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Abstract

The modulational instability and envelope-solitons for
the Alfvén waves propagating along the static magnetic field
in cold collisionless plasmas are analyzed using the modified
nonlinear Schrédinger equation derived previously by the
authors. It is shown that the modulational instability exists
for a small amplitude but does not for a amplitude larger than
the critical value in the case of the left-hand circularly
polarized Alfvén wave (left Alfvén wave). On the other hand,
the modulational instability does not exist for the right=
hand circularly polarized Alfvén wave (right Alfvén wave).
Without the modulational instability, the rarefactive and
compressive envelope-solitons exist for the left Alfvén wave
and the two types of the rarefactive envelope-solitons for

the right Alfvén wave.



§1. Introduction
In recent years, study of nonlinear wave phenomena has
been one of the most important problems in plasma physics.

It is known that the complex amplitude ¥ of various waves
1)

2)

such as the electron plasma and electron cyclotron waves

in plasmas is expressed by the nonlinear Schrddinger

-5)

equationl (N.S. equation), namely
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where P is proportional to the derivative of the group
velocity of the wave by the wave number and Q is the coef-
ficient of the nonlinear frequency shift. The N.S. equation

3= phe

has been investigated in detail by many authors.
modulational instability exists for PQ > 0 and does not for
PQ < 0. Without the modulational instability, the envelope=

soliton solution is obtained.3)

Hasegawa investigated the
modulational instability of the electron cyclotron wave by
both the analysis and computer simulation.

8)

It was shown, in our previous paper, that the nonlinear
Alfvén waves propagating along the static magnetic field were
described by the modified nonlinear Schorinder equation (M.N.S.
equation). It can be used even in the case that the N.S.
equation is not valid, since the former includes the higher
order term in addition to the latter. In the present paper,
the M.N.S. equation is solved to study the modulational
instability and envelope-solitons. The results considerably

3,4)

differ from those expected by the usual N.S. equation.



It is shown that the modulational instability does not always
exist even for PQ > 0. Moreover, the envelope-soliton so-
lutions for the left and right-hand circularly polarized
Alfvén waves (left and right Alfvén waves) are obtained, when
the modulational instability does not exist.

In §2, the results previously developed by the authors
are summarized as the starting point of the present analysis.
In §3, the analytical results of the modulational instability
are described in some detail. The Korteweg-de Vries equation
for the envelope of the Alfvén waves is derived in §4. 1In §5,
the rarefactive and compressive envelope-solitons are classi-
fied for the left and right Alfvén waves.

§2. Previous Results by the Authorss)
The nonlinear Alfvén waves propagating along the magnetic

field are described by the following equation,

oY . 12 iy _ilUe B¢

We introduce the following variables,
) L(RoX = Wot)
? - 4&? € (2a)
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where ko and w, are, respectively, the wave nmber and the

frequency of the carrier wave. Using Eqg. (2a), Eq.(l) is



rewitten regarding VY as,

¥, cu -t F et BR), (109 1LY - £ Y, = 0

’

(3)
2
= = t = | J—
where IWO[ = ag, ug 1+ ug L (dw/3a )o ko/4 and u
¥ 2u = I(l/wci - 1/w_ ). Here the upper and lower signs

correspond to the left and right Alfvén waves, respectively.
Equation (3) was named the modified nonlinear Schrédinger

8)

eqation (M.N.S. equation). Subsituting Eqg. (2b) into Eq. (3),
two equations for the amplitude a and phase ¢ are derived

from the real and imaginary parts

at'fuoa,x-f‘ ._2‘%.0 (‘Zax?1+a’¢xx> + "Z‘?.-a_lax = 0
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8§3. Modulational Instability

A small perturbation for the amplitude of Alfvén waves
can grow in time when a finite, constant amplitude a, and a
wave number ko are initially given. It is called the

2)

modulational instability. In this section, the modulational
instability is studied using Eq.(4). The variables are
separated into the constant ag and the perturbations g and %,
which vary slowly in time and space rather than those of
carrier wave,

N A N
G = O, + A gD::CP (58)



The perturbations in amplitude are written in a form of the

plane wave as,

n ~ i(K-K"fli )
A, ¢ o € ) (5b)
where K and 2 are, respectively, the wave number and frequency

of the envelope. Then, the dispersion equation is obtained

by linearizing Eq. (4),
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The modulational instability does not exist under the condi-

tions of

: N, L2 qoy s
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The right Alfvén wave is always stable for the modulation
because of (aw/aaz)ouo‘ = k_u_ '/4 > 0. On the other hand,
the left Alfvén wave is stable for ao2 > —4kou ' but unstable

for ao2 < —4kouo'. In other words, in the latter case there



is a range of K where the internal term of the square root
is negative in Eq. (6). Hereafter in this section, the
interest is restricted to the modulational instability for
the left Alfvén wave.

From Eq. (6) the growth rate T of the modulational

instability is obtained as,
[

P o= Jo ()= SK[20805 - %—“’* S 0

It has the maximum value of
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Furthermore, Fm has the maximum value of

= L ), %
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at
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N~

The dependence of I' on K is shown in Fig.l for the
constant value g and Tm vs. ag is shown in Fig.2. The
broken line shows the dependence of Fm on a_ obtained from
the usual N.S. equation, namely Fm = koa02/8. As is shown
in Fig.2, L obtained from the M.N.S. equation increases for

0 <a_ < a b ecreases for a_ > a as a_increases.
o om ut d € o om’ o}



Then, T equals zero at a_ = /faom. From Eq. (9), the modula-

tional exists in the following ranges,

0< K < 2 Km tor K (12)
and
0t < B '
Ho < ° 2+ tor Ao (13a)
‘ -& + PP S _ KZ),J)," J
/51'. = ‘f‘)“'L o - (_YQ.O , (l3b)
Although PQ = —(Bw/Baz)ouo'/Z = uko/4 > 0 holds for the left

Alfvén wave, it is stable for the modulation under the condi-

tion of aj zag . The result cannot be explained from the

3)

N.S. equation.

§4. Derivation of Korteweg-de Vries Equation

The M.N.S. equation is analyzed to obtaine a steady-state
solution, namely the evnelope-soliton. The Korteweg-de Vries
equation (K-dV equation) can be derived from the M.N.S.
equation by the similar method to that for N.S. equation.3)
Another method to derive the K-dV equation developed by the
authors is described in the Appendix A. First, ¥ in Eq. (3)
is replaced by,

- pF eiﬁagz; d 2
’ (14)

then, the following two equations are derived from the real

and imaginary parts of Eq. (3),



Pt Wod t(T+3P)P +POx =0 (152)
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The following perturbations of a plane wave are substituted

into Eq. (15).
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Linearizing the equations, one obtaines the dispersion
relation, regarding K and §, which is the same as Eq. (6), if

2 .
a, 1is replaced by Pos

Since a modulated wave is stable for 812 > 0, the re-

ductive perturbation methodg) can be applied to Eq.(15). It

is arranged in a form,
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Next, the following coordinate stretching and the expansions

are introduced
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where ¢ is a small parameter. From the determinant |a - AI|

= 0,

~

L
'>\=ao+uo’¢+%i(%+%“;5’+2';u30'932 (20)

is obtained, where Ao = 82 and I means the unit tensor.
Under the condition that p(l) and o(l) approach, respectively,
zero for £ »+ *», the equation of 53/2—order in Eqg. (15) are

written as

=0 (21)
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. . . 572
Moreover, the K-dV equation 1s obtained from the gl—order, as
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(1)

The perturbation of the local wave number k is given by

the following expression from Egs. (14) and (21) as,



| 2 /
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Thus the small perturbations of the envelope and wave number

vary according to the K-dV equation.

§5. Envelope-Soliton Solution
As is well known, the K-dV equation has the soliton
solutions. One-soliton solutionlo) from Eqg. (22) is given by

pY = A ,uJLLL(‘“) (3-2"71)

B ) (25)

(1)

where A is an optional constant expressing the velocity
of the soliton. Therefore, an envelope-soliton solution for

Y is written as,

L
¢ = (5t F) & L‘S%“” (koX = o) | (26a)
1
o g2k ),

where the relations, k = 858, AN = ek(l), % = ek(l)

p(l)

and B =
are used. When the amplitude of the soliton Apo =

3AA/B4 is given, Eg.(26b) is rewritten as

, 2 L af s, AP Bay | : '
}?:Aﬁ, oM —j;_-(f ‘*) [ X-(B2t —5~—3)T} ] (26b)

As is shown in Eq. (26b), A)\/B3 > 0 1s a necessary

condition to obtain the soliton solution. It should be noted

- 10 -



that the compressive soliton exists for Apo = 3A)\/B4 > 0,
and the rarefactive soliton for Apo < 0. When 65 > 0, the
local wave number kO +’ﬁ is also large in the portion where
B is large. On the other hand, when 65 < 0, kO + ¥ is small
in the portion of large E.

Now, the envelope-soliton for the left and right Alfvén
waves are investigafed in detail. When the time, velocity,
space and magnetic field are normalized, respectively, by

-1

Weg o the Alfvén velocity V., VA/wci and the static magnetic

field BO to simplify the representation, the relations

P2 Bo o \E
Wo=|Fho , ud=F 1 and B ={g F4%)" (27)

8)

are obtained, where the upper and lower signs correspond
to the left and right Alfvén waves, respectively.

The results are summarized in Table I. Moreover, the
envelope-soliton profiles are shown in Fig.3. In the reference
frame moving with the velocity of 82, the rarefactive envelope=
soliton propagating in left direction and the compressive
envelope-soliton propagating in right direction exist for the
left Alfvén wave without the modulational instability. For
each of the envelope-solitons, the local wave number is also
large in the portion where the amplitude is large. Since
the modulational instability does not exist for the right
Alfvén wave, the rarefactive envelope-solitons propagating
in left and right directions exist. The local wave number

is large for the former but small for the latter in the

portion where the amplitude is large. The velocity of

- 11 -



envelope-soliton in given by 82 + AM in the rest frame.

In addition, for the left Alfvén wave, the envelope=
soliton solved from the N.S. equation and the limiting case
that Bl goes to zero are discussed, respectively, in the

Appendixes B and C.
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Appendix A Another Derivation of K-dV Equation by the
Reductive Perturbation Method
The reductive perturbation method given by Taniuti and
9)

Wei cannot be directly applied to Eq. (4) because it is not

arranged to the type of Eq.(17). However, the method can be
applied to Eq.(4), if the coordinate stretching and expansions
are determined in the following procedure.

Taking into account the linear dispersion equation (6),

the following coordinate stretching is introduced,

2=t (A-6.t) =¥, dro, oee < L

(A.1)
Expansions for a and ¢ are written as
A = v - My ) (@)
= do t U do t & " (d/ted "+ ) , (A.2a)
Y M 4,1 - 1R)
p=¢ = P edT o ), (B.2b)

where 0 < my, m, < 1. Substituting Eq. (A.2) into Eqg. (4) and

using Eq. (A.1), {a; m , m2} can be determined from a criterion

that the evaluation of r = my + m., has the minimum value,

namely

. L L
b oy, me f =13 b 5 (A.3)

Now, since the coordinate stretching and the expansions are
uniquely determined in Egs. (A.l) and (A.2), Eq.(4) is
arranged in the order of ¢. Consequently, the K-dV equation

is obtained in the order of 65/2 as,



paY o 20Y 300
=t p a0 = ar _
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where
L, B
/ﬁé = 3o ('ZF t Aot ) 5 (A.5)
and 63 is given by Eqg.(7c). The K-dV equation (A.4) is essen-

tially the same as Eq. (22). The small difference between 84

and 66 comes from the two transformations of Egs. (2b) and (14).

Appendix B Envelope-Soliton Solved from the Nonlinear
Schrédinger Equation
The last term can be ignored in Eq.3, when the charac-
teristic length of the envelope is sufficiently long. Using

a coordinate transformation in space and time,

2= A-Wt 7= f (a.6)

the following N.S. equation is obtained for [WOI = 0 from

Eg.3 without the last term,
. U - -
LY+ 7 ¥y - (Qz) vy = o. (A.7)

Since the two coefficients uo'/2 = ~-uy and -(8w/3a2)0 =

—ko/4 take the same negative sign, the solution of Eg. (A.7)

which goes to zero for |§| + « is a solitary wave,3’6)

v - (m) ach [ (& J; %] pm it | o)
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where Wy is an optional constant. Therefore, envelope=

soliton solution for the left Alfvén wave is written as

L ~ [ bA — [ 1
= (2 ek [ () ey ] e T

(A.9)

For this envelope-soliton, the wave number is always constant.

Appendix C Limiting Case for the Left Alfvén Wave

The left Alfvén wave can satisfy the condition Bl =0,
when s is equal to —4kouo'. Equation (22) is not wvalid in
such a case, because 83 goes to infinity. It is also under-
stood from that the two eigenvalues of Ao degenerate for By
= 0. In that exceptional case, the dispersion equation (6) is

rewritten as

(sl . 2
— 2° + 1222
;L = (Ue t T K £ T K (A.10)

Hence, following coordinate stretching and the expansions are

introduced

Z=ell~-dt) , T= €1

- - < Qf(-i’) u ¥ (ﬂ)
f:fo‘“j—;lty )0':%(:0. , (A.11)

where Ao = u_ + po/2 = u_ + 4ko. Using Eq. (A.11), three

o o
equations are obtained by arranging the €2, 53 and 84-orders

(l), 0(2), p(l) (2)

in Eq. (15) assuming that p and © approach,
respectively, zero for £ - +«, namely
U (! _
+ P+ W =0 (A.12a)
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aP(l) n as)l af(l)
57 T#P 3 273 T 00 3y T 0 (A.12D)
5() 0 (@) s
ﬁ 2% 2 A 4? 233 ©, (A.12c)
where 5,(2) = 9(2)/11" + @)

A steady-state solution is examined along the character-
(l)T)_

istic line of ¢ = (£ - ¢ In that case, Egs. (A.12b) and

(A.12c) are equivalent to the following equation,

s )
i S R AN U R N UL fal Al S
7 7% m;P T 32 a;*sj T3 4 234 -9 (a.d3)

(1)

Using ¢z = (£ - cC T) and integrating Eq. (A.13) twice by ¢

(1)

under the condition of p -+ 0 for ¢ > +», the following

equation is obtained,

% | —
(6 Us (3P> + aﬁ-“m)”o) (A.14a)

Bpm) = PO (Y -wV)”

(A.14Db)

(1)

The value of p must be equal to zero or 8c(l), when Bp(l)/ac
has a real value in Eg.(A.1l4a). This means that the wave with
the amplitude perturbation of B = 8¢ (¢ > 0) propagates with
the velocity of ¢ in the reference frame moving with the

(1)

n
constant velocity 7\0, where the relations of p = €p and
(1)

. . N n,
Cc = €C are taken into account. Moreover, since k = -p/4uo'

N
= B/8u is obtained from Eqg. (26c), the wave number ko + k is

- 16 -



also large when the amplitude is large. The result in this
appendix corresponds to the limiting case that Bl goes to
zero in the envelope-soliton solution described by Eq. (26a).
For the case c < 0, the modulational instability occurs

because of o + 8c < 4ko.
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Figure and Table Captions

Fig.1l The growth rate I' vs. the wave number K in the
modulational instability.

Fig.2 The maximum growth rate Tm vs. the amplitude a, in the
modulational instability.

Fig.3 Envelope-soliton profiles and propagation direction
in the reference frame moving with 82. The numbers

correspond to those in Tablel, respectively.

Tablel. Classification of envelope-solitons for Alfvén waves,
- 2 . -
where Bl = (pO /16 + (ko/4)uo po)2 and uo' = -1 and
1, respectively, for the left and right Alfvén

waves.
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