
modulated wave, is obtained after some straight-forward

calculations.

. 56“’ 2 A2 ()
y aat -t g(’ gg; ﬁ’\’ﬁ- |p | M = 0. 6

This is well-known as nonlinear Schrddinger equation.g)

Equation (35), however, is valid only in a case that the

wavelength of the envelope is much longer than that of the .
carrier wave. In contrast to Eq. (35), the Eg. (34)

derived here which is available even in the case that the

both wavelengths are comparable each other. Thus the Eq. (34)
describes the nonlinear behavior of the modulated Alfvén

waves more exactly than Eq. (35). The function ¢y in Eq. (35)

* After the present work had been completed, we found that
the similar equation to Eq. (34) was independently derived
also by Einer Mj¢Lhus, in the internal report No.48, Depart-
ment of Applied Mathematics, University of Bergen, Norway

(1974).

- 12 -



is expressed as

¢ (X.t) = Y (x.t) e tL(RX-wt) (36)

where k and w are given in the nonlinear dispersion relation,

Eqg. (28). Substituting Eq. (36) into Eg. (34), one obtains
LUg 2
Yp + Uo ¥~ 5> xx“(aaz (1YI* - lllzol)l//
] 2 —
+Z(WI W), = 0, (37)

where

29)=% =17 opt
o CWE) o
Uof‘ aﬁz = + N

where IwO] is the wave amplitude without modulation, the
subscripts t and x denote the derivatives in time and space,
respectively. We call Eq. (37) the modified nonlinear
Schroédinger equation. It in¢ludes the last term, as an
additional higher-order term, to Hasegawa's N.S. equation.

Next, the physical meaning of the term of Eg. (37) is
considered. The envelope ¥ (x,t) in Eqg. (36) is written in

a form

Y(x,t) = a(x,t)eitxt (38)

Substituting Eq. (38) into Eq. (37), the following two

equations are obtained from the real and imaginary parts.

- 13 -




ug

d+ + U, (2ax¢x+a¢11)+%a2ar=o, (39)

Pe + Uo P + 2_0 ¢ + (aaz) (a*- a5 )= 54 Uo Qxx ?14_‘424’120
(40)
The last terms in Egs. (39) and (40) introduced from the last
term of Eq. (37) is equivalent to the nonlinear term in

10) (M. K-dV equation).

modified Korteweg-deVries equation
It is well known that the nonlinear term in M. K-dv
equation plays a role to steepen the waveform so as to balance
a dispersion term, resulting in solitary waves. Thus, using
the analogy, the last term in Eqg. (37) will enhance the
steepening of the envelope of the modulated Alfvén wave. The
effect of the last term in Eg. (37) can be neglected if the
wavelength of the envelope is much longer than that of the
carrier wave. The last term becomes essentially important
when both wavelengths are in same order. Thus, it is con-
cluded that Eqg. (37) has a wider applicability than the usual

N.S. equation to describe the evolution of the modulated

Alfvén waves.

§3. Numerical Computation

Next, the results of a numerical computation of the
nonlinear equations are shown, in order to check the validity
of our analytical results. First the frequency shift of
finite amplitude Alfvén waves, which is predicted by Eq. (28)
is examined. The Egs. (25) and (26) are numerically computed

in time and space. Here, 2-step Lax-Wedroff method is used

- 14 -



to solve a set of difference equations which are derived

from Egs. (25) and (26). An initial condition is given by
By (Xx.0) = acsBx,
Bz (x,0)= —asngx,

for right Alfvén waves. It is expected from Eq. (28) that,

for a given k, the freugency and therefore the phase velocity
would increase with wave amplitude. A wavenumber k = 0.0l

is assumed which corresponds to a long wave length. An
example of phase velocity w/k vs a is shown in Fig.l. The
open circles are numerically computed ones which exactly

fit to the theoretical line at a = 0.01 and 0.5, respectively.
The solid line is the nonlinear dispersion relation given by
Eqg.(28). It is confirmed that w/k numerically calculated

for left Alfvén waves also agrees that by Eqg. (28).

The spectrum of wavenumber k at each step of the calcu-
lations is observed. The generation of higher harmonic
components in time and space has not been observed even in
the case of a = 0.5. This fact suggests that the condition
a << 1 is not necessary in the present analysis. 1In the
case of ion acoustic and magnetosonic waves, large amplitude’
collapses into solitons as is well known in K-dV equation.
Whereas, large amplitude Alfvén waves propagate without any
distortion. The phase velocity only increases as the wave
amplitude increases.

The propagations of the modulated Alfvén waves are also
computed numerically. We use the initial condition given by

Eq. (29) for the left Alfvén wave. In the computation, a, =

- 15 -




0.4, a; = 0.1, k = 0.01, K = k/8, u = 0.5 and therefore

tB = 2 x 104 are used. The width Ax and At, respectively,

in space and time are chosen in the difference equations
‘such as Ax = A°/512 and At = Ax/2, where Ao = 27/K. The
computation are made in a reference frame moving with the
Alfvén velocity, in order to conserve the numerical accuracy.
An example of the wave patterns is shown in Fig.2, for times
B’ 0.21 tB and 0.42 tB. The solid and dashed
lines are, respectively, [B,|and B,. It is shown that the

t =0.015 t

initial sinusoidal envelope steepens and approaches to a
shock-like pattern. To the right of each wave pattern, the

spectrum of the wavenumber k is shown. At t = 0.015 t the

BI
spectrum of B, is concentrated around the carrier wavenumber

k =0.0l. At t = 0.21 tj and t = 0.42 tor

becomes broad, yielding higher wavenumbers.

the spectrum

The‘time evolution of the maximum wvalue, , of the

envelope is plotted in Fig.3(a). At the time around t = 0.21
tgs lBllmax increases all of a sudden and approaches to a
saturated level. Afterwards, |B_,_]max randomly oscillates

around the saturated level. 1In Fig.3(b), the wave energy W

in the plasma is followed in time where

/K 5
W = g B dx
-T/K
and W, is the initial value of the energy. The energy W
should be an invariant because no physical mechanism for

dissipation exists in the equations. As is shown in the

figure, W begins to decrease in numerical computation at

- 16 -



t = 0.24 ty- At t = 0.48 tgr W is 1.2 % smaller than the
initial value. It will come from the fact that a sharp
spike in front of the shock pattern is formed, which is
smoothed out in the numerical calculation due to the finite
interval of the spatial difference. Since the decrement are
quite small, the appearance of the saturated level in |B1|max
is reliable. The numerical results of the almost
steady-state envelope suggest the existence of the envelope

soliton which will be discussed in detail in the subsequent

paper.
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Fig.l

Fig.2

Fig.3

Figure Captions

Wave amplitude a vs phase velocity w/k. The solid
line is the theoretical values calculated from the
nonlinear dispersion Eg. (28). The open circles
are the values of numerical computation of Eqg. (7)
and (28).

Wave patterns and the spectra of wavenumbers of a
modulated left Alfvén wave at (a) t = 0.015 tB'

(b) £t = 0.21 t_ and (¢) t = 0.42 t

B The initial

B*
conditions are described in the text. To the right
of each wave pattern, the spatial Fourier spectrum

is shown. The solid and dashed lines are, respec-

tively [B,| and B,.

(a)- The change in time of the maximum value, IBllmax'
of the envelope in the calculation given in Fig.2;

(b) the decrease of the wave energy W in time whose

invariance assures the accuracy of the computation.
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